+ All Categories
Home > Engineering > Piping components, materials, codes and standards part 1- pipe

Piping components, materials, codes and standards part 1- pipe

Date post: 08-Jan-2017
Category:
Upload: alireza-niakani
View: 5,216 times
Download: 40 times
Share this document with a friend
72
` PIPING SYSTEM DESIGN I – PIPING COMPONENTS, MATERIALS, CODES AND STANDARDS - PART 1 - PIPE Engineering and Management Solutions REBIS ACADEMY Presented By Alireza Niakani
Transcript
Page 1: Piping components, materials, codes and standards   part 1- pipe

`

PIPING SYSTEM DESIGN I –PIPING COMPONENTS, MATERIALS, CODES ANDSTANDARDS - PART 1 - PIPE

Engineering and Management Solutions

REBIS ACADEMY

Presented By Alireza Niakani

Page 2: Piping components, materials, codes and standards   part 1- pipe

REBIS ACADEMY OF TECHNOLOGYWe are a top-level Canadian Engineering Training Center in Toronto. We offers more than 300 career-focused training courses

form introductory to advanced in the key areas of engineering including Petroleum Engineering, Chemical Engineering, Piping

Engineering, Instrumentation & Control Engineering, Mechanical Engineering, Electrical Engineering, Civil & Structural

Engineering, Inspection & Maintenance Engineering, Safety Engineering and Project Management.

Our training programs and courses are useful to university or college graduates, entry-level engineers, technologists or technicians,

designers and drafters, experienced engineers and managers, who are willing to work in engineering consulting firms, construction

and operation, technical support and sales companies in the different industrial sectors, including oil, gas and petrochemical

companies, chemical and pharmaceutical plants, power, gas, water and waste water utilities, pulp and paper mills, food & beverage

processors, mining, metals and minerals companies.

We are constantly in touch with employers and strives to ensure that our training materials are consistent with what are required in

the marketplace. Our training programs and courses either help universities’ graduates to be more marketable and competitive in

the workforce or experienced engineers to update their professional skills to be as productive as possible in their work competitive

environment.

Our training programs and courses are delivered by instructors who have the knowledge and experience to understand your

challenges, ensuring content is relevant, up to date and practice wherever possible and are highly respected professionals in their

fields from all over the globe.

We are dedicated to preparing you to succeed in the global marketplace and business world.

We are sure, you will leave REBIS ACADEMY with the knowledge and skills that employers want.

1

Page 3: Piping components, materials, codes and standards   part 1- pipe

PIPE

Engineering and Management Solutions

REBIS ACADEMY 2

Page 4: Piping components, materials, codes and standards   part 1- pipe

MINIMUM REQUIREMENT FOR PIPE

• Pipe types• Pipe manufacturing and fabrication• Pipe size• Pipe wall thickness, schedule and weight• Pipe material• Pipe End preparation (End furnished)• Pipe length• Pipe Insulation, Coating and lining• Pipe Standards

Engineering and Management Solutions

REBIS ACADEMY 3

Page 5: Piping components, materials, codes and standards   part 1- pipe

PIPE TYPES

Metallic Non‐Metallic

Ferrous Non‐FerrousCast Iron

Carbon Steel

Alloy Steel

Stainless Steel

Thermosetting

Thermoplastic

Concrete

Vitrified Clay

Glass

Engineering and Management Solutions

REBIS ACADEMY 4

Page 6: Piping components, materials, codes and standards   part 1- pipe

PIPE MANUFACTURING AND FABRICATION

Rolled & W

eld

Spiral (Helical) welded pipe

U & O

Seam

less

pipe

Seam

 welde

d pipe

Steel pipe

Longitudinal (Straight) welded pipe

Engineering and Management Solutions

REBIS ACADEMY 5

Page 7: Piping components, materials, codes and standards   part 1- pipe

PIPE MANUFACTURING AND FABRICATION

Seamless

Seam welded

Steel (Metallic) P

ipe

Coal, Iron Ore, Coke and Scrap are melted to form

Ingots

Billets

Slabs

Blooms

Plate

Coil

Engineering and Management Solutions

REBIS ACADEMY 6

Page 8: Piping components, materials, codes and standards   part 1- pipe

SEAMLESS PIPE MANUFACTURING 

Seamless pipe is made when steel in a solid, round cylindrical shape,called a “billet” or a “tube round” is heated and then either pushed orpulled (while being rapidly rotated) over a mandrel with a piercing pointpositioned in the center of the billet. This activity produces a hollow tubeor “shell”. Seamless pipe is made in sizes from 1/8” to 26”.

Mandrel Mill Process is used to make smaller sizes ofseamless pipe form 1/8” to 26”.

Plug Mill Process is used to make larger sizes ofseamless pipe from 6” to 26” diameter.

Extrusion Process is used for tubes only.

Seamless pipes are stronger and more reliable,however, expensive, in short supply and unavailable inlong lengths.

Engineering and Management Solutions

REBIS ACADEMY 7

Page 9: Piping components, materials, codes and standards   part 1- pipe

SEAMLESS PIPES MANUFACTURING 

Engineering and Management Solutions

REBIS ACADEMY 8

Page 10: Piping components, materials, codes and standards   part 1- pipe

WELDED PIPE MANUFACTURINGSeam

 welde

d pipe

Submerged Arc Weld Pipe(SAW)

Electric Fusion Weld Pipe(EFW)

Fusion weld (FW) PipeOr Continues Weld (CW)

Electric Resistance Weld Pipe(ERW)

Longitudinal Submerged Arc Weld Pipe(LSAW)

Spiral Submerged Arc Weld Pipe(SSAW)

Engineering and Management Solutions

REBIS ACADEMY 9

Page 11: Piping components, materials, codes and standards   part 1- pipe

FUSION WELD (FW) / CONTINUES WELD (CW)FW or CW pipes is used in sizes 1/8” to 4‐1/2”. The ribbon of steel is fedinto a leveler and then into a gas furnace where it is heated to therequired temperature for forming and fusing. The forming rolls at the endof the furnace shape the heated skelp into an oval.The edges of the skelp are then firmly pressed together by rolls to obtain aforged weld. The heat of the skelp, combined with the pressure exerted bythe rolls, form the weld.Synchronized with the speed of the pipe as it emerges from the final rollsis a rotary saw which cuts the pipe to its desired length. The pipe is thencooled, descaled, straightened, inspected. tested hydrostatically, coated asrequired and end finished. No metal is added into the operation.Continuous weld pipe is commonly used for the conveyance of water. air.gas, steam; for sprinkling systems, water wells. fencing. and a multitude ofstructural applications.These pipes are generally the lowest cost steel piping material available.

Engineering and Management Solutions

REBIS ACADEMY 10

Page 12: Piping components, materials, codes and standards   part 1- pipe

ELECTRIC RESISTANCE WELD (ERW)ERW pipes is used in sizes 2” to 24”. The coils of strip steel or skelp ispulled through a series of rollers that gradually form it into a cylindricaltube. As the edges of the now cylindrical plate come together, an electriccurrent is applied at the proper points to heat the edges so they can bewelded together.As in CW pipe, no extraneous metal is added; in fact, due to the extremepressure of the rolls, steel is extruded on both the inside and outside ofthe pipe at the point of the weld. This is called flash and is removed bystationary cutters while still white hot. This process leads to coalescenceor merging. It produces uniform wall thicknesses and outside dimensions.The High Frequency Induction Technology (HFI) welding process is used formanufacturing ERW pipes as well. HFI is generally considered to betechnically superior to “ordinary” ERW when manufacturing pipes forcritical applications.

Engineering and Management Solutions

REBIS ACADEMY 11

Page 13: Piping components, materials, codes and standards   part 1- pipe

ERW PIPE MANUFACTURING

Engineering and Management Solutions

REBIS ACADEMY 12

Page 14: Piping components, materials, codes and standards   part 1- pipe

SUBMERGED ARC WELD (SAW)SAW pipes is used in sizes 10” to up. Submerged Arc Welded (SAW) pipederives its name from the process wherein the welding arc is submergedin flux while the welding takes place. The flux protects the steel in theweld area from any impurities in the air when heated to weldingtemperatures.The two types of pipes produced through these technologies areLongitudinal Submerged Arc Welded (LSAW) and Spiral Submerged ArcWelded (SSAW) pipes.Due to their high cost, LSAW pipes are seldom used in lower value non‐energy applications such as water pipelines. SSAW pipes are produced byspiral (helicoidal) welding of steel coil and have a cost advantage overLSAW pipes as the process uses coils rather than steel plates.Both LSAW pipes and SSAW pipes compete against ERW pipes andseamless pipes in the diameter ranges of 16”‐24”.

Engineering and Management Solutions

REBIS ACADEMY 13

Page 15: Piping components, materials, codes and standards   part 1- pipe

SAW PIPE MANUFACTURING 

Engineering and Management Solutions

REBIS ACADEMY 14

Page 16: Piping components, materials, codes and standards   part 1- pipe

PIPE MANUFACTURING COMPARATIVE NOTESPipe size: Seamless < Spiral Welded Pipe < Longitudinal welded pipeWall Thickness:Seamless < Spiral Welded Pipe < Longitudinal welded pipeLength:Seamless < Longitudinal welded pipe< Spiral Welded PipePrice:Spiral Welded Pipe < Longitudinal welded pipe<SeamlessJoint efficiency E:joint efficiency E used in pressure design equation, where for Seamless E = 1.0, and for Longitudinal Seam Welded E = 1.0 in case of full radiography and may be = 0.85 for other cases, and for spiral E = 0.65 or 0.60Method:Seamless used hot process, Spiral used cold rolling with extrusion process while longitudinal used cold process with bend and rolled.

Engineering and Management Solutions

REBIS ACADEMY 15

Page 17: Piping components, materials, codes and standards   part 1- pipe

PIPE SIZE

IPS: Iron Pipe size = 1/8”, 3/8”, 1/2”, 3/4”, 1”, 1 1/2”, 2”, …. , 80”NPS: Nominal Pipe size = 1/8, 3/8, 1/2, 3/4, 1, 1 1/2, 2, …. , 80DN: Diametre Nominel = 6, 8, 10, 15, 20, 25, 32, 40, 50, …. , 2000

ODOutside Diameter

IDInside Diameter

(Bore)

ODID

Wall thickness

Engineering and Management Solutions

REBIS ACADEMY16

Page 18: Piping components, materials, codes and standards   part 1- pipe

PIPE SIZENPS (in) 1/8 1/4 3/8 1/2 3/4 1 1‐1/4 1‐1/2 2 2‐1/2 3 3‐1/2 4 5 6 8 10 12

OD (in) 0.405 0.540 0.675 0.840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.00 4.500 5.563 6.625 8.625 10.750 10.750

NPS (in) 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

OD (in) 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.000 30.000 32.000 34.000 36.000 38.000 40.000 42.000 44.000 46.000 48.000

DN (mm) 6 8 10 15 20 25 32 40 50 65 80 90 100 125 150 200 250 300

OD (mm) 10.290 13.720 17.150 21.340 26.670 33.400 42.160 48.260 60.330 73.020 88.900 101.60 114.30 141.30 168.27 219.08 273.05 323.85

DN (mm) 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200

OD (mm) 355.60 406.40 457.20 508.00 559.00 609.60 660.04 711.20 762.00 812.80 863.60 914.40 965.20 1016.0 1066.8 117.6 1168.4 1219.2

Nominal Pipe Size (NPS) is a American (ASA) set of standard sizes for pipes usedfor high or low pressures and temperatures. The European designation equivalentto NPS is DN (diamètre nominal/nominal diameter/Durchmesser nach Norm), inwhich sizes are measured in millimetres.• For NPS ⅛ to 12 inches, the NPS and OD values are different.• For NPS 14 inches and up, the NPS and OD values are equal.

Engineering and Management Solutions

REBIS ACADEMY17

Page 19: Piping components, materials, codes and standards   part 1- pipe

PIPE SCHEDULE AND WALL THICKNESS

NPS(in)

OD(in)

Pipe Schedule (SCH)

5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS

8 8.625 0.109 0.148 0.250 0.277 0.322 0.322 0.406 0.500 0.500 0.594 0.719 0.812 0.906 0.875

12 12.750 0.165 0.180 0.250 0.330 0.406 0.375 0.562 0.688 0.500 0.844 1.000 1.125 1.312 1.000

14 14.000 0.156 0.250 0.312 0.375 0.438 0.375 0.594 0.750 0.500 0.938 1.094 1.250 1.406

24 24.000 0.218 0.250 0.375 0.562 0.687 0.375 0.968 1.218 0.500 1.531 1.812 2.062 2.343

Imperial & Metric

• The ASME/ANSI B 36.10 is for Steel Pipe, ASME/ANSI B36.19 for Stainless Steel Pipe andAPI 5L for line pipe.

• The formula to approximate calculate of Schedule Number = (1,000)(P/S)Where, P = the internal working pressure, psig and S = the allowable stress (psi)For example, the schedule number of ordinary steel pipe having an allowable stress of10,000 psi for use at a working pressure of 350 psig would be:Schedule Number = (1,000)(350/10,000) = 35 (approx. 40)

NPS(in)

OD(mm)

Pipe Schedule (SCH)5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS

8 219.080 2.769 3.759 6.350 7.036 8.179 8.179 10.312 12.700 12.700 15.062 18.237 20.625 23.012 22.22512 323.850 4.191 4.572 6.350 8.382 10.312 9.525 12.700 17.450 12.700 21.412 25.4 28.575 33.325 25.400

14 355.600 3.962 6.350 7.925 9.525 11.100 9.525 15.062 19.50 12.700 23.800 27.762 31.750 35.712

24 609.600 5.537 6.350 9.525 14.275 17.450 9.525 24.587 30.937 12.700 38.887 46.025 52.375 59.512

Engineering and Management Solutions

REBIS ACADEMY18

Page 20: Piping components, materials, codes and standards   part 1- pipe

PIPE SCHEDULE VS. WEIGHTMetric

NPS(in)

OD(mm)

Pipe Schedule (SCH)5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS

8 219.080 15.09 20.37 33.31 36.81 42.55 42.55 64.4 64.4 107.9210 273.100 23.08 28.34 41.77 51.03 60.31 60.31 83.19 81.55 155.15

12 323.850 31.89 36.73 49.73 65.20 79.73 73.88 132.08 97.46 186.97

14 355.600 35.06 54.69 67.90 81.33 94.55 93.27 158.10 107.39

The formula to approximate calculate of the steel pipe nominal weight per unit length is: 

Approx. weight per unit length (kg/m) = [O.D.(mm) – W.T(mm)] x W.T.(mm) x 0.02466 Approx. weight per unit length (Ib/ft) = [O.D.(inch) – W.T(inch)] x W.T.(inch) x 10.69 for C.S. or 10.68 for S.S

Where, O.D. is Outside Diameter and W.T. is Wall Thickness

1 inch=25.4 mm  and        1Ib/ft=1.4895 kg/m

NPS(in)

OD(mm)

Pipe Schedule (SCH)5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS

8 219.080 2.769 3.759 6.350 7.036 8.179 8.179 10.312 12.700 12.700 15.062 18.237 20.625 23.012 22.22512 323.850 4.191 4.572 6.350 8.382 10.312 9.525 12.700 17.450 12.700 21.412 25.4 28.575 33.325 25.400

14 355.600 3.962 6.350 7.925 9.525 11.100 9.525 15.062 19.50 12.700 23.800 27.762 31.750 35.712

24 609.600 5.537 6.350 9.525 14.275 17.450 9.525 24.587 30.937 12.700 38.887 46.025 52.375 59.512

Engineering and Management Solutions

REBIS ACADEMY19

Page 21: Piping components, materials, codes and standards   part 1- pipe

PIPE WALL THICKNESS CALCULATION

t= Pressure design thickness

d= Inside diameter of pipe

D= Outside diameter of pipe

P= Internal design pressure

E= Quality factor (Basic quality factor “E” for longitudinal weld joints in stainless steel pipes, tubes and fittings)

S= Stress value for material (Basic allowable stress “S”)

Y= Coefficient factor

Engineering and Management Solutions

REBIS ACADEMY 20

Page 22: Piping components, materials, codes and standards   part 1- pipe

Engineering and Management Solutions

REBIS ACADEMY

PIPE WALL THICKNESS CALCULATION

21

Page 23: Piping components, materials, codes and standards   part 1- pipe

Engineering and Management Solutions

REBIS ACADEMY

PIPE WALL THICKNESS CALCULATION

22

Page 24: Piping components, materials, codes and standards   part 1- pipe

PIPE MATERIAL

The most comprehensive reference for material is ASTM. AmericanSociety for Testing and Materials (ASTM), is an international standardsorganization that develops and publishes technical standards for a widerange of materials, products, systems, and services.

The ASTM Standards covers 15 sections:1. Iron and Steel Products2. Nonferrous Metal Products3. Metals Test Methods and Analytical Procedures4. Construction5. Petroleum Products, Lubricants, and Fossil Fuels6. Paints, Related Coatings, and Aromatics7. Textiles8. Plastics

9. Rubber10. Electrical Insulation and Electronics11. Water and Environmental Technology12. Nuclear, Solar, and Geothermal Energy13. Medical Devices and Services14. General Methods and Instrumentation15. General Products, Chemical Specialties16. Index to all sections and volumes

Engineering and Management Solutions

REBIS ACADEMY 23

Page 25: Piping components, materials, codes and standards   part 1- pipe

FLUID SERVICE CATEGORY (B31.3 DEFINITION)

B31.3 recognizes the following fluid service categories and a specialdesign consideration based on pressure. With the fluid servicecategory known, then the designer can make proper material andcomponent selection, as well as employ the code requiredfabrication and inspection requirements.These fluid categories and pressure concern are:

1. Normal Fluid Service (ASME B31.3 , Chapter 7)2. Category D Fluid Service3. Category M Fluid Service (ASME B31.3 , Chapter 8)4. High Pressure Piping (ASME B31.3 , Chapter 9)5. Severe Cyclic Conditions

Engineering and Management Solutions

REBIS ACADEMY 24

Page 26: Piping components, materials, codes and standards   part 1- pipe

FLUID SERVICE CATEGORY

1. Normal Fluid Service (ASME B31.3 , Chapter 7)A fluid service pertaining to most piping covered by this code,not subject to the rules of Category D, M or High Pressure FluidService.Often characterized as “Process”

Engineering and Management Solutions

REBIS ACADEMY 25

Page 27: Piping components, materials, codes and standards   part 1- pipe

FLUID SERVICE CATEGORY2. Category D Fluid ServiceThe fluid handled is:• nonflammable• nontoxic• not damaging to human tissue• The design gage pressure does not exceed 150 psig• The design temperature is greater than ‐20°F (‐29°C) and

dose not exceed 366°F (‐186°C). 366°F is the saturationtemperature of steam at 150 psig.

• Often characterized as “Utility”Example: Steam condensate with max temp. 212°F (100°C) andmax press. 90 psig (6 bar)

Engineering and Management Solutions

REBIS ACADEMY 26

Page 28: Piping components, materials, codes and standards   part 1- pipe

FLUID SERVICE CATEGORY3. Category M Fluid Service (ASME B31.3 , Chapter VIII)A fluid service in which the potential for personnel exposure isjudged to be significant and in which a single exposure to a verysmall quantity of a toxic fluid, caused by leakage, can produceserious irreversible harm to persons upon breathing or on bodilycontact, even when prompt restorative measures are taken.Often characterized as “lethal”Example:

Phosgene (Nerve Gas)Hydrofluoric AcidHydrogen Sulfide Gas

Engineering and Management Solutions

REBIS ACADEMY 27

Page 29: Piping components, materials, codes and standards   part 1- pipe

FLUID SERVICE CATEGORY4. High Pressure Piping (ASME B31.3 , Chapter IX)A service for which the owner specifies the use of Chapter IX ofASME B31.3 for piping design and construction and etc.considered to be in excess of class 2500 (PN 420).Often characterized as “High Pressure”

Engineering and Management Solutions

REBIS ACADEMY 28

Page 30: Piping components, materials, codes and standards   part 1- pipe

FLUID SERVICE CONTAINMENT SYSTEMB31.3 Fluid Service Containment SystemCategory D [Utility] Lowest cost

Usually not fire resistant Usually not blow‐out resistant

Normal [Process] Moderate costMay be fire resistant or notMay be not blow‐out resistant or not

Category M [Lathal]High Pressure

High costUsually fire resistant Usually blow‐out resistant

Engineering and Management Solutions

REBIS ACADEMY 29

Page 31: Piping components, materials, codes and standards   part 1- pipe

ASTM DESIGNATION SYSTEMExample 1 ‐ ASTM A 582/A 582M‐95b (2000), Grade 303Se ‐Free‐Machining Stainless SteelBars:

‘A’ describes a ferrous metal, but does not sub classify it as cast iron, carbon steel, alloysteel, tool steel, or stainless steel;582 is a sequential number without any relationship to the metal’s properties;M indicates that the standard A582M is written in rationalized SI units (the M comes fromthe word Metric), hence together A582/A582M includes both inch‐pound and SI units;95 indicates the year of adoption or last revision and a letter b following the year indicatesthe third revision of the standard in1995;(2000), a number in parentheses, indicates the year of last re‐approval;Grade 300Se indicates the grade of the steel, and in this case, it has a Se (selenium)addition.

Note: Grade is used to describe chemical composition; Type is used to define thedeoxidation practice; and Class is used to indicate other characteristics such as strengthlevel or surface finish.

Engineering and Management Solutions

REBIS ACADEMY 30

Page 32: Piping components, materials, codes and standards   part 1- pipe

ASTM DESIGNATION SYSTEMExample 2 ‐ ASTM A 106‐02a Grade A, Grade B, Grade C ‐ Seamless Carbon Steel Pipe for High‐Temperature Service: 

Typically an increase in alphabet (such as letters A, B, C) results in higher tensile or yield strength steels, and if it’s an unalloyed carbon steel, an increase in carbon content; 

In this case: Grade A:0.25%C (max), 48 ksi tensile strength (min); Grade B: 0.30%C (max), 60 ksi tensile strength (min); Grade C 0.35%C (max), 70 ksi tensile strength (min). 

Example 3 ‐ ASTM A 276‐03, Type 304, 316, 410 – Stainless and Heat Resisting Steel Barsand Shapes:

Types 304, 316, 410 and others are based on the SAE designation system for stainlesssteels.

Engineering and Management Solutions

REBIS ACADEMY 31

Page 33: Piping components, materials, codes and standards   part 1- pipe

SAE DESIGNATION SYSTEMCarbon steels

10XX Plain carbon, Mn 1.00% max11XX Resulfurized free machining12XX Resulfurized/rephosphorized free machining15XX Plain carbon, Mn 1.00-1.65%

Manganese steels 13XX Mn 1.75%

Nickel steels23XX Ni 3.50%25XX Ni 5.00%

Nickel-chromium steels

31XX Ni 1.25%, Cr 0.65-0.80%32XX Ni 1.75%, Cr 1.07%33XX Ni 3.50%, Cr 1.50-1.57%34XX Ni 3.00%, Cr 0.77%

Molybdenum steels40XX Mo 0.20-0.25%44XX Mo 0.40-0.52%

Chromium-molybdenum steels 41XX Cr 0.50-0.95%, Mo 0.12-0.30%

Nickel-chromium-molybdenum steels43XX Ni 1.82%, Cr 0.50-0.80%, Mo 0.25%47XX Ni 1.05%, Cr 0.45%, Mo 0.20-0.35%

Nickel-molybdenum steels46XX Ni 0.85-1.82%, Mo 0.20-0.25%48XX Ni 3.50%, Mo 0.25%

Chromium steels

50XX Cr 0.27-0.65%51XX Cr 0.80-1.05%

50XXX Cr 0.50%, C 1.00% min51XXX Cr 1.02%, C 1.00% min52XXX Cr 1.45%, C 1.00% min

Chromium-vanadium steels 61XX Cr 0.60-0.95%, V 0.10-0.015%Tungsten-chromium steels 72XX W 1.75%, Cr 0.75%

Nickel-chromium-molybdenum steels

81XX Ni 0.30%, Cr 0.40%, Mo 0.12%86XX Ni 0.55%, Cr 0.50%, Mo 0.20%87XX Ni 0.55%, Cr 0.50%, Mo 0.25%88XX Ni 0.55%, Cr 0.50%, Mo 0.35%

Silicon-manganese steels 92XX Si 1.40-2.00%, Mn 0.65-0.85%, Cr 0-0.65%

Nickel-chromium-molybdenum steels

93XX Ni 3.25%, Cr 1.20%, Mo 0.12%94XX Ni 0.45%, Cr 0.40%, Mo 0.12%97XX Ni 0.55%, Cr 0.20%, Mo 0.20%98XX Ni 1.00%, Cr 0.80%, Mo 0.25%

1 ‐ Carbon Steel,2 ‐ Nickel steels;3 ‐ Nickel‐chromium steels;4 ‐Molybdenum steels;5 ‐ Chromium steels;6 ‐ Chromium‐vanadium steels;7 ‐ Tungsten‐chromium steels;9 ‐ Silicon‐manganese steels. 

Example:SAE 5130 indicates a chromium steel alloy, containing 1% of chromium and 0.30% of carbon. 

Engineering and Management Solutions

REBIS ACADEMY 32

Page 34: Piping components, materials, codes and standards   part 1- pipe

ASTM DESIGNATION SYSTEMExample 4: Another use of ASTM grade designators is found in pipe, tube, and forgingproducts, where the first letter P refers to pipe, T refers to tube, TP may refer to tube orpipe, and F refers to forging.

• ASTM A 335/A335‐03, Grade P22; Seamless Ferritic Alloy‐Steel Pipe for HighTemperature Service;

• ASTM A 213/A213M‐03a, Grade T22; Seamless Ferritic and Austenitic Alloy Steel Boiler,Superheater and Heat‐Exchanger Tubes;

• ASTM A 312/A312M‐03, Grade TP304; Seamless and Welded Austenitic Stainless SteelPipe;

• ASTM A 336/A336M‐03a, Class F22‐Steel Forgings, Alloy, for Pressure and High‐Temperature Parts.

Engineering and Management Solutions

REBIS ACADEMY 33

Page 35: Piping components, materials, codes and standards   part 1- pipe

EFFECTS OF ALLOYING ELEMENTS IN STEELSteel is basically iron alloyed to carbon with certain additional elements to givethe required properties to the finished melt. Listed below is a summary of theeffects various alloying elements in steel.

‐ Carbon ‐ Tantalum ‐Manganese ‐ Selenium‐ Chromium ‐ Niobium‐ Nickel ‐ Nitrogen‐Molybdenum ‐ Silicon‐ Titanium ‐ Cobalt‐ Phosphorus ‐ Copper‐ Sulfur

Engineering and Management Solutions

REBIS ACADEMY 34

Page 36: Piping components, materials, codes and standards   part 1- pipe

EFFECTS OF ALLOYING ELEMENTS IN STEEL• CarbonIncreases the hardness and strength by heat treatment• ManganeseImproves hot working properties and increases strength, toughness and hardenability• ChromiumIncreases resistance to oxidation and also improve hardenability and strength• NickelImproves resistance to oxidation, corrosion, toughness and temperature strengths• MolybdenumImproves resistance to pitting corrosion especially by chlorides and sulphur chemicals• TitaniumMinimises the occurrence of inter‐granular corrosion by carbide stabilisation• PhosphorusImproves machinability and also strength and corrosion resistance• SulphurImproves machinability

Engineering and Management Solutions

REBIS ACADEMY 35

Page 37: Piping components, materials, codes and standards   part 1- pipe

EFFECTS OF ALLOYING ELEMENTS IN STEEL• TantalumStabilises carbon and also strengthens steels and alloys for high temperature service• SeleniumImproves machinability• Niobium (Columbium)Chemically similar to Tantalum and has similar effects• NitrogenImproves yield strength and also increases the austenitic stability of stainless steels • SiliconImprove hardness  and silicon is used as a deoxidising (killing) agent in the melting of steel• CobaltCobalt becomes highly radioactive when exposed to the intense radiation of nuclear reactors, and as a result, any stainless steel that is in nuclear service will have a cobalt restriction, usually approximately 0.2% maximum. • CopperProduces precipitation hardening properties

Engineering and Management Solutions

REBIS ACADEMY 36

Page 38: Piping components, materials, codes and standards   part 1- pipe

HEAT TREATMENTThe purpose of heat treating carbon steel is to change the mechanical properties of steel, usually ductility, hardness, yield strength, or impact resistance. The following is a list of the types of heat treatments possible:Spheroidizing:The purpose is to soften higher carbon steels and allow more formability.Full annealing:Fully annealed steel is soft and ductile, with no internal stresses, which is often necessaryfor cost‐effective forming.Normalizing:Normalized steel has a fine pearlitic structure, and a more‐uniform structure. it has ahigher strength than annealed steel and a relatively high strength and ductility.Quenching:This quenched steel is extremely hard but brittle, usually too brittle for practical purposes.Martempering (Marquenching)and Austempering:In industry, this is a process used to control the ductility and hardness of a material. Withlonger marquenching, the ductility increases with a minimal loss in strength.

Engineering and Management Solutions

REBIS ACADEMY 37

Page 39: Piping components, materials, codes and standards   part 1- pipe

PIPE MATERIAL

Metallic Non‐Metallic

Ferrous Non‐FerrousCast Iron

Fe+2‐4% C+1‐3%Si Fe+1.95% C Ni, Cu, Ti, Cr, Mo, AlInconelHastelloyMonel

Carbon Steel

Alloy Steel

Stainless Steel

Fe+C

Fe+C+Cr< 10%

Fe+C+Cr> 10.5%

Thermosetting

Thermoplastic

Concrete

Vitrified Clay

Glass

Engineering and Management Solutions

REBIS ACADEMY 38

Page 40: Piping components, materials, codes and standards   part 1- pipe

CAST IRON PIPEIt is usually made from pig iron. Cast iron tends to be brittle, except for malleablecast irons. With its relatively low melting point, good fluidity, castability, excellentmachinability and resistance to deformation. Cast irons are used in pipes,machines and automotive industry parts, such as cylinder heads, cylinderblocks and gearbox cases. It is resistant to destruction and weakeningby oxidation (rust).

Hardness Tensile strength [ksi]Nominal composition[% by weight]Name

26050C 3.4, Si 1.8, Mn 0.5Grey cast iron (ASTM A48)

45025C 3.4, Si 0.7, Mn 0.6White cast iron

13052C 2.5, Si 1.0, Mn 0.55Malleable iron (ASTM A47)

7070C 3.4, P 0.1, Mn 0.4, Ni 1.0, Mg 0.06Ductile or nodular iron (ASTM A339)

55055C 2.7, Si 0.6, Mn 0.5, Ni 4.5, Cr 2.0Ni‐hard type 2

14027C 3.0, Si 2.0, Mn 1.0, Ni 20.0, Cr 2.5Ni‐resist type 2

Engineering and Management Solutions

REBIS ACADEMY 39

Page 41: Piping components, materials, codes and standards   part 1- pipe

CARBON STEEL PIPECarbon steel is steel in which the main  alloying constituent is carbon in the range of 0.12–2.0%. As the carbon percentage content rises, steel has the ability to become harder and stronger through heat treating, however it becomes less ductile with the lower melting point. It also reduces weldability.

Example: ASTM A53, A105 , A106

Medium carbon steel: 0.30–0.59% carbon content. Balances ductility and strength and has good wear resistance; used for large parts, forging and automotive components.High‐carbon steel: 0.6–0.99% carbon content. Very strong, used for springs and high‐strength wires.Ultra‐high‐carbon steel: 1.0–2.0% carbon content. Steels that can be tempered to great hardness. Used for special purposes like knives, axles or punches. 

Engineering and Management Solutions

REBIS ACADEMY 40

Page 42: Piping components, materials, codes and standards   part 1- pipe

CARBON STEEL PIPE

Composition, max, %

Element C Mn P S Cu (1) Ni (1) Cr (1) Mo (1) V (1)Type S (Seamless Pipe)

Grade A 0.25 0.95 0.05 0.045 0.40 0.40 0.40 0.15 0.08

Grade B 0.30 1.20 0.05 0.045 0.40 0.40 0.40 0.15 0.08Type E (Electric-Resistance-Welded)

Grade A 0.25 0.95 0.05 0.045 0.40 0.40 0.40 0.15 0.08

Grade B 0.30 1.20 0.05 0.045 0.40 0.40 0.40 0.15 0.08Type F (Furnace-Welded Pipe)

Grade A 0.30 1.20 0.05 0.045 0.40 0.40 0.40 0.15 0.08(1) The total composition for these five elements shall not exceed 1.00%.

ASTM A53Specification for seamless and welded black and hot-dipped galvanized steel pipe

ASTM A105: Specification for Carbon Steel Forgings for Piping ApplicationsASTM A106: Specification for Seamless Carbon Steel Pipe for High‐Temperature Service

Engineering and Management Solutions

REBIS ACADEMY 41

Page 43: Piping components, materials, codes and standards   part 1- pipe

ALLOY STEEL PIPE

Composition, max, %

Element C Mn P S SI Cr Mo othersGrade P2 0.10-0.20 0.30-0.61 0.025 0.025 0.10-0.30 0.50-0.81 0.44-0.65 ….Grade P5 0.15 max 0.30-0.60 0.025 0.025 0.5 max 4.00-6.00 0.45-0.65 ….Grade P9 0.15 max 0.30-0.60 0.025 0.025 0.25-1.00 8.00-10.00 0.90-1.10 ….Grade P911 0.09-0.13 0.30-0.60 0.020 0.010 0.10-0.50 8.50-9.50 0.90-1.10 V 0.18-0.25

Ni 0.40 maxAl 0.20 maxTi 0.01 maxZr 0.01 max

ASTM A335Specification for seamless ferritic alloy-steel pipe for high-temperature service

All grades: P1, P2, P5, P5B, P5C, P9, P11,P12,P15,P21,P22,P23, P24,P36,P91,P92, P122, P911

Engineering and Management Solutions

REBIS ACADEMY 42

Page 44: Piping components, materials, codes and standards   part 1- pipe

STAINLESS STEELStainless steel is a name given to a group of steel alloys with many differences inproperties and behaviour having one property in common ‐ resistance tocorrosion.When an Alloy of Steel contains more than approximately 10.5% Chromium it canbe classed as a stainless steel. The large group of stainless steels can be dividedinto three major groups, namely:• Austenitic

Chromium normally in the range 17‐25% and nickel in a range 8‐20%

• FerriticMinimum of 17% chrome and carbon in the range of 0.08% ‐ 2.00%

• MartensiticMinimum of 12% chrome and usually a maximum of 14% with carbon in the range of0.08% ‐ 2.00%.

• Duplex (Supper Alloy) (Austenitic + Ferritic)

Engineering and Management Solutions

REBIS ACADEMY 43

Page 45: Piping components, materials, codes and standards   part 1- pipe

STAINLESS STEEL PIPE• Austenitic

• A312 ‐ A312/A312M‐00 ‐ Specification for Seamless and Welded Austenitic Stainless Steel Pipes• A813 ‐ A813/A813M‐95e2 ‐ Specification for Single‐ or Double‐Welded Austenitic Stainless Steel Pipe• A814 ‐ A814/A814M‐96 (1998) ‐ Specification for Cold‐Worked Welded Austenitic Stainless Steel PipeOthers: SAE: Type 201, 202,,205, 254, 301, 302, 302B, 303, 303Se, 304, 304L, 304Cu, 304N, 304, 308, 309,309S, 310, 310S, 314, 316, 316L, 316F, 316N, 317, 317L, 321, 329, 330, 347, 348, 384

• Ferritic• A790 ‐ A790/A790M‐99 ‐ Specification for Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe• A872 ‐ A872‐91 (1997) ‐ Specification for Centrifugally Cast Ferritic/Austenitic Stainless Steel Pipe for

Corrosive EnvironmentsOthers: SAE: 405, 409, 429, 430, 430F, 430FSe, 434, 436, 442, 446

• Martensitic• ASTM A1053 / A1053M ‐ 12 Standard Specification for Welded Ferritic‐Martensitic Stainless Steel PipeOthers: SAE: 403, 410, 414, 416, 416Se, 420, 420F, 422,431,440A, 440B, 440C

• Duplex (Supper Alloy)

Engineering and Management Solutions

REBIS ACADEMY 44

Page 46: Piping components, materials, codes and standards   part 1- pipe

PIPE MATERIAL VS. OTHER PIPING COMPONENTSASTM Grades

Material Pipes Fittings Flanges Valves Bolts & Nuts

Carbon Steel

A106 Gr A A234 Gr WPA A105 A216 Gr WCBA193 Gr B7A194 Gr 2HA106 Gr B A234 Gr WPB A105 A216 Gr WCB

A106 Gr C A234 Gr WPC A105 A216 Gr WCB

Carbon Alloy SteelHigh‐Temp

A335 Gr P1 A234 Gr WP1 A182 Gr F1 A217 Gr WC1

A193 Gr B7A194 Gr 2H

A335 Gr P11 A234 Gr WP11 A182 Gr F11 A217 Gr WC6

A335 Gr P12 A234 Gr WP12 A182 Gr F12 A217 Gr WC6

A335 Gr P22 A234 Gr WP22 A182 Gr F22 A217 Gr WC9

A335 Gr P5 A234 Gr WP5 A182 Gr F5 A217 Gr C5

A335 Gr P9 A234 Gr WP9 A182 Gr F9 A217 Gr C12

Carbon Alloy SteelLow‐Temp

A333 GR 6 A420 Gr WPL6 A350 Gr LF2 A352 Gr LCB A320 Gr L7A194 Gr 7A333 Gr 3 A420 Gr WPL3 A350 Gr LF3 A352 Gr LC3

AusteniticStainless Steel

A312 Gr TP304 A403 Gr WP304 A182 Gr F304 A182 Gr F304

A193 Gr B8A194 Gr 8 

A312 Gr TP316 A403 Gr WP316 A182 Gr F316 A182 Gr F316

A312 Gr TP321 A403 Gr WP321 A182 Gr F321 A182 Gr F321

A312 Gr TP347 A403 Gr WP347 A182 Gr F347 A182 Gr F347

Engineering and Management Solutions

REBIS ACADEMY 45

Page 47: Piping components, materials, codes and standards   part 1- pipe

PipesA106 = This specification covers carbon steel pipe for high‐temperature service.A335 = This specification covers seamless ferritic alloy‐steel pipe for high‐temperature service.A333 = This specification covers wall seamless and welded carbon and alloy steel pipe intended for use at low temperatures.A312 = Standard specification for seamless, straight‐seam welded, and cold worked welded austenitic stainless steel pipe intended for high‐temperature and general corrosive service.FittingsA234 = This specification covers wrought carbon steel and alloy steel fittings of seamless and welded construction.A420 = Standard specification for piping fittings of wrought carbon steel and alloy steel for low‐temperature service.A403 = Standard specification for wrought austenitic stainless steel piping fittings.FlangesA105 = This specification covers standards for forged carbon steel piping components, that is, flanges, fittings, Valves, and similar parts, for use in pressure systems at ambient and higher‐temperature service conditions.A182 = This specification covers forged or rolled alloy and stainless steel pipe flanges, forged fittings, and Valves and parts for high‐temperature service.A350 = This specification covers several grades of carbon and low alloy steel forged or ring‐rolled flanges, forged fittings and Valves for low‐temperature service.ValvesA216 = This specification covers carbon steel castings for Valves, flanges, fittings, or other pressure‐containing parts for high‐temperature service and of quality suitable for assembly with other castings or wrought‐steel parts by fusion welding.A217 = This specification covers steel castings, martensitic stainless steel and alloys steel castings for Valves, flanges, fittings, and other pressure‐containing parts intended primarily for high‐temperature and corrosive service.A352 = This specification covers steel castings for Valves, flanges, fittings, and other pressure‐containing parts intended primarily for low‐temperature service.A182 = This specification covers forged or rolled alloy and stainless steel pipe flanges, forged fittings, and Valves and parts for high‐temperature service.Bolds & NutsA193 = This specification covers alloy and stainless steel bolting material for pressure vessels, Valves, flanges, and fittings for high temperature or high pressure service, or other special purpose applications.A320 = Standard Specification for Alloy‐Steel and Stainless Steel Bolting Materials for Low‐Temperature Service.A194 = Standard specification for nuts in many different material types.

Engineering and Management Solutions

REBIS ACADEMY

PIPE MATERIAL VS. OTHER PIPING COMPONENTS

46

Page 48: Piping components, materials, codes and standards   part 1- pipe

PIPE ENDSThe three standard types of pipe ends used in the piping industriesare;

• Plain Ends (PE) Joint Type: Socket Weld• Threaded Ends (TE) Joint Type: Thread or Screw• Beveled Ends (BE) Joint Type: Butt Weld

The end type for piping components are based on the type of jointused in that particular piping system. The are listed below;

‐ Threaded joint ‐ Grooved Joints‐ Flange Joints ‐ Caulked Joints‐ Butt Joints ‐ Bonded Joints‐ Socket Joints

Engineering and Management Solutions

REBIS ACADEMY 47

Page 49: Piping components, materials, codes and standards   part 1- pipe

PIPE ENDS ABBREVIATIONS

• Bevel End (BE) 

• Bevel Both Ends (BBE) 

• Bevel Large End (BLE) 

• Bevel One End (BOE) 

• Bevel Small End (BSE) 

• Bevel for Welding (BFW) 

• Butt‐weld End (BE) 

• End of Pipe (EOP) 

• Flange One End (FOE) 

• Plain End (PE) 

• Plain Both Ends (PBE) 

• Plain One End (POE) 

• Thread End (TE) 

• Thread Both Ends (TBE) 

• Thread Large End (TLE) 

• Thread One End (TOE) 

• Thread Small End (TSE) 

• Threads Only (TO) 

• Threads per Inch (TPI) 

Common abbreviations for the types of pipe ends are as follows:

Engineering and Management Solutions

REBIS ACADEMY 48

Page 50: Piping components, materials, codes and standards   part 1- pipe

PIPE ENDS

• Plain Ends (PE)A pain end pipe is a pipe that has been cut at 90° perpendicular to the pipe run. The reason pipe would be specified as plain end rather than beveled end is when the pipe will be used in a Socket Weld connection or for use with a Slip‐on Flange. 

Engineering and Management Solutions

REBIS ACADEMY 49

Page 51: Piping components, materials, codes and standards   part 1- pipe

PIPE ENDS• Bevel Ends (BE)A bevel is a surface that is not at a right angle (perpendicular) toanother surface. The standard angle on a pipe bevel is 37.5° butother non standard angles can be produced. Beveling of pipe ortubing is to prepare the ends for welding.

Engineering and Management Solutions

REBIS ACADEMY 50

Page 52: Piping components, materials, codes and standards   part 1- pipe

PIPE ENDS• Threaded Ends (TE)Typically used on pipe 3" and smaller, threaded connections arereferred to as screwed pipe. In the United States, the standard pipethread is National Pipe Thread (NPT).Threaded fittings have threads that are either male or female. Asscrewed pipe and fittings are assembled, two pieces are pulledtogether. The distance that is pulled together is called the threadengagement.

Engineering and Management Solutions

REBIS ACADEMY 51

Page 53: Piping components, materials, codes and standards   part 1- pipe

PIPE ENDS• Threaded Ends (TE)Standards:

NPT ‐ National Pipe Thread Taper, ANSI/ASME B1.20.1NPTF ‐ Dryseal American National Standard Taper Pipe Thread (ANSI B1.20.3)

Note: For NPT threads a sealant compound or Teflon tape must be used for aleak‐free seal. For NPTF no sealant is needed for a sealing.

Characteristics:• tapered thread 1o 47‘ (1.7899o)• truncation of roots and crests are flat• 60o thread angle• pitch is measured in threads per inch

Engineering and Management Solutions

REBIS ACADEMY 52

Page 54: Piping components, materials, codes and standards   part 1- pipe

PIPE ENDSNPT ‐ American Standard Pipe Thread Taper 1)

Pipe Size(inches)

Threads per InchTPI ‐ pitch

Approximate Length of Thread 

(inches)

Approximate Number of Threads 

to be Cut

Approximate Total thread Makeup, Hand and Wrench

(inches)

Nominal Outside Pipe Diameter

OD(inches)

Tap Drill(inches)

1/16" 27 0.3131/8" 27 3/8 10 1/4 0.405 R1/4" 18 5/8 11 3/8 0.540 7/163/8" 18 5/8 11 3/8 0.675 37/641/2" 14 3/4 10 7/16 0.840 23/323/4" 14 3/4 10 1/2 1.050 59/641" 11‐1/2 7/8 10 9/16 1.315 1‐5/32

1‐1/4" 11‐1/2 1 11 9/16 1.660 1‐1/21‐1/2" 11‐1/2 1 11 9/16 1.900 1‐47/642" 11‐1/2 1 11 5/8 2.375 2‐7/32

2‐1/2" 8 1 1/2 12 7/8 2.875 2‐5/83" 8 1 1/2 12 1 3.500 3‐1/4

3‐1/2" 8 1 5/8 13 1 1/16 4.000 3‐3/44" 8 1 5/8 13 1 1/16 4.500 4‐1/4

4 1/2" 8 5.000 4‐3/45" 8 1 3/4 14 1 3/16 5.563 5‐9/326" 8 1 3/4 14 1 3/16 6.625 6‐11/328" 8 1 7/8 15 1 5/16 8.62510" 8 2 16 1 1/2 10.75012" 8 2 1/8 17 1 5/8 12.75014" 8 14.00016" 8 16.000

Engineering and Management Solutions

REBIS ACADEMY 53

Page 55: Piping components, materials, codes and standards   part 1- pipe

NON METALLIC PIPES

References:

Chapter VII:

Nonmetallic piping and piping lined withnonmetals:

Design, Fabrication, Installationand limitation

Appendix B:

Stress tables and allowable pressuretable for nonmetals

Thermosetting

Thermoplastic

Concrete

Vitrified Clay

Glass

Engineering and Management Solutions

REBIS ACADEMY 54

Page 56: Piping components, materials, codes and standards   part 1- pipe

NON‐METALLIC PIPE ADVANTAGESAdvantages:• Typically has a lower installed and maintenance cost and lower total cost of ownership. 

• Will not corrode if the correct material is selected. This means: • No cathodic protection or corrosion monitoring • No chemical inhibitors are required. • Corrosion allowance is avoided (Note: if the service is an erosive service, an erosion allowance may be required) 

• Flow properties are superior to steel pipe • Lower pumping costs • Consistent friction factor through the life of the pipe 

• More flexible than steel pipe. 

Engineering and Management Solutions

REBIS ACADEMY 55

Page 57: Piping components, materials, codes and standards   part 1- pipe

NON‐METALLIC DISADVANTAGESDisadvantages:• Temperature limits are usually lower than steel pipe. As temperatures increase, the maximum pressure will decrease. 

• Maximum pressure is lower than steel pipe. • Material is very process dependent. That is, hydrocarbons cannot always flow through nonmetallic lines. 

• Non metallic lines will degrade in sunlight without a Ultraviolet inhibitor. 

• Very susceptible to mechanical damage. • More flexible than steel pipe. Requires more supporting than steel piping. 

Engineering and Management Solutions

REBIS ACADEMY 56

Page 58: Piping components, materials, codes and standards   part 1- pipe

NON METALLIC PIPESThermoplastic:Is a plastic which is thermoplastic in behavior, capable of being repeatedlysoftened by increasing of temperature (heating) and hardened by decreasing oftemperature (cooling). Example: HDPE, PVC, ABS, PPManufacturing:

Pipe is extrudedFittings are usually injection molded and sometimes fabricatedValve parts are usually injection molded

Limitation:Thermoplastics cannot be used when the service is a flammable service and whenthe piping is above ground. Thermoplastics also must be safeguarded when in allservices (except in Category D fluids). While safeguarding is not defined, it couldmean that additional pressure & temperature protection is required. It could alsomean that physical barriers be installed to prevent unintentional rupture.

Engineering and Management Solutions

REBIS ACADEMY 57

Page 59: Piping components, materials, codes and standards   part 1- pipe

THERMOPLASTICS PRESSURE DESIGN THICKNESS

T = PD / 2 (S + P)]Where:

t = pressure design thicknessP= design pressureD=outside pressureS= HDS (Hydrostatic Design Stress) Value [Allowable stress]

HDS: this is defined as the maximum hoop stress in the pipe wall due to internalhydrostatic pressure that can be applied continuously with great certainty thatfailure of the pipe will not occur in a long period of time (50‐year period).Example: HDS for material from Appendix B

CPVC 2.00 ksi 13.8 MpaPE 0.80 ksi 5.5 MpaPVC 2.00 ksi 13.8 Mpa

Engineering and Management Solutions

REBIS ACADEMY 58

Page 60: Piping components, materials, codes and standards   part 1- pipe

THERMOPLASTICS PIPES ASSEMBLY1. Butt fusion weldingButt fusion or butt welding, which is a type of hot plate welding. This techniqueinvolves heating two planed surfaces of thermoplastic material against a heatedsurface. After a specified amount of time, the heating plate is removed and thetwo pieces are pressed together and allowed to cool under pressure, forming thedesired bond.

Heater

Engineering and Management Solutions

REBIS ACADEMY 59

Page 61: Piping components, materials, codes and standards   part 1- pipe

THERMOPLASTICS PIPES ASSEMBLY

2. Electrofusion weldingThe pipes to be joined are cleaned, inserted into the electrofusion fitting (with atemporary clamp if required) and a voltage (typically 40V) is applied for a fixedtime depending on the fitting in use. The built in heater coils then melt the insideof the fitting and the outside of the pipe wall, which weld together producing avery strong homogeneous joint.

Engineering and Management Solutions

REBIS ACADEMY 60

Page 62: Piping components, materials, codes and standards   part 1- pipe

THERMOPLASTICS PIPES ASSEMBLY3. Socket fusion weldingIt is distinguished from butt‐welding by using custom‐shaped and ‐sized heatingplates rather than a basic flat surface. These heads allow for more surfacecontact, reducing the time needed to heat and fuse the pipe. Socket fusionjoins pipe and fittings together, rather than simply joining pipe to pipe. Itrequires less pressure than butt‐welding and is more commonly used onsmaller sizes of pipe (4" or less). Socket welding has additional advantages ofrequiring less machinery and is more portable than the heavier equipmentrequired for butt fusion. PE, PP, PVDF are joined by this process.

SpigotHeating Plate

Socket

Preparation of the welding Alignment and Pre‐heating Joining and Cooling

FittingPipe

Engineering and Management Solutions

REBIS ACADEMY 61

Page 63: Piping components, materials, codes and standards   part 1- pipe

THERMOPLASTICS PIPES ASSEMBLY4. Hot Gas weldingHot gas welding, also known as hot air welding, is a plastic welding techniqueusing heat. A specially designed heat gun, called a hot air welder, produces a jetof hot air that softens both the parts to be joined and a plastic filler rod, all ofwhich must be of the same or a very similar plastic.

Welding RodHeat Gun

Engineering and Management Solutions

REBIS ACADEMY 62

Page 64: Piping components, materials, codes and standards   part 1- pipe

THERMOPLASTICS PIPES ASSEMBLY5. Solvent weldingSolvent welding, also known as solvent cementing or solvent bonding, is theprocess of joining articles made of thermoplastic resins by applying a solventcapable of softening the surfaces to be joined, and pressing the softenedsurfaces together. Pipe and fittings are bonded together by means of chemicalfusion. ABS, CPVC, and PVC plastic pipes are primarily joined by solventcementing, though mechanical joints are also available. PE pipe cannot bejoined with solvent cements.

Engineering and Management Solutions

REBIS ACADEMY 63

Page 65: Piping components, materials, codes and standards   part 1- pipe

NON METALLIC PIPESSDR:Many PE pipe manufacturers use the "Standard Dimension Ratio" ‐ SDR ‐ methodof rating pressure piping. Standard Dimension Ratio (SDR) is a method of rating apipe's durability against pressure.

SDR= D/sD = Pipe outside diameters = Pipe wall thickness

Common nominations are SDR11, SDR17 and SDR34. Pipes with a lower SDR canwithstand higher pressures. A SDR 11 means that the outside diameter ‐ D ‐ of thepipe is eleven times the thickness ‐ s ‐ of the wall.with a high SDR ratio the pipe wall is thin compared to the pipe diameterwith a low SDR ratio the pipe wall is thick compared to the pipe diameter

Engineering and Management Solutions

REBIS ACADEMY 64

Page 66: Piping components, materials, codes and standards   part 1- pipe

NON METALLIC PIPES

Thermosetting:

Material Description Recommended Temperature limitsMinimum Maximum

ABS  Acrylonitrile butadiene styrene  ‐40 °F ‐40°C 176°F 80°CCPVC  Chlorinated polyvinyl chloride  0 °F ‐18°C 210°F 99°CFEP Fluorinated ethylene propylene  ‐325 °F ‐198°C 400°F 204°C(HD)PE (High density) polyethylene  ‐30 °F ‐34°C 180°F 82°CPFA Perfluoroalkoxy Alkane  ‐40 °F ‐40°C 450°F 250°CPP Polypropylene  30 °F ‐1°C 210°F 99°CPVC Polyvinyl chloride  0 °F ‐18°C 150°F 66°CPVDF Polyvinylidene fluoride  0 °F ‐18°C 275°F 135°C

Thermoplastic: (B31.3 recommended temperature limits)

Material Recommended Temperature limitsResin Reinforcing Minimum Maximum

Epoxy Glass Fiber ‐20 °F ‐29°C 300 °F 149°CFuran Carbon ‐20 °F ‐29°C 200 °F 93°CFuran Glass Fiber ‐20 °F ‐29°C 200 °F 93°CPhenolic Glass Fiber ‐20 °F ‐29°C 300 °F 149°CPolyester Glass Fiber ‐20 °F ‐29°C 200 °F 93°CVinylester Glass Fiber ‐20 °F ‐29°C 200 °F 93°C

Engineering and Management Solutions

REBIS ACADEMY 65

Page 67: Piping components, materials, codes and standards   part 1- pipe

NON METALLIC PIPESThermosetting:They are composed of plastic materials and are identified by being permanentlyset, cured or hardened in to shape when heated and cannot be re‐melted. Theyare combination of resins and reinforcing. Example: GRP, GRVE, GRE PipesCommonly used resins: Polyester, Vinyl ester, Epoxy and FuranCommonly used reinforcements: Fiber glass and Carbon fiberManufacturing:

Pipe is filament wound, contact molded or centrifugally cast.Fittings are filament wound, molded and sometimes fabricated.Few valve are available.

Limitation:Thermosets can be installed above ground if they are safeguarded when theservice is flammable or toxic.

Engineering and Management Solutions

REBIS ACADEMY 66

Page 68: Piping components, materials, codes and standards   part 1- pipe

PIPES TESTHydrostatic test:A hydrostatic test is a way in which pressure vessels such as pipelines, plumbing,gas cylinders, boilers and fuel tanks can be tested for strength and leaks. Usingthis test helps maintain safety standards and durability of a vessel or pipe overtime. Water is used mainly because it is cheap and easily available. Red orfluorescent dyes may be added to the water to make leaks easier to see.• This margin of safety is typically 166.66%, 143% or 150% of the designed

pressure, depending on the regulations that apply.• Buried high pressure oil and gas pipelines are tested for strength by

pressurizing them to at least 125% of their maximum operating pressure(MAOP) at any point along their length.

• Test pressures need not exceed a value that would produce a stress higherthan yield stress at test temperature. ASME B31.3 section 345.4.2 (c)

• The vessel or pipe is pressurized for a specified period, usually 10 to 30seconds

Engineering and Management Solutions

REBIS ACADEMY 67

Page 69: Piping components, materials, codes and standards   part 1- pipe

PIPES TESTYield strength:The yield strength or yield point of a material is defined in engineering andmaterials science as the stress at which a material begins to deform plastically.Prior to the yield point the material will deform elastically and will return to itsoriginal shape when the applied stress is removed. Once the yield point is passed,some fraction of the deformation will be permanent and non‐reversible.

testing involves taking a small sample with a fixed cross‐section area, and thenpulling it with a controlled, gradually increasing force until the sample changesshape or breaks.

Material Yield strength (Mpa) Material Yield strength (Mpa)

ASTM A36 steel 250 Cast iron 4.5% C, ASTM A‐48 172

Steel, API 5L X65 448 Titanium alloy (6% Al, 4% V) 830

Piano wire 2200 Aluminum alloy 2014‐T6 400

HDPE 26‐33 Copper 99.9% Cu 70

Engineering and Management Solutions

REBIS ACADEMY 68

Page 70: Piping components, materials, codes and standards   part 1- pipe

ALLOY STEELASTM A234Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service

Composition, %

Grade C Mn Pmax

Smax Si Cr Mo Ni Cu Others

WPB(1,2,3,4,5)

0.30max 0.29-1.06 0.050 0.058 0.10

min0.40max

0.15max

0.40max

0.40max

V 0.08max

WPC(2,3,4,5)

0.35max 0.29-1.06 0.050 0.058 0.10

min0.40max

0.15max

0.40max

0.40max

V 0.08max

WP11 CL1 0.05-0.15 0.30-0.60 0.030 0.030 0.50-1.00 1.00-1.50 0.44-0.65 WP11 CL2 0.05-0.20 0.30-0.80 0.040 0.040 0.50-1.00 1.00-1.50 0.44-0.65 WP11 CL3 0.05-0.20 0.30-0.80 0.040 0.040 0.50-1.00 1.00-1.50 0.44-0.65

WP22 CL1 0.05-0.15 0.30-0.60 0.040 0.040 0.50max 1.90-2.60 0.87-1.13

WP5 CL1 0.15max 0.30-0.60 0.040 0.030 0.50

max 4.0-6.0 0.44-0.65

WP9 CL1 0.15max 0.30-0.60 0.030 0.030 1.00

max 8.0-10.0 0.90-1.10

(1) Fittings made from bar or plate may have 0.35 max carbon.(2) Fittings made from forgings may have 0.35 max Carbon and 0.35 max Silicon with no minimum.(3) For each reduction of 0.01% below the specified Carbon maximum, an increase of 0.06% Manganese above the specified maximum will be permitted, up to a maximum of 1.35%.(4) The sum of Copper, Nickel, Niobium, and Molybdenum shall not exceed 1.00%.(5) The sum of Niobium and Molybdenum shall not exceed 0.32%.(6) Applies both to heat and product analyses.

Engineering and Management Solutions

REBIS ACADEMY 69

Page 71: Piping components, materials, codes and standards   part 1- pipe

70Engineering and Management Solutions

REBIS ACADEMY

SESSION SUMMARY

Page 72: Piping components, materials, codes and standards   part 1- pipe

71Engineering and Management Solutions

REBIS ACADEMY

QUESTIONS AND FEEDBACK

REBIS ACADEMY OF TECHNOLOGY1 Dundas Street West, Suite 2500

Toronto, ON, Canada M5g 1z3

Tel: +1 416 365 5685

Website: http://rebisacademy.com/

Email: [email protected]

Fallow us on:https://www.linkedin.com/company/rebis-academy-of-technology

https://www.facebook.com/RebisAcademy/

https://twitter.com/RebisAcademy


Recommended