+ All Categories
Home > Documents > Piston Slippers for Robust Water Hydraulic Pumps€¦ · APP RPP piston slipper Pressure...

Piston Slippers for Robust Water Hydraulic Pumps€¦ · APP RPP piston slipper Pressure...

Date post: 27-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
17
Schoemacker, Florian 3/19/2018 Schoemacker, Florian Murrenhoff, Hubertus Piston Slippers for Robust Water Hydraulic Pumps n 1
Transcript
  • Schoemacker, Florian

    3/19/2018

    Schoemacker, Florian

    Murrenhoff, Hubertus

    Piston Slippers for Robust Water Hydraulic Pumps

    n

    1

  • Schoemacker, Florian

    3/19/2018

    Motivation

    Water Hydraulics

    2

    Not flammable

    Not toxic

    Good availability of

    tap water

    Advantages

    Low viscosity

    Poor lubrication

    Different materials

    Complex components

    Challenges

    Food industries

    Pharmaceutic industries

    Mining

    Descaling

    Applications

    Plunger pumps

    Axial piston pumps

    Radial piston pumps

  • Schoemacker, Florian

    3/19/2018

    Research at IFAS

    Development of water hydraulic radial piston pump

    – Tap water as pressure medium

    – Water lubrication

    – Pressure level > 160 bar

    Increased power density

    Tribological contacts

    – Load carrying capacity

    – Leakage, wear

    Simulation development

    Comparison of piston slippers

    – Axial piston pump

    – Radial piston pump

    3

    120

    110

    100

    90

    80

    70

    60

    50

    40

    30

    200 50 100 150 200 250 300 350

    pressure (bar)

    flo

    w r

    ate

    (l/m

    in)

    3730221511 power supply (kW)

    oil

    water

  • Schoemacker, Florian

    3/19/2018

    1

    2

    3

    4

    Introduction

    Simulation Model and Results

    Conclusion and Outlook

    Effect of Slipper Deformation

    4

  • Schoemacker, Florian

    3/19/2018

    Reynold-Equation in Polar Coordinate System

    5

    𝜕

    𝜕𝑟𝑟 ∙

    ℎ3

    12 ∙ 𝜇∙𝜕𝑝

    𝜕𝑟+

    𝜕

    𝜕𝜑

    ℎ3

    12 ∙ 𝜇∙1

    𝑟∙𝜕𝑝

    𝜕𝜑−

    𝑢𝑟2

    ∙ 𝑟 ∙𝜕ℎ

    𝜕𝑟−

    𝑢𝜑

    2∙𝜕ℎ

    𝜕𝜑=

    𝜕ℎ

    𝜕𝑡= 0

    Reynolds-Equation

    – Newtonian fluid

    – Incompressible fluid

    – Laminar flow with Re

  • Schoemacker, Florian

    3/19/2018

    Slipper geometry

    Axial piston pump (APP)

    Radial piston pump (RPP)

    6

    𝑞𝐶,𝑒𝑓𝑓 =𝐹𝐹𝑙𝑢𝑖𝑑𝐹𝑃𝑖𝑠𝑡𝑜𝑛

    = 𝑝(𝑟,φ) ∙ 𝑑𝐴

    𝑝𝐻𝑃 ∙ 𝐷𝑃𝑖𝑠𝑡𝑜𝑛2 ∙

    𝜋4

    Calculation of hydrostatic compensation

    Load carrying capacity

    Leakage

    Comparison of Piston Slippers

    DSlipper DSlipper

    DPocket DPocket

    DPiston

    𝑄𝐿𝑒𝑎𝑘𝑎𝑔𝑒 = 𝑄𝑝 + 𝑄𝑣 𝑟=𝐷𝑃𝑜𝑐𝑘𝑒𝑡 2

    10 µm

    ∆𝑅 = 𝑅𝐶𝑢𝑟𝑣𝑒 − 𝑅𝐸𝑐𝑐

    20 µm

    APP RPP

  • Schoemacker, Florian

    3/19/2018

    Slipper geometry

    Axial piston pump (APP)

    Radial piston pump (RPP)

    7

    𝑞𝐶,𝑒𝑓𝑓 =𝐹𝐹𝑙𝑢𝑖𝑑𝐹𝑃𝑖𝑠𝑡𝑜𝑛

    = 𝑝(𝑟,φ) ∙ 𝑑𝐴

    𝑝𝐻𝑃 ∙ 𝐷𝑃𝑖𝑠𝑡𝑜𝑛2 ∙

    𝜋4

    Calculation of hydrostatic compensation

    Load carrying capacity

    Leakage

    Comparison of Piston Slippers

    DSlipper DSlipper

    DPocket DPocket

    DPiston

    𝑄𝐿𝑒𝑎𝑘𝑎𝑔𝑒 = 𝑄𝑝 + 𝑄𝑣 𝑟=𝐷𝑃𝑜𝑐𝑘𝑒𝑡 2

    10 µm

    ∆𝑅 = 𝑅𝐶𝑢𝑟𝑣𝑒 − 𝑅𝐸𝑐𝑐

    20 µm

    APP RPP

    piston

    slipper

    Pressure

    distribution

    eccentric shaft

    pHP

    pCase

  • Schoemacker, Florian

    3/19/2018

    Dynamic Pressure Build-Up during Motion

    Calculation of dynamic pressure build-up

    – Lateral movement of piston-slipper-assembly

    – Slipper is tilted against plane surface

    Hydrodynamic compensation

    Leakage

    Additional tilting torque

    8

    piston

    slipper

    pressure pHP

    pressure distribution

    𝑞𝐶,𝑒𝑓𝑓 =𝐹𝐹𝑙𝑢𝑖𝑑𝐹𝑃𝑖𝑠𝑡𝑜𝑛

    = 𝑝(𝑟,φ) ∙ 𝑑𝐴

    𝑝𝐻𝑃 ∙ 𝐷𝑃𝑖𝑠𝑡𝑜𝑛2 ∙

    𝜋4

    𝑇𝑇𝑖𝑙𝑡 = 𝑝(𝑟,φ) ∙ 𝑟 ∙ cos 𝜑 ∙ 𝑑𝐴

    𝑇𝑇𝑖𝑙𝑡

    Gap height: 0.5 µm

    Angle 𝛽: 0.001° Pressure: 100 bar

    Velocity: 1 m/s

    Simulation parameter

    Velocity

    𝑄𝐿𝑒𝑎𝑘𝑎𝑔𝑒 = 𝑄𝑝 + 𝑄𝑣 𝑟=𝐷𝑃𝑜𝑐𝑘𝑒𝑡 2

  • Schoemacker, Florian

    3/19/2018

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    6.5 7 7.5 8 8.5 9 9.5 10

    Pre

    ssure

    (bar)

    Radius (mm)

    APP

    RPP ΔR=10 µm

    RPP ΔR=20 µm

    Results

    9

    Static, no motion

    APP RPP

    ∆𝑹 = 10 µm RPP

    ∆𝑹 = 20 µm

    𝑞𝐶,𝑒𝑓𝑓 93.2 % 91.6 % 89.8 %

    𝑄𝐿𝑒𝑎𝑘𝑎𝑔𝑒 100 % (0.088

    ml/min)

    176 %

    (0.155

    ml/min)

    300 %

    (0.264

    ml/min)

  • Schoemacker, Florian

    3/19/2018

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    6.5 7 7.5 8 8.5 9 9.5 10

    Pre

    ssu

    re (

    ba

    r)

    Radius (mm)

    APP

    RPP ΔR=10 µm

    RPP ΔR=20 µm

    Results

    10

    Static, no motion

    Dynamic APM RPM

    APP RPP

    ∆𝑹 = 10 µm RPP

    ∆𝑹 = 20 µm

    𝑞𝐶,𝑒𝑓𝑓 93.2 % 91.6 % 89.8 %

    𝑄𝐿𝑒𝑎𝑘𝑎𝑔𝑒 100 % (0.088

    ml/min)

    176 %

    (0.155

    ml/min)

    300 %

    (0.264

    ml/min)

    𝑞𝐶,𝑒𝑓𝑓 = 94.2 %

    𝑄𝐿𝑒𝑐𝑘𝑎𝑔𝑒 = 0.617 ml/min

    𝑞𝐶,𝑒𝑓𝑓 = 93.3 %

    𝑄𝐿𝑒𝑐𝑘𝑎𝑔𝑒 = 0.837 ml/min

  • Schoemacker, Florian

    3/19/2018

    1

    2

    3

    4

    Introduction

    Simulation Model and Results

    Conclusion and Outlook

    Effect of Slipper Deformation

    11

  • Schoemacker, Florian

    3/19/2018

    Deformation of Slipper

    Effects of using plastic materials

    – Deformation of materials under pressure load

    – Altered gap height distribution

    – Increased leakage due to enlarged gap height

    12

    Simulation

    – Deformation in Ansys

    – Matlab-Code for

    Reynolds-Equation

    steel body

    steel body PEEK

    sliding disc

    µm

  • Schoemacker, Florian

    3/19/2018

    Results

    13

    Increased load carrying capacity due to over

    compensation

    Leakage increased by factor 5 compared to

    undeformed result

    steel body PEEK

    sliding disc

    Gap height Pressure distribution

    𝑞𝐶,𝑒𝑓𝑓 = 106.7 %

    𝑄𝐿𝑒𝑎𝑘𝑎𝑔𝑒 = 0.81 ml/min

    Simulation results

  • Schoemacker, Florian

    3/19/2018

    Results

    14

    Increased load carrying capacity due to over

    compensation

    Leakage increased by factor 5 compared to

    undeformed result

    steel body PEEK

    sliding disc

    Gap height Pressure distribution

    𝑞𝐶,𝑒𝑓𝑓 = 106.7 %

    𝑄𝐿𝑒𝑎𝑘𝑎𝑔𝑒 = 0.81 ml/min

    Simulation results

    Deformed Undeformed

  • Schoemacker, Florian

    3/19/2018

    1

    2

    3

    4

    Introduction

    Simulation Model and Results

    Conclusion and Outlook

    Effect of Slipper Deformation

    15

  • Schoemacker, Florian

    3/19/2018

    Conclusion and Outlook

    Simulation of piston slippers

    Radial piston pump

    – Effect of manufacturing tolerances

    Lower load carrying capacity

    Deformation of plastic slippers

    – Same magnitude as gap height

    – Overcompensation

    – Increased leakage

    16

    steel body PEEK

    sliding disc

    Maximum pressure level for water hydraulics

    Development water hydraulic

    radial piston pump

    piston

    slipper

    pressure pHP

    pressure distribution

  • Schoemacker, Florian

    3/19/2018

    Thank you for your attention!

    Contact:

    17

    Schoemacker, Florian

    [email protected]


Recommended