+ All Categories
Home > Documents > Plasma Tech ATHENS15 - fenix.tecnico.ulisboa.pt · with collective behaviour Ionized gas electrons...

Plasma Tech ATHENS15 - fenix.tecnico.ulisboa.pt · with collective behaviour Ionized gas electrons...

Date post: 17-Sep-2018
Category:
Upload: volien
View: 213 times
Download: 0 times
Share this document with a friend
37
Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal http://www.ipfn.ist.utl.pt http://www.facebook.com/IPFNLA L.L. Alves [email protected] PLASMA TECHNOLOGIES Tailoring matter at nanoscale level ATHENS@IST March 2015
Transcript

Instituto de Plasmas e Fusão Nuclear,

Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

http://www.ipfn.ist.utl.pt

http://www.facebook.com/IPFNLA

L.L. [email protected]

PLASMA TECHNOLOGIESTailoring matter at nanoscale level

ATHENS@ISTMarch 2015

Plasma

electron

ion

neutral

Plasma : definition (reminder)

Ionized gas, neutral, with collective behaviour

Ionized gaselectrons (hot, ~104 K)ions (cold, ~300 K)neutrals (cold, ~300 K)

Neutral mediumNumber of electrons = number of ions

Collective behaviour ionization level affects electrical properties

Plasmas : classification (reminder)

Low-temperature (discharge) plasmas

E

P x d

E

P x d

Paschen’s law

+ -E

+ -E

Gas, pressure PDistance d between electrodes

Discharge plasmasPaschen’s law

d

Discharge plasmasPlasma reactors

Inductively Coupled Plasma (ICP)rf, low pressure, high density

Inductively Coupled Plasma (ICP)rf, low pressure, high density

Inductively Coupled Plasma (ICP)rf, low pressure, high density

Capacitively Coupled Plasma (CCP)rf, intermediate pressures, low densityCapacitively Coupled Plasma (CCP)

rf, intermediate pressures, low densityCapacitively Coupled Plasma (CCP)

rf, intermediate pressures, low density

Magnetron for sputteringrf, low pressure, high density

Magnetron for sputteringrf, low pressure, high density

Magnetron for sputteringrf, low pressure, high density

Electron-cyclotron resonance (ECR) plasmamicrowaves, low pressure, high density

Electron-cyclotron resonance (ECR) plasmamicrowaves, low pressure, high density

Electron-cyclotron resonance (ECR) plasmamicrowaves, low pressure, high density

Discharge plasmas Applications

Discharge plasma is …

• cold (contact without damage)

• reactive (modification of systems)

• radiation emitter (usage in lightning)

• fluid (very effective interaction)

E (eV)

Energy levels - He and Ne

19

2p53s17

2p55s

2p54p

2p54s23S1

21 21S0

2p53p

1S0 2p61S0

3.39 µm

6328 Å1.15 µm

rápida

E (eV)

Energy levels - He and Ne

19

2p53s17

2p55s

2p54p

2p54s23S1

21 21S0

2p53p

1S0 2p61S0

3.39 µm

6328 Å1.15 µm

rápida

Discharge plasmasApplications: lamps and lasers

• Electron temperature : 1-2 eV• Electron density : 1011 –1012 cm-3

• Gas temperature : ~ 350 K• Gas pressure: 1-2 Torr

Discharge plasmasApplications: material processing / deposition / functionalization

• Silicon dioxide (SiO2)• Silicon nitride, carbide (SiXNYHZ, SiC)• Metallic oxides (ZnO, TiO2, …)• Ceramic thin films (organically modified)

• Polymers• Carbon nanoparticles and nanotubes

Discharge plasmasApplications: material processing / etching

Micro-electronics• Micro-fluidics• Micro-fabrication • Bio-engineering

(tissues, prosthetics)• Optoelectronics and photonics• Detectors and sensors• …

ICP etching 95% Ar + 5% Cl2

Electronegativegas-mixture

Volatileproducts

ICP etching 95% Ar + 5% Cl2

Electronegativegas-mixture

Volatileproducts

Failure analysisSiO2 etching

Failure analysisSiO2 etching

PMMA etching by O2 (120mm)PMMA etching by O2 (120mm)PMMA etching by O2 (120mm)

Discharge plasmasApplications: micro-discharges

E

P x d

E

P x d

d↓ allows…• P↑(Pd typical of macro-discharges

at low-pressure)• low-E � reduced power

but…• high power-density

Portability (miniaturization + atmospheric pressure)

Vast applicability (low power)

Discharge plasmasApplications: micro-discharges

Gaseous detectors

Microwave micro-discharges

ICP micro-discharge

O2(a1D) source

Array with 20 MCSDs(DC micro-discharge)

Mechanical fabrication

Micro-plasma jetCutting tools

Discharge plasmasApplications: plasmas in biologic and biomedical applications

Plasma-assisted bacteriologic treatmentE. coli (a–c), S. epidermidis (d–f) e MRSA (g–i)(a, d, g) – not treated(b, e, h) - treated with plasma during 5s(c, f, i) - treated with plasma during 20s

Sterilization of chirurgic instrumentsby hydrogen peroxide plasmas

Plasma needle

(cosmetics, stimulator,

coagulator, sterilizer)

Discharge plasmasApplications: plasma TV

Discharge plasmasEveryday life applications

PLASMA TECH @ IPFN

IPFN organization

Instituto de Plasmas

e Fusão NuclearInstituto de Plasmas

e Fusão Nuclear

Engineering & Systems Integration

Engineering & Systems Integration

Lasers & PlasmasLasers & Plasmas

Gas Discharges and Gaseous ElectronicsGas Discharges and Gaseous Electronics

High-pressure PlasmasHigh-pressure Plasmas

Laboratory of Quantum Plasmas

Laboratory of Quantum Plasmas

Theory & ModelingTheory & Modeling

Experimental PhysicsExperimental Physics

Material Characterization

Material Characterization

Governing BoardGoverning Board

Scientific CouncilScientific Council

PresidentPresidentExternal Advisory

PanelExternal Advisory

Panel

Controlled Nuclear Fusion

Controlled Nuclear Fusion

Intense Lasers and Plasmas

Technologies

Intense Lasers and Plasmas

Technologies

GEDG

GEDGOrganization / activities

Plasma Engineering Laboratory

PIs: E Tatarova, FM Dias

Hypersonic Plasma LaboratoryPI: ML Silva

Modeling & Simulation

PIs: ML Silva, V Guerra

Head: LL Alves

Plasma Engineering Laboratory

Plasma Engineering LaboratoryMicrowave plasma-based single-step method for free-standing graphene synthesis

•Versatile method to generate self standing graphene sheets at atmospheric conditions

• Rigid control of graphene structural quality

HRTEM observation of samples produced from ethanol

1 layer

Graphene flakes freely suspended on the grid

Plasma Engineering LaboratoryMicrowave plasma-based single-step method for free-standing graphene synthesis

We use microwave plasmas to effectively decompose hydrocarbon molecules

The plasma environment creates extraordinary assembly pathways and nanostructures

Plasma Engineering LaboratoryMicrowave plasma-based single-step method for free-standing graphene synthesis

Graphene is produced downstream using a single-step method in atmospheric conditions

Free-standing graphene sheets with highly-ordered lattice fringes and few mono-layers

92 96 100 104 108 112 116 120 124 1280,00

0,01

0,02

0,08

0,10

0,12

Inte

nsity

(a.

u.)

Wavelength (nm)

Ar + % H2P=260W, p=0.35mbar

5% 30%

Lβ Ar

Ar

theory

Ar resonant lines vs power

Plasma Engineering LaboratoryMicrowave plasmas as source of extreme VUV radiation

Extreme VUV wavelengths are obtained when using Ar-H2 plasmas

Modelling & Simulation

Modeling & simulation

We master the simulation and modelling of various plasma sources using complex kinetic schemes

Exceptional UV production and guidance

Power density ~0.1 MW cm-3 for Tg < 1500 K

Analysis of gas heating

2.35 2.40 2.45 2.50 2.550.0

0.2

0.4

0.6

0.8

1.0

Rel

ativ

e co

uple

d po

wer

f (GHz)

Modelling & simulationMicrowave-driven plasmas in hollow-core photonic crystal fibres

0.00 0.01 0.02 0.03 0.04500

800

1100

1400

1700

Test structure400 µm

Tg (

K)

r (cm)

Kagomé fibre50 µm

0.00 0.01 0.02 0.03 0.04500

800

1100

1400

1700

Test structure400 µm

Tg (

K)

r (cm)

Kagomé fibre50 µm

0 1 2 3 40.0

0.2

0.4

0.6

0.8

1.0

Inte

nsit

y S

PS

(0,0

) (a

.u.)

z (cm)

N2N2 1 mbar0.2 mbar1 mbar0.2 mbar

0 1 2 3 40.0

0.2

0.4

0.6

0.8

1.0

Inte

nsit

y S

PS

(0,0

) (a

.u.)

z (cm)

N2 1 mbar0.2 mbar

N2 and N2-H2 ccrf discharges

Towards Titan’s atmosphere at lab scale

Calculated and measured time-average:SPS(0,0) vs. axial position (top-left);FNS(0,0) vs. H2 percentage (top-right);self-bias voltage vs. power coupled (bottom)

0 1 2 3 4 50.5

1.0

1.5

2.0

2.5

H2/(H

2+N

2) (%)

Inte

nsit

y FN

S(0,

0) (

a.u)

N2-H2N2-H2

1.2 mbar0.6 mbar1.2 mbar0.6 mbar

0 1 2 3 4 50.5

1.0

1.5

2.0

2.5

H2/(H

2+N

2) (%)

Inte

nsit

y FN

S(0,

0) (

a.u)

N2-H2

1.2 mbar0.6 mbar

0 5 10 15 20 250

25

50

75

100

125

150

175

- V

dc (

V)

Weff

(W)

N2N21 mbar0.5 mbar0.2 mbar

1 mbar0.5 mbar0.2 mbar

0 5 10 15 20 250

25

50

75

100

125

150

175

- V

dc (

V)

Weff

(W)

N21 mbar0.5 mbar0.2 mbar

Modelling & simulationCapacitively coupled radio-frequency discharges

Very complete state-of-the-art kinetic schemes

0.8 1.0 1.2 1.4 1.60.0

0.5

1.0

1.5

2.0

2.5

Inte

nsity

(a.

u.)

Z (cm)

Model Exp. 777.194 nm 777.417 nm 777.539 nm

0.8 1.0 1.2 1.4 1.60.0

0.5

1.0

1.5

2.0

2.5

Inte

nsity

(a.

u.)

Z (cm)

Model Exp. 777.194 nm 777.417 nm 777.539 nm

0.8 1.0 1.2 1.4 1.60

1

2

3

4

Inte

nsity

(a.

u.)

Z (cm)

Model Exp. 742.364 nm 744.229 nm 746.831 nm

0.8 1.0 1.2 1.4 1.60

1

2

3

4

Inte

nsity

(a.

u.)

Z (cm)

Model Exp. 742.364 nm 744.229 nm 746.831 nm

80 90 100 110 120 130

1010

1011

1012

N2

+(B)

N2(C)

Den

sity

(cm

-3)

Pcoup

(W)80 90 100 110 120 130

1010

1011

1012

N2

+(B)

N2(C)

Den

sity

(cm

-3)

Pcoup

(W)

Very good agreement with OES diagnosticsN2(C) & N2

+(B) absolute densities

O* triplet (left) andN* triplet (right)

Modelling & simulationKinetic modelling of air plasmas in capillaries at low pressure

Modelling & simulationPlasma conversion of CH and CO

Natural gas is still an abundant chemical source

Goal: production of H2, Syngas and methanol

Challenges: Energy efficiency!

Modelling and experimental work @ patm

Modelling & simulationSurface kinetics

Molecule formation on surfaces is a relevant issue!

O2, N2, NO, NO2, O3, CO2 ...

Major difficulties:- Good control of surface conditions

- Reproducibility

- “Unambiguous” interpretation

NO conversion into NO2 in a Pyrex tube. NO is introduced in successive injections in a tube pre-treated with oxygen.

Modelling & simulationKinetics of high-speed shock flows and radiative heat-transfer studies

Ray tracing procedureCFD/state-to-state simulation of 12km/s entry flow

Complete cross section sets: Ar, He, H2 / H, N2 / N, O2, CH4

Experimental swarm data

Check agreement between calculated and measured swarm datafrom different databases

http://fr.lxcat.net/

Modelling & simulationLXCat website and IST-LISBON database

Hypersonic Plasma Laboratory

Hypersonic Plasma LaboratoryEuropean Shock-tube for High Enthalpy Research (ESTHER)

Final

Plasma …

• cold present in everyday life

• base for multiple applications(quality-of-live improvement)

• solution for energetic problems(check previous presentations)

• beautiful medium

APPLAuSEAdvanced Programme in Plasma Science and Engineering

Next call: April-June 2015https://applausephd.wordpress.com/


Recommended