+ All Categories
Home > Food > Pk reddy open accessnaarm oct2014

Pk reddy open accessnaarm oct2014

Date post: 14-Jun-2015
Category:
Upload: weaver-technologies
View: 100 times
Download: 1 times
Share this document with a friend
Popular Tags:
64
Agriculture Content Development for Inclusive Development: eSagu and eAgromet experiences P. Krishna Reddy Program Director, ITRA- Agriculture and Food Professor, IIIT Hyderabad India E-mail: [email protected]
Transcript
Page 1: Pk reddy open accessnaarm oct2014

Agriculture Content Development for Inclusive Development: eSagu and

eAgromet experiences

P. Krishna ReddyProgram Director, ITRA-Agriculture and Food

Professor, IIIT Hyderabad IndiaE-mail: [email protected]

Page 2: Pk reddy open accessnaarm oct2014

Outline• About ITRA• Open access to agricultural

knowledge• Content development in eSagu• Content development in eAgromet• Content development for enhancing

practical agriculture skills• Conclusions

Page 3: Pk reddy open accessnaarm oct2014

IT for Agriculture and Food Research Program

INFORMATION TECHNOLOGY RESEARCH ACADEMY

Media Lab Asia, Department of Electronics and Information Technology, Govt of India

and

Indian Council of Agricultural Research

Page 4: Pk reddy open accessnaarm oct2014

OBJECTIVE

1 Strengthen the academic institutions

2. Specifically, Enhance Quality and Quantity of

a. IT [Information, Communication, Electronics] Research and Development

b. IT Applications

Page 5: Pk reddy open accessnaarm oct2014

5

Ecosystem’s Central Traits

1. Form Large Groups

2. With R&D focused on Societal Challenges

3. By Increasing Societal Sensitivity

4. And Support of Entrepreneurship

5. Enabled by engagement with National and

International Experts

Page 6: Pk reddy open accessnaarm oct2014

6

A Pyramidal Model of Growth

Mentor-Mentees form

Adjacent Layers in a Hierarchy

Example:

Each partner institution

adds

two (or three) partners

every two years

Page 7: Pk reddy open accessnaarm oct2014

1

5

The Binary Growth Case

Number of InstitutionsDoubles Every Two Years

Would Triple Every Two YearsFor Ternary Mentoring

Page 8: Pk reddy open accessnaarm oct2014

Focus Area Pyramids Selected

1. ITRA-Mobile: Mobile Computing, Networking and Applications

2. ITRA-Water: IT in Sustainability of Water

Resources

=

Two-Level Pyramids

Page 9: Pk reddy open accessnaarm oct2014

ITRA-MobileAPPROVED PROJECTS

1. HumanSense: Towards context aware sensing, inference and actuation for applications in Energy and Healthcare

2. Post-Disaster Situation Analysis and Resource Management Using Delay-Tolerant Peer-to-Peer Wireless Networks (DISARM)

3. Remote Health: A Framework for Healthcare Services using Mobile and Sensor-Cloud Technologies

4. De-congesting India's transportation networks using mobile devices

5. CARTS: Communication Assisted Road Transportation Systems

6. Virtual Assistant for Mobile Devices using Voice and Gesture Technologies

7. Mobile Broadband Service Support over Cognitive Radio Networks

8. Uncoordinated, Secure and Energy Aware Access in Distributed Wireless Networks

9. Micronet - Mobile Infrastructure for Coastal Region Offshore Communications & Networks

Page 10: Pk reddy open accessnaarm oct2014

ITRA-Water

1. ICT in Water and Pest/Disease Management for Yield Improvement in Horticulture (Citrus)

2. Improving Groundwater Levels and Quality through Enhanced Water Use Efficiency in Eastern Indian Agriculture

3. Integrated Urban Flood Management in India: Technology-Driven Solutions

4. Measurement to management (M2M): improved water use efficiency and agricultural productivity through experimental sensor network

5. Development of effective Wireless Sensor Network system for water quality and quantity monitoring (AquaSense)

Page 11: Pk reddy open accessnaarm oct2014

Focus Area in ProgressITRA-Ag&Food

• SFM held on March 15-16, 2013 Jointly with Indian Council of Agricultural Research

• Identified several research problems • Call for concept notes and project proposals

will be issued soon.

Page 12: Pk reddy open accessnaarm oct2014

Main Objective: Building of Decision Support Systems

• Agricultural production and processing systems are complex due to the many biological, chemical, physical and envoronmental processes involved.

• Information technologies can be used to extract and present the information related to a particular problem in a unified manner and thus speed up decision making.

• Decision support systems may support agricultural scientists and agro-meteorologists in providing extension services such as – expert advice on agronomy, – pest or decease problems, – risk management for unpredictable weather conditions, – efficient marketing of agriculture produce, – optimal resource distribution – meeting emergencies.

12

Page 13: Pk reddy open accessnaarm oct2014

IT and Agriculture CategoriesMain technologies for DSS Agriculture categories

Environment sensing, location sensing, and communication

Crop production

Data management Soil, water and weather

Modeling and simulation Agriculture Education and Extension

Data mining and knowledge discovery.

Marketing and agribusiness

Livestock and fisheries

13

Page 14: Pk reddy open accessnaarm oct2014

Examples of DSS• Pest surveillance systems• Online disease diagnosis• Online monitoring of pesticide sales/usage• Service delivery platform to deliver

personalized advice and customized agriculture

• Location and time specific plant disease forecasting using Wireless Sensor Network (WSN) and with farmer’s participation

• Potential fishing zone and weather alert services to fisherman

• Characterization of soils with Gamma Radiation detection (Sensor based soil nutrient scanning)

• ICT platform based end-to-end Procurement Services

• ICT Platform to introduce good global agriculture practices in Indian agriculture

• Intelligent agriculture ontology tools• Use of ICT to improve agriculture supply chain

efficiency

14

• Use of ICT platform to improve efficiency of artificial insemination operation and, offer veterinary and nutrient services

• Animal management in the Indian production system with different breeds of animals, based on the analysis of data from different animal production systems

• Diseases diagnosis for animals under different management conditions

• Developing market intelligence systems• IT-enabled logistics and supply chain management• DSS to support marketing and production decisions• Interactive DSS (expert systems) to know the

availability of inputs• Interactive DSS on source and technical details of

available hybrids, HYV, seed and planting material• Development of artificially intelligent agricultural

machines, to help reduce drudgery and improve health and safety. This may attract rural youth to work with agricultural machines.

Page 15: Pk reddy open accessnaarm oct2014

Outline• About ITRA• Open access to agricultural

knowledge• Content development in eSagu• Content development in eAgromet• Content development for enhancing

practical agriculture skills• Conclusions

Page 16: Pk reddy open accessnaarm oct2014

Examples of Open Access Knowledge/Information and Tools

• Search Engines– Google

• Social network sites– Facebook, Twitter

• Journals– IEEE, ACM, Springer,..,

• Content– Wikipedia, You tube

• Tools– Linux, Adroid, MYSQL, OpenOffice, …

Page 17: Pk reddy open accessnaarm oct2014

Agriculture• Journals and magazines• MSc/PhD Dissertations• Booklets• Simulation tools

– InfoCrop

• Best agriculture practices• Output of research experiments and projects at

SAUs

Page 18: Pk reddy open accessnaarm oct2014

Stakeholders• Farmers• Consumers• Extension personnel• NGOs, Trusts, Civil Society Organizations• Students• Teachers/Scientists• Researchers• Corporate Companies• Buyers/Exporters

Page 19: Pk reddy open accessnaarm oct2014

Open Access Knowledge Characteristics

• Relevant to stakeholder– Focus, modular, cohesive

• Consumable– Language, text, audio, video

• Computer readable• Scope for self-sustainability• Progress

– Updated with latest advances in agriculture technology

Page 20: Pk reddy open accessnaarm oct2014

My Experience

• Content development in eSagu• Content development in eAgromet• Virtual Crop Labs to enhance

practical learning

Page 21: Pk reddy open accessnaarm oct2014

• eSagu is an IT-based Personalized agro-advisory system– Personalized

• Provides Personalized agro-advice to farmer’s door-step.

– Timely: • Provides the advice within 24 to 36 hours

– Regular• Advice is provided regularly (once in a week)

– Feedback: two way communication– Query-less: Farmer need not ask a question– Cost-effective: Can be made sustainable with a nominal

subscription fee– Powered by IT: Record keeping, availability, reliability– Scalable and can be developed on the existing infrastructure

• Started in 2004 and the system is evolving

eSagu is a Personal Information System for farmers

Page 22: Pk reddy open accessnaarm oct2014

eSagu: basic idea • Extend developments in IT to agriculture

– Agriculture scientist does not visit the crop. – Crop photos are brought to agriculture

expert.• As a result, the agricultural expert

– can utilize the time efficiently– spends less time to provide the advice– can work during the night

• Reference– P.Krishna Reddy and R.Ankaiah, A framework of information technology-based agriculture

information dissemination system to improve crop productivity, Current Science, vol. 88, Num.12 pp. 1905-1913, June 2005.

Page 23: Pk reddy open accessnaarm oct2014

Operational Procedure• Farmer registers into the system by supplying soil, water,

capital, crop details.

• Coordinator visits each farm once in a week/two weeks.

• Takes problematic photographs.

• Fills-in observation-cum-feedback form and takes its photograph.

• Upload the data into eSagu portal

• Agriculture scientists prepare the advice based on photographs and other information.

• The advice is downloaded at the village center and takes the printout.

• The coordinator delivers the advice to the farmer.

Page 24: Pk reddy open accessnaarm oct2014
Page 25: Pk reddy open accessnaarm oct2014

Crops

Extra Gain/per acre (2005-06)

Gain in Fertilizer Gain in Pesticide Gain in YieldTotal

Gain

1 2 3 4 5

Cotton 419 1140.6 3349 4908.6

Chilli 751.2 1093.8 6040.1 7885.1

Paddy 315.2 795.3 699.9 1810.4

Red gram 293 451.7 484.8 1229.5

Groundnut 282 70.5 900 1252.5

Castor 218 225 1360 1803

Intended Crops 425 890 2398 3713

Other Crops 585.1 1117.2 4694.55 6396.85

All Crops 443.6 928.8 2501.6 3874

Page 26: Pk reddy open accessnaarm oct2014

Information Needs of Farmers

• Agricultural expert advice– Crop protection related information

• Decease and pest problem

– Crop production related information• Spacing, timing of sowing, planning and so on

Page 27: Pk reddy open accessnaarm oct2014

Issues: Capacity Building ProblemsAgriculture Scientists

• In eSagu, AE must have location specific knowledge and experience– Has to be expert regarding diverse crop problems that occur in

several agro-climatic situations.

• However, AEs differ in education levels, experience, local exposure, farm exposure, and know-how regarding agro-climatic variations.– New paradigm for agriculture scientists– The system makes them accountable

• So, new kind of content is required such that AE can grasp the problem as much as by going through the content.

Page 28: Pk reddy open accessnaarm oct2014

What should be the nature of new Content ?

• Relevant, adoptable and actionable.• Should meet the day-to-day information / operation

requirement of the farmers. • Due consideration of farmers’ traditional wisdom.• Should be feedback based for continual improvement.• Adoptable to the changing needs of the farmers• In tune with the latest technological developments.• In close liaison with research institutes, industry and

the farmers.

Page 29: Pk reddy open accessnaarm oct2014

Main Questions ?

Fresh agricultural

Graduates

Location-specific, crop specific capacity building and training

eSagu

Agriculture Expert

• Main questions: • Why such content has not been developed ?

• What is the framework of such location-and crop-specific content ?

Page 30: Pk reddy open accessnaarm oct2014

Why such content is not available or not developed ?

• The content is not available in the ready-made form.– because such kind of knowledge was not compulsory to operate traditional

extension systems. • Existing content

– Mostly consisting of text in generic manner.– Only few crops are covered.– Advice is not based on resource potential, biotic and abiotic factors.– Crop specific but not soil, area and variety specific.– No updated information with developments in science & technology.– Farmer’s traditional wisdom is not documented.– Difficult to compare actual farm situation from the content.– Developed content is not based on farmer’s feedback.– No due consideration regarding agro ecosystem analysis.– Lack of understanding of local demand.

Page 31: Pk reddy open accessnaarm oct2014

eSagu Content Development FrameworkTable 1: Chapter titles and Titles of subsections.

(Note: Replace “C” with the “Crop” and “R” with the “Region”).

Chapter Title Subsections or Questions

1. Introduction 1.1 Overview/nature of C;1.2 Overview/environment of R;1.3 Rationale for farmers of R for cultivating C 1.4 What is the importance of C for R.1.5 Why the content on C is different for region R as compared to other regions.

2. Area, Production and Productivity of C in R for last one decade, trends there-in.

2.1 How much area is covered by different types of soils in the R ?2.2 What is the normal production capability of C in R ?2.3 What is the potential for productivity of C in different farming situations of R ?

3.Climate and Season 3.1 How is the climate and weather variations in R ? 3.2 How the climate variations in R influences the cultivation of C ?3.3 Details of seasons and durations for crop C in R ?3.4 How is mapping of seasons with cultivation of C.

4.Varieties and Hybrids 4.1 Details of varieties/hybrids of C suitable for R4.2 How the varieties/hybrids of C vary with soils in R4.3 How the varieties/hybrids of C vary with weather/seasonal variations in R4.4 How the varieties and hybrids differ in their performance with respect to yield potential according to profit potential/duration/pests susceptibility or resistance/extreme weathers etc.

5. Cropping Systems 5.1 Details of cropping systems in practice for different soils/varieties/seasons ?

6 Soils 6.1 Details of soils in R ?6.2 Soil characteristics and potential corrections ameliorative measures to improve the productivity of crop C in R.

Page 32: Pk reddy open accessnaarm oct2014

Content Development Framework…Table 1: Chapter titles and Titles of subsections.

(Note: Replace “C” with the “Crop” and “R” with the “Region”).

Title Subsections or Questions

7. Land Preparation

7.1. Different land preparation methods recommended based on soil and water availability, seasonal variations for C in R.

8. Seeds and Sowing

8.1 How to sow C seed in R by considering soil, weather. seasonal variations ?

9. Crop establishment and growth stages

9.1. Cultivation practices for C in R by considering different varieties, weather, seasonal variations and water availability.9.2 Different growth stages of C in R and corresponding packages of practices.

10 Nutrient Management

10.1 Nutrient management recommendations for C in R by considering soil types, fertility, variety/hybrid and seasonal variations including INM practices.

11 Irrigation water Management

11.1 Water management techniques/information to get maximum productivity for of C in R by considering seasonal, water availability (tank, well, rain-fed and drought).

12 Weed management

12.1 What are different kind of popular weeds that affect C yield in R.12.2 Weed management techniques and information for C in R including IWM.

13 Pest Management

13.1 What are different kinds of popular pests on C in the R.13.2 What are the pest management/control measures on C in R by considering weather and seasonal and soil and crop stage ?13.3 What are the pesticides and IPM practices which are popular and will be effective with timing of information.

Page 33: Pk reddy open accessnaarm oct2014

Content Development Framework…Table 1: Chapter titles and Titles of subsections.

(Note: Replace “C” with the “Crop” and “R” with the “Region”).

Chapter Title Subsections or Questions

14 Harvest and Post-Harvest Technology

14.1 What are methods of harvesting C ?14.2 What are the precautions in harvesting C for R by considering weather and season and labor.14.3 What are the post-harvesting technologies to process and store the produce of C ?

15 Seed Production 15.1 What are the precautions/methods in producing seeds for C in R by considering weather, water and seasons in R

16. Specific Problems 16.1 What are the specific problems (crop production and management) regarding cultivating C in R ?

17. Crop economics 17.1 What are the strategies to economize the production costs for C in R ? (giving details on cost of cultivation, crop yield, marketing, net profit etc.)

18. Marketing What are the marketing opportunities for C in R ?

19. Export and quality aspects

19.1 What are the export opportunities for C in R ?19.2 What are the quality parameters one should consider while producing C with export quality in R ?19.2 What is the edge (weather, season, soil) the R is having to produce C with export quality.

20. References, and acronyms.

20.1 What are the sources to get more information regarding C in R (seed, pesticide use, crop management, export information and so on)

21 Annexure 21.1 What are the list of annexure ?

Page 34: Pk reddy open accessnaarm oct2014

Content development challenge ?

• For each country and given a crop we have to identify agro-eco situations and build content (multi media) ?

• For example, take rice crop– At least each state will have 10 agro-eco situations– So, we have to develop at least 20*10=200 content books.

• For all the crops, it will be a huge task • Updating and validating will be a huge task.• But, we need such content to benefit farmers.• GENERIC information is not sufficient.

Page 35: Pk reddy open accessnaarm oct2014

However to develop the relevant information ?

• Follow location-specific crop practices and – If available, suggest location-specific scientific alternatives

for risk management.– If not available, investigate and develop the relevant

information• How to follow/understand location-specific crop

practices ?– Follow eSagu and deliver advices to sample number of

farms of each crop and deliver the advisories for risks management. See the farmers’ reaction.

– Based on the advice delivery, develop the relevant content.– Keep updating the information regularly.

Page 36: Pk reddy open accessnaarm oct2014

eAgromet: ICT-enabled Agro-Meteorological Advisory System

Page 37: Pk reddy open accessnaarm oct2014

Efforts by India Mateorological Department

• India meteorological department (IMD) is providing “Integrated Agromet Advisory Service”. – IMD is issuing agromet bulletins, which contain

• risk management steps for crop and livestock management, based on the weather forecast twice in a week (Tuesday and Friday) up to 5 days.

– About 130 Agro-Mateorological Field Units (AMFUs)– Extending to block level

• The agromet advisory bulletins are unique and complements other efforts of improved agriculture technology transfer methods.

Page 38: Pk reddy open accessnaarm oct2014

Ongoing Process of Preparing Agromet Bulletin

Page 39: Pk reddy open accessnaarm oct2014

A Sample Weather Forecast

Page 40: Pk reddy open accessnaarm oct2014

A Sample Agromet Bulletin (only highlights are shown)

Page 41: Pk reddy open accessnaarm oct2014

About eAgromet• Issues

– The preparation of agromet bulletins is a manual process.

• Problem– Improve the efficiency of preparation and dissemination of agromet

bulletins

• IMD has initiated a research project of an IT-based agro-meteorological advisory system, called eAgromet in collaboration with – IIIT, Hyderabad, India and – Agromet Cell, Achraya NG Ranga Agricultural University, Hyderabad,

• The effort has started in the year 2011. • A basic model of eAgromet has been developed.

Page 42: Pk reddy open accessnaarm oct2014
Page 43: Pk reddy open accessnaarm oct2014

Content Development FrameworkS.No. Name Nature Scope

1. General overview of the crop

Both region and weather independent

Contains general information of the crop.

2. Agro-climatology of the crop

Region independent and weather dependent

Contains information about agro-climatology of the crop

3. Region specific agro-climatology of the crop

Both region and weather dependent

Contains region-specific agro-climatology of the crop.

4. Region specific contingency crop production strategies

Both region and weather dependent

Contains contingency measures against malevolent weather.

Page 44: Pk reddy open accessnaarm oct2014

General Overview of CropS.No. Name of the topic Description

1 Common names and Scientific name

Crop common names and scientific name

2 Introduction Origin and spread across the world, important crop growing regions in the world and importance of the crop

3 Area, Production and Productivity of the crop

Summary of Worldwide production

4 Climate and Season Favorable weather conditions (Temperature, Rainfall, Relative Humidity, Sunshine hours etc.) for crop growth and development, cropping seasons, Ecosystems/Crop Ecology, Crop adaptation, Cropping pattern and Crop rotation

5 Soils Suitable soil types and soil characteristics for crop cultivation, problematic soils and amelioration

6 Botany of the crop and crop improvement

Morphology, growth and development of the crop and crop improvement

7 Best management practices (BMPs)

Best management practices followed for higher yield around the world

8 Post-harvest technology

Processing, storage and marketing

Page 45: Pk reddy open accessnaarm oct2014

Agro-climatology of CropS.No.

Name of the topic Description

1. Potential crop growing regions

Agro climatic conditions in the potential crop growing regions in the world, country/region

2. Optimum climatic conditions Optimum climatic conditions required for better crop growth, yield; pest and disease, weed suppression in India

3. Effect of weather elements on crop growth

Individual and combined effect of weather elements on crop growth and development during different phenophases of crop growth including land preparation to post harvest handling of the produce

4. Effect of weather elements on pests

Individual and combined effect of weather elements/parameters on incidence, virulence/suppression of crop insect pests, diseases and weeds

5. Crop management practices Crop management practices under various crop growing situations/ regions

6. Pest management practices Pest management practices under various crop growing environments/ regions

7. Agro meteorological services Agro meteorological services available for crop production in the world

Page 46: Pk reddy open accessnaarm oct2014

Region specific Agro climatology of the crop

S.No.

Name of the topic Description

1. Crop name Common names and Scientific name

2. State and agro climatic zone

Respective region comes under which State and agro climatic zone

3. Crop statistics Area, Production and Productivity of the crop in the region/state

4. Overview of weather conditions

Overview of weather conditions experienced in the region

5. Crop growing seasons Main crop growing seasons in the region/state

6. Characteristic features of weather elements

Characteristic features of weather elements during crop growing seasons/periods

7. Climatic constraints Region specific climatic constraints and their impact - Phenophase wise individual and combined effect of weather parameters on crop growth and development and also incidence, virulence/suppression of pests (insect pests, diseases and weeds

8. Farming situations Various crop growing situations/environments in the region

9. Farming situation based advisories

Farming situation based advisories for normal and extreme weather conditions

Page 47: Pk reddy open accessnaarm oct2014

Region specific contingency crop production strategies

S.No.

Name of the topic

Description

1. Alternative crops

Choice of crops and varieties under aberrant rainfall and other weather situations in main crop growing seasons

2. Contingency cop management practices

Contingency cop management practices to mitigate extreme aberrant weather situations (to some extent) in a given crop at different phenophases of crop growth

3. Effects of extreme weather events

Effects of extreme weather events like delayed onset of monsoon, prolonged dry spells, early recession of monsoons; severe droughts; floods; water logging; heat wave; cold wave; cyclones; typhoons; tsunami; hail storms etc at different phenophases of crop

Page 48: Pk reddy open accessnaarm oct2014

Steps to identify weather events and developing the content for a given crop

 Input: Thirty years of daily weather data of a given region, labels for each weather variable

Output: Weather events and crop- and location specific content for crops.

1. Collect last 30 years of weather data (Tmin, Tmax, RF, RH1, RH2, CC, WS, WD) and assign the labels for each day.

2. Find the normal weather values for each day and assign the labels.

3. Compute the weather statistics for each week

4. Identify normal events: Identify 53 weekly normal events. You will get one event for each week.

5. Identify deviation events: Compare each year weather data with the normal data. Identify, how much each weather variable deviated from the normal. Generate event for each jump from the normal.

6. For each event, prepare the agromet advice for each crop of that AMFU.

Page 49: Pk reddy open accessnaarm oct2014

A Model of Virtual Crop Labs as a CloudComputing Application for Enhancing

Practical Agricultural Education

Page 50: Pk reddy open accessnaarm oct2014

Importance of Practical Education• The agriculture graduates should posses

expertise and confidence to give the agro-advice to the farmer for curing the aliment in the cropped field.

• Making the correct decision at field level is much more difficult for fresh graduates who have least practical field exposure.

Page 51: Pk reddy open accessnaarm oct2014

Depiction of Ongoing Learning Process by the Student

• Mutual re-enforcement between A to B.– During BSc(agriculture) program, the students spend first three years for learning

basic knowledge in the classrooms and dedicated labs. – As a part of special course or course assignment, the students visit the selected

college farms carry out the assignments and gain practical knowledge. – To expose the student to real field problems, he/she has to completeRAWEP

during the first semester of the fourth year. The students are expected to stay in the village and attached to the host farmer.

Page 52: Pk reddy open accessnaarm oct2014

Proposed Approach: Basic Idea

• It is possible to improve the practical knowledge of students, if we systematically expose them to well organized, indexed and summarized digital data (text, photos and video) of diverse farm situations.– The crop growth situation under different agro-climatic situations is

captured from seed-to-seed throughout crop growing season at regular intervals covering all the crop husbandry activities.

– The captured situations are labelled and described by subject-matter specialists (agriculture scientists).

– The labelled content is exposed to the students of under-graduate programs as a part of learning framework.

– As a result, a student gets an opportunity to examine the thousands of crop production problem dynamics of each crop and learn the practical knowledge.

Page 53: Pk reddy open accessnaarm oct2014

Virtual Crop Labs

• The virtual crop lab constitutes – Each lab constitutes virtual crop

lab of zones (VCLZ). • each VCLZ constitutes several virtual farm sagas (VFS). – each VFS constitutes virtual farm

items.

Page 54: Pk reddy open accessnaarm oct2014

Virtual Farm Item• Suppose a particular crop (c) is cultivated in the farm (f). We capture the crop

situation or activity carried out in the farm at particular instant (or stage) through virtual farm item (VFI).

• VFI: < f, c, d, t, td, p, v, s, q/a, i >.– f: indicates the details of farm; c: indicates the details of crop – d: indicates the date of sowing of crop c; t: indicates the time (day) of VFI. – td: indicates description of crop status through text.– p: indicates the set of photographs – v: indicates the set of video clips through which the crop status is captured.– s: indicates the summary text written by subject matter specialists for the given VFI. It

contains the detailed description of the corresponding problem or activity by referring individual photographs or videos. By reading the description, the student or professor can understand the problem or activity captured through VFI.

– q/a: indicates questions & answers. The subject matter specialist prepares the questions related to VFI based on the field problems at t and provides the answers. These questions are prepared to help the student to get more insights about field problems.

– i: indicates the index terms. The index terms will help the information retrieval engine to retrieve the corresponding VFI.

Page 55: Pk reddy open accessnaarm oct2014

More about VFI• The VFI captures enough information so that the agriculture student/

professor can understand the farm situation or farm activity by going through it in a virtual manner (without visiting the crop field).

• Photographs/video clips: – The situation can be understood through text photograhs/video clips. Based

on the crop details and farm location, the student can grasp the problem.

• Text written by scientist– To enhance the understanding of crop situation, the student can go through

the text written by scientist.

• Q/A:– The questions (and answers) should be such that it should enable the

student/teacher to understand the background and other influencing factors for that farm situation.

– Questions are aimed to understand what, how and why aspects of situation/activity, such as the reasons for the given farm situation or importance of such activity.

Page 56: Pk reddy open accessnaarm oct2014

Virtual Farm Saga• For the given farm, the VFS is the collection of virtual farm items

which are being captured at the regular intervals from pre-sowing to post-harvesting covering all crop-husbandry activities.

• The structure of VFS <f, c, d, Set of VFIs, Summary of VFS, q/a, i>.– Set of VFIs:

• Collection VFIs captured at regular intervals from sowing to post-harvesting by covering the crop cycle.

– Summary of VFS: • The summary is written by considering overall farm situation by considering the

corresponding VFIs throughout crop life cycle, i.e., from pre-sowing to post-harvesting. Reasons for the problems should be mentioned. Best agriculture practices should be highlighted. The negative aspects of crop production practices carried out should be explained. Mistakes identified should be described. Missed opportunities for a better crop growth, if any, should be given.

– q/a: • The subject matter specialist should form appropriate questions and give answers

regarding dynamics of VFS. – Questions can be about the factors about the crop growth, linking activities the problems

occurred to the crop to the activities carried out at different stages, weather situation, soil, farm practices, etc.

Page 57: Pk reddy open accessnaarm oct2014

More About VFS• The VFS captures enough information so that the agriculture student/

professor can understand the growth of the given farm in a virtual manner without visiting the crop field.

• Set of VFI– The student can go through each VFI and understand the crop growth.

• Summary: – Overall farm growth phenomena

• Q/A– The questions (and answers) enable the student/teacher to understand

the background and other influencing factors for that crop growth. – Questions are aimed to understand what influenced the crop growth

and corresponding corrective factors that would have been taken, if any.

Page 58: Pk reddy open accessnaarm oct2014

Virtual Crop Lab of a Zone (VCLZ)

• The VCLZ captures the crop dynamics for a given micro agro-climatic zone. • Let crop c is cultivated in n number of sample farms (in different farming situations) in a

given micro agro-climatic zone. – The value of n is chosen such that all farming situations of the zone for a given crop are captured.

• The collection of VFS of n farms (in different farming situations) constitute VCLZ. • The elements of VCLZ are as follows: <c, Set of VFSs, Summary of VCLZ, q/a, i >.

– c, i: the meaning of these notations is similar as in VFI.– Set of VFSs:

• Indicates a collection of VFSs on n number of sample farms of crop c. For a given agro-climatic zone, the number of sample farms will be selected to capture all the variability (soil, variety, water source and so on) of the crop c.

– Summary of VCLZ: • The summary for VCLZ is written by considering overall situation of farms in VCLZ. The summary includes

reasons for the success of some farms including best agriculture practices, and failure of some other farms which should be mentioned linking to the agro-climatic conditions, good/bad farm practices, crop protection measures, untimely application of inputs, soil type and so on.

– q/a: • The questions and answers are formed by subject matter specialists by considering the VFSs of all sample farms.

So, there is a scope for several innovative questions and answers which can be given by providing the references to corresponding VFSs and VFIs.

• Questions can be framed following the processes of contrasting VFSs and VFIs, comparing VFSs and VFIs by identifying unique/special VFSs and VFIs with reference to soil, variety, weather and so on. Questions can also be about the reasons for success of some farms and failure of some other farms linking to seed variety, soil, date of sowing, weather factors and farming practices.

Page 59: Pk reddy open accessnaarm oct2014

More About VCLZ• The VCLZ captures enough information so that the agriculture

student/ professor can understand the growth of crop dynamics in a virtual manner in the zone under different farming situations.

• Set of VFS– The students compare VFS of several farms and understand the

differences in the crop performance under various soils and practices. • Summary of VCLZ

– By going through the summary of VCLZ, the student gets the new insights about the influence of various factors on different types of farms of the same crop in the given zone.

• Q/A– The questions (and answers) helps the student to explore the issues in

different dimensions.

Page 60: Pk reddy open accessnaarm oct2014

Virtual Crop Lab• The virtual crop lab captures all the problems and activities of the crop for

all agro-climatic zones of the country. Let crop c is cultivated in m micro agro-climatic zones in the country. The collection of VCLZs of m zones constitute VCL. The elements of VCL is as follows: < c, Set of VCLZ, Summary of VCL, q/a, i >.– Set of VCLZs:

• Indicates VCLZs on m agro-climatic zones.

– Summary of VCL: • The summary of VCL of a country is written by comparing and contrasting crop

growth/farm practices based on the VCLZ of several zones of a country. Reasons for the difference in crop practices by linking to weather and soil should be highlighted.

– q/a: • The questions and answers are formed by subject matter specialists by considering the VCLZs

of several zones. • Questions can be formed following the processes of contrasting VCLZs, VFSs and VFIs,

comparing VCLZs, VFSs and VFIs by identifying unique/special VCLZs, VFSs and VFIs with reference to soil, variety, weather and so on.

• Questions can also be framed about the reasons for the differences in farming practices, crop problems, and protection measures.

Page 61: Pk reddy open accessnaarm oct2014

More About VCL• The VCL captures enough information so that the agriculture student can

understand the growth of crop dynamics in different agro-climatic zones in the country without visiting the fields (virtual manner). – The students understand the differences in the crop performance under different

agroclimatic zones.

• Summary of VCL– the student could get the new insights about how crop growth is carried

out in different agro-climatic zones, differences in the best agriculture practices in each zone, farming situations in each zone, varietal differences, differences in agronomic practices, dominance of pest and deceases and so on.

• The questions (and answers) helps the student to explore the crop growth issues in different agro-climatic farming environments.

Page 62: Pk reddy open accessnaarm oct2014

Relationship among VFI, VFS, VCLZ, VCL.

Page 63: Pk reddy open accessnaarm oct2014

Role of Virtual Crop Labs in Practical Agricultural Education

(i) Existing: Mutual reinforcement between A and B and vice versa(ii)New

• Mutual reinforcement between A and C and vice versa• Mutual reinforcement between B to C and vice versa

Page 64: Pk reddy open accessnaarm oct2014

Issues of Open Access to Agricultural Knowledge

• Creation of different agricultural knowledge repositories/tools relevant to stakeholders.– Standard formats/services

• How to enable open access in a sustainable manner ?• Impact of such knowledge depends on the services

which depends on the data relevant to stakeholders, including poor and marginal farmers.

• Examples: eSagu, eAgromet, Virtual Crop Labs, InfoCrop


Recommended