+ All Categories
Home > Documents > Platinum Challenge

Platinum Challenge

Date post: 03-Jun-2018
Category:
Upload: aquamanante9281
View: 227 times
Download: 0 times
Share this document with a friend

of 17

Transcript
  • 8/12/2019 Platinum Challenge

    1/17

    Polish J. of Environ. Stud. Vol. 16, No. 3 (2007),

    Introduction

    Platinum group elements (PGE) include metals such

    a patn (Pt), paad (Pd), d (r), t-n (r), d (i) and (o). T nta pnt n nnnta ap (e.g.soil, road dust,airborne particulate matter, water, benthic sediments

    and ta) at nntatn. h, d tt ntnd dpnt n p t f anactivities an increasing trend in those concentrations has

    been observed. The main emission source of PGE into

    t nnnt, xpt f t n f n and n, a an att [1].

    By far the greatest usage ofPGMs (platinum group met-

    als)both in Europe and worldwide is in vehicle catalysts,

    with additional major applications in the chemical industry,

    electrical and electronics industries, petroleum industry, the

    manufacture of jewellery, as a cancer-treating drug in medi-

    cine, as alloys in dentistry and in the glass industry. The

    data n t nptn f Pge a n n F. 1.Automobile catalysts are both major and mobile

    source ofPGEs. Due to the wear of catalytic converters inmotor vehicles such elements as Pt, Pd and Rh bound to

    t a pntat nt t nnnt [3]( F. 2). Dpndn n t patn ndtn and

    Platinum Group Elements: A Challengefor Environmental Analytics

    A. Dubiella-Jackowska, . Polkowska, J. Namienik*

    Dpatnt f Anata ct, ca Fat, gda unt f Tn,g. Nata st. 11/12, 80-952 gda, Pand

    Received: May 29, 2006Accepted: January 4, 2007

    Abstract

    An increased worldwide usage of platinum group elements(PGE) has been observed during recent

    dad. h ant fPGEare applied in such areas as chemical industry and jewellery production,but the increased demand for these metals primarily depends on the introduction of automobile catalytic

    converter systems. Catalytic converters have also been considered to be a major source of PGE pollution.

    The similar Pt:Rh ratio, which is used in these autocatalysts, was found in various environmental samples

    as well. The present literature review indicates that the concentration of these metals has increased consid-

    erably in the last twenty years in different environmental matrices, resulting in ecological and human health

    . ba f t ptan f PGEand their trace levels in environmental and biological matrices,sensitive methods are required for reliable determination. Details of the particular steps of analytical proce-

    dures forPGE quantification in environmental samples such as road dust, airborne particulate matter, soil,

    benthic sediments, water, wastewater and biological samples are discussed. Sampling and sample storage

    and patn tnq a pntd. m, t t fqnt d xtatn, nnt,detection and determination procedures forPGEare described.

    Keywords:platinum group elements, autocatalyst, urban environment, environmental samples, sam-pn, ap ptatnt and ta, xtatn and nnt f anat, dtnatn td,ICP-MS.

    *Corresponding author; e-mail: [email protected]

    Review

    329-345

  • 8/12/2019 Platinum Challenge

    2/17

    Dubiella-Jackowska A. et al.330

    the age of the converter, mean platinum emissions range

    f 7 t 123 n -3, corresponding to emission factorstn 9 and 124 n 1 [4].

    hpta fnt ntann Pt d a a an -portant source for the emission of Pt into wastewater and

    sewage sludge. It was reported that total platinum emis-sions into the public sewage systems via hospitals were

    appx. 14.3 f Pt n 1996 n gan, -pnd t appx. 187.2 f tta Pt f a [5].

    The actual amount ofPGEsreleased into the environ-

    ment by catalysts can be directly evaluated by determin-

    n t ntnt n a xat f qantfnthe anthropogenic PGE in environmental materials such

    as soil, airborne particles, sludge, water, road dust, etc.

    and dn t data tt t taf tatt.

    Ta 1 t t tand at fnthese two strategies.

    unt nt, td n and nntatnof platinum group elements in the environment were

    mainly based on the determinations of Pt levels, later to

    be followed with Pd and Rh concentration measurements.In the cases of Ir, Ru and Os, only very scarce data are

    available. This is mainly due to the fact that the available

    analytical techniques and methodologies are also limited.

    Dtnatn f r and o pata dft -a t nt f at xd [14]. T t t addtna an tat xpan t at f data nthe content of these elements in environmental samples.

    Investigating PGEcontent in environmental samples

    poses a big challenge because of the following:

    F. 1. wd nptn f Pge [103] n 2005 and 2006 [2].

  • 8/12/2019 Platinum Challenge

    3/17

    Platinum Group... 331

    very low concentration levels of analytes

    dft t qanttat dtn f ap a f pp fn ata unsatisfactory metrological characteristics of the ana-

    ta tnq d n t na dtnatn tp.Because of the above-mentioned reasons it is neces-

    a t ntd addtna tp nt t p anat-cal procedures in order to obtain reliable analytical results

    of good quality.

    Analytical Procedures for Platinum GroupElements Present in Environmental and

    Biological Samples

    As mentioned before, the precise determination of low

    levels ofPGEin environmental samples is possible only

    when instrumental techniques characterized by low limits

    f qantatn (LOQ) are employed. Proper samplingand sample pretreatment techniques are a must if sample

    contamination or the loss of analytes is to be avoided. The

    following types of environmental samples analyzed for

    PGEcontent have been described in literature:

    road dust

    airborne particulate matter

    soil and benthic sediments

    water wastewater

    biological samples.

    In further parts of this publication the literature data

    n a p xpnd dn dn, n-ing and determining thePGEanalytes in the above-men-

    tioned types of samples have been presented.

    Sampling, Storage and Preservation of Samples forAnalysis

    Road Dust

    rad dt n a nant fat n aat-ing environmental conditions, particularly in metropolitan

    aa. it an pnnt a [15]: soil

    soot

    airborne particulate matter

    organic matter originating from local vegetation

    pollutants from road transport salt,

    gravel,

    debris from road accidents

    components of road pavement

    garbage and animal remains

    Road dust samples could be collected by hand brush-

    ing with a nylon brush and plastic collection pan directly

    from the road surface. Each brush and pan should be con-

    sidered disposable and used only once. The samples were

    td n atx and td/tanptdn pat ap a [16]. Dt an a td

    by means of commercially available vacuum samplersqppd t t [17]. T f a p-sentative dust sample for the analysis ofPGEcontent has

    to be precisely determined; usually, it depends on the par-

    ticle size distribution of a given dust. In case of particles

    < 90 (aft ndn), ap f at 0.1 a -lected in order to obtain good repeatability of measure-

    nt [9, 10, 16].

    An Patat matt

    Before introduction of automobile catalysts, Pt was

    nt dttd n a ap n t usA and ep [11].The study of Pt concentrations in airborne particulate

    att (Pm) n gan tat t a a 46-fdna n Pt nntatn f 1988 t 1999 [18].in t fa f a t-tad pjt n t

    posed by the emission of PGE from car catalytic con-

    verters, systematic campaigns forPGEmonitoring in air

    pfd f 1998 t 2000 n td epannt [19]. Dtnatn f PGE in atmosphericaerosols is particularly important in relation to human

    health because molecules of these metals can penetrate

    t an d a t pat tat (fatn

  • 8/12/2019 Platinum Challenge

    4/17

    Dubiella-Jackowska A. et al.332

    Ta 1. T ant f Pge n nnnta at xpd t a taf

    Sample

    typeSampling site Analytes

    exap f nntatnlevels in environmental

    samples

    Unit

    Average Daily

    Taf/expnt

    parameters

    Literature cited

    1 2 3 4 5 6 7

    SOIL

    Knittelfeld,

    Austria

    Pt

    Pd

    Rh

    Ru

    Os

    Ir

    1.13-32.40.90-6.770.17-3.110.12-5.770.08-2.360.09-0.89

    n/ 20 182

    [7]ran,

    Austria

    Pt

    Pd

    Rh

    Ru

    Os

    Ir

    2.89-1340.79-24.50.40-13.20.01-0.890.03-0.25

    0.04-0.15

    n/ 22 072

    Sdost-Tan-

    gente, Austria

    Pt

    Pd

    Rh

    Ru

    Os

    Ir

    2.01-38.90.86-6.410.15-3.390.07-0.550.04-0.080.09-0.24

    n/ 56 679

    between So

    Paulo and Jun-

    dia, Brazil

    Pt

    Pd

    Rh

    0.31-17.41.1-58

    0.07-8.2n/ 30 000 [8]

    Perth, Australia

    Pt

    Pd

    Rh

    30.96 2.1313.79 0.743.47 0.07

    n/

    30 500

    [16]

    Pt

    Pd

    Rh

    68.65 1.20

    69.43 3.8514.54 1.40

    41 100

    Pt

    Pd

    Rh

    153.20 0.01100.06 4.7726.55 0.83

    29 500

    Pt

    Pd

    Rh

    130.65 4.7991.36 6.0425.18 4.19

    100 000

    Pt

    Pd

    Rh

    107.49 9.53108.45 1.6012.47 0.05

    80 000

    ROAD

    DUST

    bat,Poland

    Pt

    Pd

    Rh

    34.2 110.932.8 42.2

    6.0 19.7

    n/ 30 000 [10]

    Perth, Australia

    Pt

    Pd

    Rh

    53.84 0.8858.15 1.208.78 0.83

    n/

    30 50

    [16]

    Pt

    Pd

    Rh

    161.24 33.47132.72 12.1031.47 7.68

    41 100

    Pt

    Pd

    Rh

    123.64 2.46168.48 17.1724.48 1.20

    25 200

    Pt

    Pd

    Rh

    229.60 9.48150.10 9.5345.10 1.20

    51 000

    PtPd

    Rh

    224.42 14.27293.53 3.3042.72 1.80

    35 500

  • 8/12/2019 Platinum Challenge

    5/17

    Platinum Group... 333

    1 2 3 4 5 6 7

    ROAD

    DUST

    Perth, Australia

    Pt

    Pd

    Rh

    261.68 6.78224.33 14.05

    56.03 5.77

    n/ 29 500

    [16]

    Pt

    Pd

    Rh

    181.26 31.30211.74 1.8844.98 5.03

    n/ 12 000

    Pt

    Pd

    Rh

    419.41 25.06440.46 43.0191.40 7.86

    n/ 55 000

    Pt

    Pd

    Rh

    141.55 28.31114.45 23.3322.48 0.37

    n/ 22 500

    London

    Orbital motor-

    way

    Pt 101.6-764.2 n/85 000 145

    000[10]

    TuNNelDUST

    bat,Poland

    PtPd

    Rh

    4.17 23.33.10 23.96.76 1.28

    n/ 28 000 [9]

    GRASSbat,

    Poland

    Pt

    Pd

    Rh

    8.27 8.983.2 0.230.63 0.68

    n/ 20 600 [9]

    AIR-

    borNePARTIC-ULATE

    mATTer

    mn k,China

    Pt 14-38 p/3 40 000[11]

    Small village

    40 nt fRome, Italy

    Pt

    Rh

    < 0.5< 0.5 0.7

    p/3 100

    [12]

    Rome, Italy

    Pt

    Rh

    2.8 40.41.6 9.4

    p/3 30 000 40 000

    PtRh 10.0 28.62.4 5.8 p/3 30 000

    Pt

    Rh

    9.0 60.11.2 8.2

    p/3 40 000 50 000

    Pt

    Rh

    2.4 18.80.8 6.8

    p/3 20 000

    Pt

    Rh

    3.4 35.81.6 8.8

    p/3 40 000 50 000

    Pt

    Rh

    7.8 52.01.8 8.5

    p/3 100 000

    EX-

    hAusTFumes

    -Pt

    Pd

    Rh

    0.12 12.800.30 5.200.23 1.5

    /l

    fatn > 0.45

    aged catalyst

    (Pt/Pd/r)

    [13]

    -

    Pt

    Pd

    Rh

    1.28 62.21.5 21.80.7 12.4

    /l

    fatn > 0.45

    fresh catalysts

    (Pt/Pd/r)

    -

    Pt

    Pd

    Rh

    0.14 6.850.20 4.900.04 2.01

    /l

    fatn > 0.45

    fresh catalysts

    (Pd/r)

    -

    Pt

    Pd

    Rh

    0.11 36.20.013 2.80.032 5.36

    /l

    fatn > 0.45

    fresh catalysts

    (Pt)

    - Pt 3 1354 2033 33

    n/3

    new catalysts

    medium agecatalysts

    old age catalysts

    [4]

    Ta 1. ntnd

  • 8/12/2019 Platinum Challenge

    6/17

    Dubiella-Jackowska A. et al.334

    tp) [11]. in pa pa dt an a used.

    Soil and Benthic Sediments

    sap f and nt dnt (ndn at-at dnt) a a px ptn tat an pad t t atx f ad dt [23]. gna PGM tt t n nd nata ndtn. h-ever, evidence suggests that certain PGE-species bound to

    soil particles could be remobilized and thus enter the food

    an t pta pant [7, 24]. rt f t aant f ntatn nd nant aa-tions of Pt, Pd and Rh and showed characteristic distribution

    pattn. cnntatn dad t nata and tn a f t f t d f t taf anand tn a f ntt f t fa [7]. F-

    t, t xanatn f atnp tnPGE andtaf dnt, pd and nntatn f n-dd ntanant (. P, cd, zn) aatdn add tn atn [25]. s apfor determination of platinum group elements are collected

    f a dpt ann f 0 t 5 [26, 27]. sa -p a tan at dffnt dpt t tan nfatn atmobility of these elements.

    The PGE a ttd n a patat f [28], tt n aft ntn an aqat tp t dnt, t ta aat [29, 30]. Dpndn nthe scope of a study various equipment is employed, rang-

    ing from the simplest dredges that scrape sediment from

    t tt (tn ap a t and ntnatt) t pad ap t a px tn-a dn. [31]. mcnn pnt t tn p-d, n andn a at-qppd ptn t a fa and dppn a td ta a-

    p ttd t a nn p f ta. A tt ain the bottom of the tube opens upon impact with the sedi-

    ment and closes upon retrieval, trapping the contained

    dnt [32]. T paat a dnt and ptn, ph a, dx ptnta, ndttand the color of water overlaying the sediment have to be

    ndd n t apn pd [30, 32]. sap

    of soil and sediments forPGEdeterminations are usuallytd n ptn (PE) Tn (pttat-ylene,PTFE) containers.

    Water Samples

    In order to determine the content of platinum group

    elements in water it is necessary to obtain samples rang-

    ing from a couple to tens of milliliters; the sample vol-

    ume depends on the scope of analysis. Samples should

    be collected into completely tight containers that had

    n p and an n 0.1 m d-

    ric acid and washed with deionized water. It is criticalto avoid trapping air bubbles; otherwise, some analytes

    a dff nt t a pa [31] (e.g. Ru andOs compounds). To collect water samples at a certain

    depth samplers operated by remote control and attached

    t a ad at pd nt nta a d[31]. wat ap a a td t a -

    an f 0.45 p , add t 0.1% (/) tnntatd ad and td fn nt ana [33].

    Samples should also be analyzed not later than a couplef da aft t tn [34]. T ta aof the possibility of adsorption of metals on the walls of

    glass and polyethylene sampling containers, which may

    lead to the loss of analytes.

    Biological Samples

    Determination of Pt concentrations in biological sam-

    ples such as saliva, urine, blood and tissues allows the

    tatn f xp tPGE. Collecting urine samplesis rather easy, although even such a simple procedure re-

    q tat fd, a pd [4]: persons from whom samples are collected should obeythe rules of personal hygiene

    sampling time should be thoroughly considered as to

    pntat f a tan xp t; tfa 24- apn a n ndd

    it is advised to store each sample in polyethylene con-

    tan, d t dntanatd -nt t 10% hNo

    3, then rinsed several times with

    pt dnd at [35] possible sample contamination should be particularly

    avoided; this problem is critical in cases of platinum

    dtnatn n pn nt xpd t t ta samples should be stored frozen.

    bd ap d td aft 210 f nf-sion of cisplatin, with a hypodermic syringe by vein punc-

    t and pt at -4c f ana [36]. sap f -etation forPGEanalysis should be collected with the use

    of ceramic tools, i.e.forceps and scissors. The samples of

    t d tan t t ad f tan t and fp ad n p and t 1%an-eDTA-tn and -dtd at [37].

    Sample Preparation for Analysis

    T na dtnatn f Patn gp ent pn p anata tnq an n-ducted after proper sample preparation, that is:

    sample mineralization

    xtatn and nnt (pnntatn) f ana-lytes.

    Ad mnaatn

    Dtn f d ap t t tp n t ppa-atn pdn t na ant. m, n

    case of voltammetry, the liquid sample should be decom-pd (e.g. by acidic dissolution) in order to minimizecarbon content. Acidic decomposition might also be re-

    quired before certain types of enrichment procedures.

  • 8/12/2019 Platinum Challenge

    7/17

    Platinum Group... 335

    Ad naatn an pfd n Tn quartz dishes because both these materials are resistant

    to high pressure and temperature. Wall memory effect in

    t naatn d a ta p. Qat da aatd t a fft [38] a

    pad t t ad f Tn; Tn d an used for samples containing similar amounts of PGE. In

    a a, t na t nd a ap an [4].h-p dptn t and a

    heating are incorporated in digestion procedures. The use

    f -p t and a atn n-cantly accelerates the decomposition of the samples and

    an anat [39].The following rules should be followed during the dis-

    tn ta [14]:a) t f dtn x d ta f t

    further steps of analysis because, among other things,

    some elements of the analytical equipment might bepn t atn t t x pnnt, andnt f aqa a d ad;

    ) t ptn f dn x d tadf a f t anad Patn gp mta;

    c) mineralization should not be conducted in open dishes

    because it may lead to the loss some form of analytes;

    d) the evaporation steps should not be conducted at tem-

    pat xdn 100oC; otherwise, loss of analytesmay occur. Evaporation to dry mass should be avoid-

    ed; and

    e) the weight of sample to be digested should be chosen

    adqat t t xptd nntatn f anatand to the size of dish in which mineralization will

    ta pa, (n a f , dt and ta, a tpaap f naatn pd 5 ).T appatn f t af n x f ad

    is particularly critical in case of Pt and Rh determinations

    by voltammetric techniques. In this case, mineralization

    a t pfd n t x f nt and dacid. Because the nitric acid residue disturbs voltammet-

    ric measurements it has to be evaporated after the miner-

    alization step, and the sample should be treated with small

    ant f f and d ad [5]. T aparticularly important stage of analysis because it might

    t n a nant f patn. Adn, - xpnt a ptant [40].

    Ta 2 tat data n naatn/x-traction procedures of environmental samples containing

    Patn gp mta.

    Separation and Enrichment of Platinum Group Elements

    Due to the low or even very low concentrations of

    PGEin environmental samples it is often not possible to

    a dt dtnatn f t ta pnt nn anata tnq; tf, a pnn-

    tration step becomes necessary. The following approachesan d [14, 39, 52]: qd-qd xtatn d pa xtatn

    tnq ad n n xan electroprecipitation.

    For all the above techniques, it is essential to estimate

    a fnt f a anat.

    extatn Tnq

    Liquid-Liquid Extraction(lle)

    lqd-qd xtatn a a ad and -fnd-ed application as both a separation and preconcentration

    method. This technique can also be used for separating

    PGEfrom solutions. Because Platinum Group Elements

    f px a, tn f an -pxn ant a ftn d t fatat t xtatn[52]. T t fqnt d nt a [53-57]: t-t tn

    ditizon dt d tributyl phophate

    tappn xd chloroform.

    The antipyrine derivatives of Pt, Pd, Ir and Os are also

    d f t pnntatn n f [14]. Ttechnique has its limitations due to time consumption and

    t patd xtatn tp na t agood recovery of the analytes.

    Solid Phase Extraction(sPe)

    sd pa xtatn a f pd f pn-centrating the analytes, including PGE.PGMpxcan be separated in case of the metals whose ligands show

    a tn afnt t nn-pa tatna pa. sa dd t c

    8or C

    18groups and polymeric resins based

    on polystyrene or polystyrene-divinylbenzene are used as

    nt [52]. cpxn ant a dtaa-mate are employed in enrichment ofPGEvia solid phase

    xtatn; , t appatn an td tt ad nta tn n n xdatn [14].

    Techniques Based on the Application of Ion Exchange

    The propensity ofPGE f fn px n -lutions of mineral acids has been used for, among other

    things, separating these metals by the techniques based

    n n xan. Patn gp ent f taann n px, t ajt f tan-tna p a-at nt f a ann atn px. T afnt f PGEchlorinepx f tn a ann-xan n a a t a afnt f atn-xan n an

    d f paatn t ta f ap atx

    [52]. in tat, a pd f PGE elutionhave been described that consider a recovery of analyt-, paatn fn f t ta f t atxpnnt, and and a [20, 58, 59].

  • 8/12/2019 Platinum Challenge

    8/17

    Dubiella-Jackowska A. et al.336

    Ta 2. sp nfatn ad n tat n ad t naatn/xtatn pd and na dtnatn t-niques for Platinum Group Elements.

    Analytes Sample type extatn ndtnType of separa-

    tn/dtna-

    tion technique

    Detection limitLitera-

    ture

    1 2 3 4 5 6

    Pt Aerosol

    1. mnaatn f ddd ap-ntann t tt at f a adatn (630 w, aqa a)

    2. rpatd naatn a n tp 1, aft n dnthe solution and adding another portion of aqua regia

    3. Ftatn4. eapatn n a tatna apat at 80oC5. sap dtn

    ICP-DRC-MSPt: 0.50.7

    p/3[11]

    Pt, Rh

    Airborne

    particulate

    matter, road

    dt (fatn

    < 63 )

    1. hatn t ap n t t 450oC2. mnaatn t a a tatnt (aqa a;

    aqa a and hF; aqa a and hco4;; or aqua

    a, hF and hco4x)

    3. sap dtn t hc4. Storage in PE containers in a freezer

    Q-ICP-MS

    ICP- SF MS

    DP-CSV

    [41]

    Pt

    Airborne

    particulate

    matter, urine

    Airborne particulate matter:

    1. sapn t a ap qppd t panatt (0.8 , 47 , mp) f at 4

    2. mnaatn t a a tatntUrine:

    1. Addtn f h2O

    2and sulfuric acid to the sample fol-

    lowed by UV-light photolysis

    AdV

    1. Pt: 0.5 p/3

    2. Pt n 0.5 n: 1 n/l

    [42]

    Pt, Pd, Rh Road dust

    1. Dn (100oC)2. hnatn and n (fatn < 75 a

    analyzed)

    3. mnaatn t a a tatnt (250~600

    w; hc, hNo3and hF), patd 4 t4. eapatn and dtn f d d n hc

    Pt, Rh, Pd:

    HR-ICP-MS

    Pt, Rh:

    Q-ICP-MS

    Pd:

    co-precipitationt h/TXRF

    hr-icP-ms:Pt: 0.13 p/r: 0.05 p/Pd: 1.18 p/

    Q-icP-ms:

    Pt: 16.3 p/r: 5.2 p/

    [17]

    Pt Road dust

    1. A-dn, n and n f ap (fatn

  • 8/12/2019 Platinum Challenge

    9/17

    Platinum Group... 337

    1 2 3 4 5 6

    Pt Soil

    1. Dn (40oC)2. sn (fatn

  • 8/12/2019 Platinum Challenge

    10/17

    Dubiella-Jackowska A. et al.338

    in xan tnq ta f nat-ing spectral interference in the determinations ofPGEby

    ICP-MS (inductively coupled plasma mass spectrometry)

    [52]. h, t dadanta tat nn-pata (t dpnd n ap tp) and t td

    cannot be used for concurrent separation of all platinump ta [14].

    Cation Exchangers

    At present, broad investigations on the application of

    atn xan tPGEseparation are conducted, all deal-ing with resins characterized by strong cationic features.

    spaatn atn xan ta pa n an ann px fPGEpasses through a cationic column,while other metals in the sample get quantitatively absorbed

    n a nt d. h fPGEis achieved when

    a x f ad d a nt. T an ta n tappatn f atn xan a [14, 60, 61]: relatively large amounts of resin necessary to absorb

    non-PGEmetals, which results in tedious cleaning of

    the sorbent bed and high consumption of acids

    relatively large eluent volume necessary for quantita-

    tive elution of PGE from the column; this increases

    t f nnt tn f t ta tat dnt f tn atn px

    dft n paatn Patn gp entdue to the limited amount of eluent used in order to

    avoid concurrent washing out of other substances

    from sorbent

    paatn fn f hf and z, agive rise to many problems during the PGEdetermi-

    nation step via ICP-MS and NA (Neutron Analysis).

    bt ta tnd t f ta ann px;this propensity depends on sample type and dissolu-

    tion technique, and in particular is observed in samples

    tat dp t t f d ad.

    Anion Exchangers

    radn t x nntatn f pat-n and paad n t nnnta ap (n/,

    p/) t ann xan appa t pfa tt atn xan n, a t dand a -umn of a smaller size and smaller volumes of the eluates

    [62, 63]. stt f ann xan tt aof the formation of stable ion pairs between chloro com-

    px and a nt at p. T tndn f tta- px t f n pa t ann-x-an : [mc

    6]2-> [mc

    4]2->> [mc

    6]3-> aquo spe-

    , m a ta [59].mxt f dffnt nt a d f tn, a

    f [14, 52, 64-66]: To elute PdCl

    42- and PtCl

    42-, which bind strongly to

    some resins, perchloric or concentrated nitric acid ared a t a afnt f a n n. T t patn and paad px, a

    adsorbed too strongly to be eluted from stationary phase,

    hot concentrated mineral acids or hot ammonia solution

    also is applied; this results in resin dissolution, which has

    a negative effect on the removal of contaminating sub-

    stances and, in turn,PGEdeterminations.

    in d t fnt PGE from a resin, a

    pxn atn t taad t t-a pxn ant d.

    To elute PGM f ann-xan n t t-a n 0.1 m d ad tn a d.sa t atn xan, t paatn f hf

    and z nt pt; , t p an d tn dtn tan t an hF-hclx [64].

    Coprecipitation

    Reductive coprecipitation with a suitable collector

    is applied to separate noble metals from base elementsand to concentrate them to the level appropriate for in-

    tnta tnq [32]. T td an d fenvironmental and biological samples. In such a case, it

    is necessary to choose the proper sample dissolution pro-

    d. cn d pptatn ant a [14, 52,67, 68]: solution of Te, Se, As or Cu salts. SnCl

    2is a reducing

    ant (pptat dd n nt ad and t -tained solution can be processed by means of various

    techniques depending on the required measurement

    sensitivity);

    mercury nitrate. In this case, mercury is reduced with

    f ad (t pd an d f paadenrichment in samples of urine, plants and road dust

    after high pressure mineralization).

    thiourea and thioacetamide. Both compounds can be

    applied in coprecipitation ofPGEwith the use of cop-

    per collector.

    Coprecipitation applied as an enrichment technique

    is frequently associated with low recovery of analytes

    therefore, a consecutive use of isotope dilution mass

    ptt (IDMS) is recommendable in order to ob-tan a ant (xpt n t a f -ntp r) [69].

    Electroprecipitation

    Electroprecipitation has found a limited application as

    a paatn/pnntatn tnq f t PatnGroup Elements. The application of this method requires

    ap n qd pa [14]. Dn ta p-concentration step analyte ions are separated from the sam-

    p atx and dptd n t td. T anatasignal is then obtained during the dissolution of the metal

    from the electrode. The effectivity of preconcentration and

    dtn tp d nnd xn, fa-

    at pnd, and nt at pnt n a ap [70].Although, in spite of the high pre-concentration factors andd tt f tdptn, t fn pnda dpnd n ph. und t n ndtn

  • 8/12/2019 Platinum Challenge

    11/17

    Platinum Group... 339

    (ad ph, nat ptnta), dn n a ddand the evolution of hydrogen decreases analyte reduction

    fn [52]. in tat, t a dptn f pat-num determination technique based on electroprecipitation

    n a apt d, and t na ant an f

    GF-AAS(dttn t f at 0.3 n Pt) [71].

    Analytical Techniques Employed for Detectionand Qanttat Dtnatn fPGE/ General

    Characteristic of Techniques Used forPGEDeterminations in Environmental Samples

    Determination ofPGEanalytes can be performed by

    means of different analytical procedures; however, the

    concentration of the metals dictates the choice of tech-

    nq t adptd. F. 3 a at pnta-

    tion of the techniques, which are the most often used fordetermination of Platinum Group Elements at various

    concentration levels in environmental samples.

    The basic information on analytical techniques used

    f na dtnatn fPGEanalytes in environmentalsamples is presented below.

    Gravimetry and Titration Analysis

    Gravimetry and titration analysis are widely used for

    aat n and nn t nntatn fstandard solutions and in the analysis ofPGE-rich samples

    at t ntnt f 0.1% [72-74]. T ansources of error are losses during precipitation, cleaning

    f t d and dn (n at tnqare used).

    UV/VIS Spectrophotometry

    The availability of spectrophotometric apparatus and

    t pt f anata pd a t t-nique very attractive for a wide range of applications.

    The determination ofPGEby spectrophotometric meth-

    ods requires their quantitative transformation into soluble

    ta p tat an a t a f t dttn.

    The use of spectrophotometric methods inPGManalysisis limited due to low sensitivity. It is caused by a high

    chemical similarity ofPGMresulting in the formation of

    px f a ptn and ppt [75].h, an n p and nt anreagents are being synthesized and various highly sensi-

    tive methods are being developed with molar absorptivi-

    t f 105106 n [76]. Nt, t of this method is limited to metallurgical or industrial

    samples containingPGEat / [52].

    Inductively Coupled Plasma-Atomic Emission

    Spectrometry(ICP-AES)

    One of the characteristic feature of this method is the

    necessity of converting metals into solution before anal-

    ysis. Optionally stable suspended matter samples may

    also be analyzed if the nebulizer is properly constructed.

    The direct analysis of platinum and palladium by ICP-

    AEShowever is considerably restricted because of the

    ntfn f t atx nt, xt n tsamples in concentrations four to eight orders highertan patn ta [39]. F xap, t nnof aluminium and iron on the Pt signal, and iron and va-

    nad n t Pd na (d t pta ntfn),a n d [63]. T nntatn f Ptand Pd in the environment and the necessity to minimize

    t pta and atx ntfn a d t t d-velopment of various procedures for isolation and con-

    centration ofPGE, t n-xan t fqntused.ICP-AEShas been utilized for the determination of

    PGEn ad dt and pant ap (f n/ t /)aft paatn n Dx 1-X10 ann-xan n[63, 66]. T tnq a fnt nt fthe determination of noble in sewage sludge and geo-

    a ap [76].

    Atomic Absorption Spectrometry(AAS)

    Atomic absorption spectrometry is both an easily

    available and widely used technique for the determina-

    tion of platinum group metals in different materials. This

    technique, similar, toICP-AES, requires total dissolution

    of the element.

    InFAAS(Flame Atomic Absorption Spectrometry)the

    nd ap ntdd nt a. T ap-tn f t anat at pad aant nn tan-dad. T fn aa a a d n PGEdeterminations:

    atn/a (Pt, Pd, r) nt xd and atn x (r, r).

    The main disadvantage of FAASfor PGE determina-

    tion is its poor sensivity. Therefore, the FAAS technique

    na nd f n ta dtnatn n n-ntat and Pgm- ap [51, 78].

    In GFAAS (Graphite Furnace Atomic Absorption

    Spectrometry)analysis, usually a small volume of sample

    solution or solid sample, is dispensed into a graphite atom-izer and the absorption of the produced atoms is measured

    against standards. Sensitivity of PGEdeterminations by

    GFAASan dpnd n t ta tn pnt. T

    F. 3. Anata pd pd f dtnnPGEinenvironmental samples.

  • 8/12/2019 Platinum Challenge

    12/17

    Dubiella-Jackowska A. et al.340

    GF-AASdetermination ofPGErequires high atomization

    temperatures due to the high vaporization temperature of

    thePGMpnd [79].mant an dtd t pn f

    other noble metals due to the formation of alloys, and

    by other elements that are present in environmentalsamples, e.g.N [80]. wt t a f t GF-AASanal-ysis of platinum in catalyst, vegetation, soil and water

    ap, t atx fft f x nntatnf a n (. P2+, Cu2+, Ca2+, Co2+, ClO

    4-, Fe3+,

    Fe2+, Al3+, Sn2+, Rh3+, z4+, Ce4+, Pd2+) on the Pt sig-nal was studied. The tolerance limits found show that

    platinum can be determined in the presence of a variety

    f n [33]. in n f t ntfn,operations such as separation and preconcentration of

    analytes prior to GFAASdetermination, standard addi-

    tn and a and tn n ntn

    source are useful.The method is used for Pt and Pd measurements

    n pd tap and atat and ad dt ap[80-83]. GFAASdetection also has been employed forthe estimation of PGM n [84] and n ap[51].

    X-ray Fluorescence Spectroscopy(XRF)

    X-a n ptt td n-ally not directly suitable for the determination of trace

    concentrations ofPGE in environmental samples, thus

    t appa t n a f xap f t appa -tion of XRF in PGE analysis in published literature.

    The technique has been used for analysis of total plati-

    n nntatn n d d f patnt tatdwith the antitumor drug cis-dichlorodiammineplatinum

    (ii) [85]. mn dttn t an f 0.10 t0.25 Pt p , dpndn n d d. T X-amethod has been recognized as a suitable technique for

    the determination of Pt and Rh in automotive catalyst

    ap [84]. X-a tnq a a n dfor the determination of PGE in corrosion-resistant

    t [86].

    Inductively Coupled Plasma-Mass Spectrometry(ICP-MS)

    indt pd paaa ptt (ICPMS) is potentially suitable for analysis of PGEs, because

    f t xt DL (Detection Limit),multielementapat and d na dna an ( t x -ders). ICP-MShas been recognized as a widely applied

    technique for the determination ofPGEboth in environ-

    nta [10, 16, 87-89] and a ap [90-93].h, t tnq a t dadanta f p-

    sible spectral overlap from isotopes of different elements

    and, more commonly, the formation of molecular ions in-

    side the Ar plasma, which can give rise to isobaric interfer-ences in the mass spectra. Spectral type disturbances dur-

    ing the determinations of Pt, Pd, Rh and Ru are caused by179hf16O, 178hf16o (194Pt) (195Pt), 40Ar65Cu, 89Y16O, 87Rb18O

    (105Pd), 40Ar63Cu, 36Ar67zn, 206Pb2+, 87Sr16O, 87Rb16o (103Rh),64zn35c (99Ru), 64zn37Cl, 66zn35Cl, 61N40Ar, 63Cu38Ar and65Cu36A (101r). N tanta ntfn a nnf d [94]. T a a t da ptainterferences, such as:

    atata tn [43, 95] paatn anat f t ap atx f

    ana [94, 44] using a mass spectrometer with proper resolution

    [21] employing an alternative way of introducing samples

    nt a an t [96].Nn-pta ntfn a px a -

    pared to the spectral ones. They may cause signal attenu-

    atn apatn d t t pn f d pa-ticles in solution. The effect of disturbing substances can

    be alleviated by adding internal standard that has similar

    chemical properties to the analyte. Detailed studies of themethods of elimination of interferences in determination

    of platinum and palladium in environmental samples by

    inductively coupled plasma mass spectrometry have been

    dn lna t a. [97].

    Neutron Activation Analysis (NAA)

    Together with ICP-MSand CSV (Cathodic Stripping

    Voltammetry),NAAis the most sensitive technique for the

    determination ofPGE. It is the method of elemental anal-

    ysis based on the transition from a stable atomic nucleus

    (nd) nt adat n (adnd) d tirradiation with neutrons, photons or active particles. The

    adnd (adtp) da d d n qa-tative analysis of a given trace element and emitted ra-

    diation is proportional to the initial analyte concentration

    in the sample. From among different types of radiation

    an ttd, t aa () adatn tat athe best parameters for selective and parallel determina-

    tions ofPGE.

    The two variants of NAA- instrumental NAA (INAA,Instrumental Neutron Activation) and radiochemicalNAA

    (RNAA, Radiochemical Neutron Activation), score overother techniques because of their accuracy, sensitivity and

    fd f ntfn. T ntfn-f iNAAof 190Pt aa-pa at 538.9 v ff f n-sitivity for most environmental and biological samples

    d t t nata andan (0.01%) f Pt [79]. Tmeasurement of 190Pt is limited by its short half-life of

    30.8 n, tf Pt ftn dtnd a 197Pt, or viathe 199Au daughter of 199Pt. h, n a at f n-ronmental and biological samples, 24Na ntfn tthe 197Pt permits analysis only after long decay times. 197Pt

    also suffers from 197h ntfn [98]. F rNAA, a-t a ntatn f patn a dn n 199Aa t ndat nd. T an dadanta f rNAA

    tat t t-nn [98].TheNAAmethod has been utilized for the determinationf Pt n ap aft n pd aa pn-ntatn [99]. T tnq a a n d n njn-

  • 8/12/2019 Platinum Challenge

    13/17

  • 8/12/2019 Platinum Challenge

    14/17

    Dubiella-Jackowska A. et al.342

    17. gomez b., gomez m., sANchez J. l., FerNANDezr., PAlAcios m. A. Patn and d dttn nairborne particulate matter and road dust. Sci. Total. Envi-

    ron. 269, 131, 2001.18. zereiNi, F., wisemAN, c., AlT, F., messerchmiDT,

    J., mller, J., urbAN, h., Patn and rd n-centrations in airborne particulate matter in Germany from

    19881998. enn. s. Tn. 35, 1996, 2001.19.gomez b., PAlAcios m.A., gomez m., sANchez J.l.,

    morrisoN g., rAuch s., mcleoD c., mA r., cAro-li s., AlimoNTi A., PeTrucci F., boccA b., schrA-mel P., zischkA m., PeTTersoN c., wAss u. land ant f an and t f patn-group elements in the airborne particles and road dust of some

    European cities. Sci. Total Environ. 299, 1, 2002.20. bAreFooT r. r., vAN looN J.c. rnt adan n

    the determination of the platinum group elements and gold

    Talanta 49, 1, 1999.21.PAlAcios m. A., gomez m., molDovAN m., go-mez b. Ant f nnnta ntanatn Pt, r and Pd f at atat. m. J.67, 105, 2000.

    22. schierl r., FruhmANN g. An patn nn-tatn n mn t . s. Tta enn. 182, 21,1996.

    23. eckhArDT J.-D., schFer J, PuchelT h., sTbeND., Anthropogenic Platinum Group Element Emissions,

    (zn F., At F., dt); spn va: bn, 47,1999.

    24.hees T, weNclAwiAk b, lusTig s, schrAmel

    P, schwArzer m, schusTer m, versTrAeTe D,DAms r, helmers e. Dttn f patn p -nt (Pt, Pd, r) n nnnta and na at.Envrion. Sci. Pollut. Res. 5, 105, 1998.

    25. schFer J., PuchelT h. Patn-p-ta (Pgm)emitted from automobile catalytic converters and their dis-

    ttn n add . J. g. exp. 64, 307,1998.

    26. cicchellA D., De vivo b., limA A. Paad andpatn nntatn n f t Nap tp-tan aa, ita: p fft f atat xat. s. T-tal Environ. 308, 121, 2003.

    27.kylANDer m. e., rAuch s., morrisoN g. m., AN-DAm k. ipat f at n n t fpatn and ad n Aa, gana. J. enn. mnt. 5, 91,2003.

    28.molDovAN m., PAlAcios m.A., gomez m.m., mor-risoN g., rAuch s., mcleoD c., mA r., cAroli s.,AlimoNTi A., PeTrucci F., boccA b., schrAmelP., zischkA m., PeTTerssoN c., wAss u., luNA m.,sAeNz J.c., sANTAmAriA J. ennnta f pa-ticulate and soluble platinum group elements released from

    gasoline and diesel engine catalytic converters. Sci. Total

    Environ. 296, 199, 2002.

    29.mAlTby l., Forrow D.m., boXAll A.b.A., cAlowP., beTToN c.i., T fft f ta nff n f-at t, 1. Fd td. enn. Tx. c.14, 1079, 1995.

    30.hAus N., zimmermANN s., wiegAND J., sures b.,on f patn and addtna taf atd ametals in sediments and biota. Chemosphere 66, 619, 2007.

    31. NAmieNik J., ukAsik J., JAmrgiewicz z., c-tn f nnnta ap f ana (n P).

    wN PwN: waaa, 1995.32. mcoNNell J.w. la-dnt and f

    patn p ta n nta laad and t vba aa, cnt ra; Nfndand Dpatnt fmn and en, ga s, rpt 03-1: pp 179-192, 2003.

    33. oJeDA c. b., roJAs F. s., PAvN J. m. c., De Tor-RES A. G., Automated on-line separationpreconcentration

    system for platinum determination by electrothermal atomic

    absorption spectrometry. Anal. Chim. Acta 494, 97, 2003.34. kmmerer k., helmers e. hpta fnt a a

    source for platinum in the environment, Sci. Total Environ.

    193, 179, 1997.35.iAvicoli i., boccA b., PeTrucci F., seNoFoNTeo., cArelli g., AlimoNTi A., cAroli s. bnt-n f taf p f xpd t an patn.op. enn. md. 61, 636, 2004.

    36.lANJwANi s. N., zhuA r., khuhAwAr m. y., DiNgz. h pfan qd atap dtnatnof platinum in blood and urine samples of cancer patients

    aft adntatn f patn d n nt xta-tn and N,N-(adn)-1.2-ppandan apxatn ant. J. Paat. bd Ana 40,833, 2006.

    37. sures b., zimmermANN s., messerschmiDT J.,

    voN bohleN A., AlT F. Ft pt n t pta fautomobile catalyst emitted palladium by European eels

    (Ana ana) fn xpnta xp t addust. Environ Pollut. 113, 341, 2001.

    38.goDlewskA-ykiewicz b. haad f n tpalladium storage in determination by GFAAS. Anal. Bio-

    anal. Chem. 372, 593, 2002.39. bAlcerzAk m. Anata td f t dtnatn

    of Platinum of biological and environmental materials Ana-

    lyst 122, 67r, 1997.40. helmers e., mergel r., FresNius J. Patn and

    rhodium in polluted environment: studying the emissions of

    automobile catalysts: studying the emissions of automobilecatalyst with emphasis on the application of CVS rhodium

    ana. ANAl. chem. 362, 522, 1998.41. gomez b., PAlAcios m.A., gomez m., sANchez J.l.,

    morrisoN g., rAuch s., mcleoD c., mA r., cAro-li s., AlimoNTi A., PeTrucci F., boccA b., schrA-mel P., zischkA m., PeTTersoN c., wAss u. land ant f an and t f patn-group elements in the airborne particles and road dust of some

    European cities. Sci. Total Environ. 299, 1, 2002.42. schierl r. ennnta ntn f patn n a

    and n. m. J. 67, 245, 2000.

    43. higNey e., olive v., mAckeNzie A.b., PulForDi.D. itp dtn icPms ana f patn n addusts from west central Scotland. Appl. Geochem. 17, 1123,2002.

  • 8/12/2019 Platinum Challenge

    15/17

    Platinum Group... 343

    44. whiTeley J.D., murrAy F. Atatat-dd pat-n, paad and d (Pge) n ntatn an andwetland sediments receiving urban runoff. Sci. Total Envi-

    ron. 341, 199, 2005.45. schFer J., PuchelT h. Patn gp mta (Pgm)

    emitted from automobile catalytic converters and their dis-

    ttn n add . J. g. exp. 64, 307,1998.

    46. ciNTi D., ANgeloNe m., mAsi u., cremisiNi c.Platinum levels in natural and urban soils from Rome and

    lat (ita): nan f ptn at at-alytic converter. Sci. Total Environ. 293, 47, 2002.

    47. morToN o., PuchelT h., herNANDez e., louNe-JevA e. Taf-atd patn p nt (Pge) n f mx ct. J. g. exp.72, 223, 2001.

    48. lAschkA D., NAchTwey m. Patn n npasewage treatment plants. Chemosphere 34(8), 1803, 1997.

    49. kmmerer k., helmers e., hubNer P., mAscArTg., milANDri m, reiNThAler F., zwAkeNbergm., epan pta a a f patn n t n-ronment in comparison with other sources. Sci. Total Envi-

    ron. 225, 155, 1999.50. oJeDA c. b., sNchez roJAs F., cANo PAvN

    J.m., gArciA De Torres A. Atatd n-n paa-tionpreconcentration system for platinum determination by

    electrothermal atomic absorption spectrometry. Anal. Chim.

    Acta 494, 97, 2003.51. gregurek D., melcher F., NiskAvAArA h., PAv-

    lov v. A., reimANN c., sTumPFl e. F. Patn-pnt (r, Pt, Pd) and A dttn n n ap

    f t ka Pnna, Nw ra. At. enn. 33,3281, 1999.

    52. goDlewskA-ykiewicz b. Pnntatn andSeparation Procedures for the spectrochemical determination

    f patn and paad. m. Ata 147, 189, 2004.53. TerAshimA s. Dtnatn f patn and paad n

    xt-t a fn ap a ataptn ptt. gtand. N. 15, 125, 1991.

    54. Tlg g. P and tnd n xt ta ana fthe elements. Anal. Chim. Acta 283, 3, 1993.

    55. shuklA J. P., siNgh r. k., sAwANT s. r., vArADA-rAJAN N. lqd-qd xtatn f paad (ii) f

    nt ad -2-t pxd, Ana. c.Acta 276, 181, 1993.

    56. hossAiN k.z., hoNJo T. spaatn f Ta Antf rd (iii) t T-n-bt Ppat f NtAd and sd Tatat mda. Fn J. Ana.Chem. 368, 480, 2000.

    57. bANDekAr s. v., DhADke P. m. snt xtatn p-aatn f patn (iv) and paad (ii) 2-tppn ad n-2-t t (Pc-88A). sp.Purif. Technol. 13, 129, 1998.

    58. Qu y. b. rnt dpnt n t dtnatn f p-cious metals. A review. Analyst121, 139, 1996.

    59. berNArDis F. l., grANT r. A., sherriNgToN D. c.A review of methods of separation of the platinum-groupta t t -px. rat. Fnt. P.65, 205, 2005.

    60. ely, J.c., NeAl, c.r., oNeill Jr., J.A., JAiN, J.c.Qantfn t patn p nt (Pge) and dn a ap n atn xan ptatntand ultrasonic nebulization inductively coupled plasma mass

    ptt (usNicP- ms). c. g. 157, 219, 1999.

    61. JArvis i., ToTlAND m. m., JArvis k. e. Antf Dx 1-X8-ad ann-xan pd f tseparation and determination of ruthenium, rhodium, palla-

    dium, iridium, platinum and gold in geological materials by

    inductively coupled plasma mass spectrometry. Analyst 122,

    19, 1997.62. Perry, b.J., sPeller, D.v., bAreFooT, r.r. AND vAN

    looN, J.c. A a ap, d natn, icP-ms anat-cal method for the determination of platinum group elements

    and d n . can. J. App. spt. 38, 131, 1993.63. kovAchevA P., DJiNgovA r. in-xan td f p-

    aration and concentration of platinum and palladium for analysis

    of environmental samples by inductively coupled plasma atomicemission spectrometry. Anal. Chim. Acta 464, 7, 2002.

    64. PeArsoN D. g., wooDlAND s. J. snt xtatn/ann xan paatn and dtnatn f Pge (o,Ir, Pt, Pd, Ru) and Re-Os isotopes in geological samples by

    tp dtn icP-ms. c. g. 165, 87, 2000.65. rehkmPer m., hAlliDAy A. N. Dpnt and

    appatn f n n-xan tnq f t paa-tion of the platinum-group and other siderophile elements

    from geological samples. Talanta 44, 663, 1997.66.DJiNgovA r., kovAchevA P., wAgNer g., mArk-

    ERT B. Distribution of platinum group elements and other

    taf atd nt an dffnt pant an highways in Germany. Sci. Total Environ. 308, 235, 2003.

    67. eNzweiler J., PoTTs P. J., JArvis k. e. DtnatnOf Platinum, Palladium, Ruthenium and Iridium in Geological

    sap b itp Dtn icP-m n a sd Pxdfusion and Tellurium Coprecipitation. Analyst120, 1391, 1995.

    68. messerschmiDT J., voN bohleN A., AlT F.,klockeNkmPer r. spaatn and nnt f pa-ladium and gold in biological and environmental samples,

    adaptd t t dtnatn tta tn X-a -rescence. Analyst 125, 397, 2000.

    69. FuJimori e., miNAmoTo k., hArAguchi h. c-paat td n t dttn f p ta (r,

    Rh, Pd, Ir, Pt, and Au in industrial waste incineration ashesa dtnd t pptatn and icP-ms.Bull. Chem. Soc. Jpn.78, 1963, 2005.

    70.BULSKA E. Analytical advantages of using electrochemis-try for atomic spectrometry. Pure Appl. Chem. 73, 1, 2001.

    71. beiNrohr e., lee m. l., TschPel P., Tlg g. D-termination of platinum in biotic and environmental samples

    by graphite furnace atomic absorption spectrometry after its

    tdptn nt a apt t pad t tatdvitreous carbon. Fresenius J. Anal. Chem.346, 689, 1993.

    72. el-shAhAwi m. s., FArAg A. b. idt dtna-tnf d and patn 168- and 126- fd a a-

    patn atn. Anata ca Ata 307, 139, 1995.73. DemkiN A. m. gat ppaatn f ntt x-t f patn tp. intnat. J. ma spt. 202,9, 2000.

  • 8/12/2019 Platinum Challenge

    16/17

    Dubiella-Jackowska A. et al.344

    74.ezerskAyA N. A., ToroPcheNovA e. s., kAPri-elov v. b., kiselevA i. N., belov s. F. J. Ana. c.59, 1097, 2004.

    75.bAlcerzAk m., kAczmArczyk m. rapd datspectrophotometric method for the determination of plati-

    n i Pt-r/c aat n dd da. Ana. s. 17,1321, 2001.

    76.georgievA m., ANDoNovski b. Dtnatn fpatn (iv) uv ptptt. Ana. bana.Chem., 375, 836, 2003.

    77. wu y., JiANg z., hu b., DuAN J. etta ap-ization inductively coupled plasma atomic emission spec-

    trometry determination of gold, palladium, and platinum

    n atn n yPA4 a t xtatant and ad. Taanta 63, 585, 2004.

    78. liN s., zheNg ch. yuN g. Dtnatn f paad a at aptn ptt nd n-n

    t njtn pnntatn n a -npad t atatd an . Taanta 42, 921, 1995.79. beNcs l., rAviNDrA k., vAN griekeN r. mtd

    for the determination of platinum group elements originat-

    ing from the abrasion of automotive catalytic converters.

    Spectrochim. Acta B 58, 1723, 2003.80.goDlewskA-ykiewicz b., zAleskA m. Pn-

    ntatn f paad n a -t tacell for determination by graphite furnace atomic absorption

    spectrometry. Anal. Chim. Acta 462, 305, 2002.81. goDlewskA-ykiewicz b. bptn f patn

    and palladium for their separation preconcentration prior to

    graphite furnace atomic absorption spectrometric determi-

    nation. Spectrochim. Acta B 581531, 2003.82. goDlewskA-ykiewicz b., kozowskA m. s-

    d pa xtatn n d at saacerevisiae for determination of palladium in road dust. Anal.

    Chim. Acta 539, 61, 2005.83.leNiewskA b. A., goDlewskA i., goDlewskA

    ykiewicz b. T td f appat f dta-aat-atd fn c60 f pnntatn f paa-dium for graphite furnace atomic absorption spectrometric

    determination in environmental samples. Spectrochim. Acta

    B 60, 377, 2005.84.zereiNi F., skersTuPP b., AlT F., helmers e., ur-

    bAN h. ga a f patn-p nt(Pge) n patat n at xat ata-t: xpnta t and nnnta ntatn.Sci. Total Environ. 206, 137, 1997.

    85.seiFerT Jr. w. e., sTewArT D. J., beNJAmiN r. s.,cAPrioli r. m. en-dp X-a n d-termination of platinum in plasma, urine, and cerebrospinal

    d f patnt adntd -ddanpatn(ii). can ct. Pa. 11, 120, 1983.

    86.eDDy b. T., bAlAes A. m. e., hAsTy r. A., FArrerh. N. T dtnatn X-a-n pt-py, of platinum-group elements, iron, and chromium in spe-

    cial corrosion-resistant steels. Appl. Spectrosc., 41, 1442,1987.87.leNz k., hANN s., koelleNsPerger g., sTeFANkA

    z., sTiNgeDer g., weisseNbAcher N., mAhNik s.

    N., FuerhAcker m. Pn f antat patncompounds in hospital wastewater and possible elimination

    by adsorption to activated sludge. Sci. Total Environ. 345,

    141, 2005.88.LEE C.-T. A., WASSERBURG G. J., KYTE F. T. Platinum-

    p nt (Pge) and n n an dntacross the Cretaceous Tertiary boundary: Constraints on

    Re-PGE transport in the marine environment. Geochim.

    Cosmochim. Acta 67, 655, 2003.89.bArbANTe c. veysseyre A., FerrAri ch., vAN De

    velDe k., morel ch., cAPoDAglio g., cescoN P.,scArPoNi g., bouTroN c. gnand sn edn fLarge Scale Atmospheric Contamination for Platinum, Pal-

    ladium, and, Rhodium. Environ. Sci. Technol. 35, 835, 2001.90.ArTelT s., kock h., NAchTigAll D., heiNrich

    u. baaat f patn ttd f at x-at. Tx ltt 96,97, 163, 1998.

    91.sures b., zimmermANN s., soNNTAg c., sTbeND., TArAschewski h. T aantpaan Paatn-sentis ambiguus as a sensitive indicator of the precious met-

    als Pt and Rh from automobile catalytic converters. Environ.

    Pollut. 122, 401, 2003.92.zimmermANN s., meNzel ch. m., berNer z., eck-

    hArDT J.-D., sTbeN D., AlT F., messerschmiDTJ., TArAschewski h., sures b. Ta ana fplatinum in biological samples: a comparison between sec-

    t d icP-ms and adpt atd tppn ta-metry following different digestion procedures. Anal. Chim.

    Acta 439, 203, 2001.93.morrisoN J. g., whiTe P., mcDougAll s., FirTh J.

    w., woolFrey s. g., grAhAm m. A., greeNslADeD. vadatn f a nt icP-ms td f tdtnatn f patn n d: appatn t n-a paant td t xapatn, Jna fPharmaceutical and Biomedical Analysis. 24, 1, 2000.

    94.mller m., heumANN k. g. itp dtn nd-tively coupled plasma quadrupole mass spectrometry in

    connection with a chromatographic separation for ultra trace

    dtnatn f patn p nt (Pt, Pd, r, i) nenvironmental samples. Fresenius J. Anal. Chem. 368, 109,2000.

    95.becker J. s., bellis D., sTAToN i., mcleoD c. w.,

    DombovAri J., becker J. s. Dtnatn f tant ndn patn n t a icP a p-trometry. Fresenius J. Anal. Chem. 368, 490, 2000.

    96.wArD N. i., DuDDiNg l. m. Patn n and - n ta dt ap: nn f taf aat-istics. Sci. Total Environ. 334/335, 457, 2004.

    97 leNiewskA b. A., goDlewskA- ykiewicz b.,ruszczyskA A., bulskA e., hulANicki A. e-nation of interferences in determination of platinum and palla-

    dium in environmental samples by inductively coupled plasma

    mass spectrometry. Anal. Chim. Acta 564, 236, 2006.98 AlFAssi z.b., ProbsT T.u., rieTz b. Patn dt-

    mination by instrumental neutron activation analysis withspecial reference to the spectral interference of Sc-47 on the

    patn ndat nd A-199. Ana. c. Ata 360,243, 1998.

  • 8/12/2019 Platinum Challenge

    17/17

    Platinum Group... 345

    99 XiAoliN l., chuNhAN T., JieQiNg z., JiAohuA z.Interference by neutron induced second order nuclear reac-

    tion in activation analysis of platinum group elements after

    a n pd aa pnntatn. J. radana.Na ct 198, 385, 1995.

    100.ProbsT T. u., rieTz b., AlFAssi z. b. Patn n-centrations in Danish air samples determined by instrumen-

    ta ntn atatn ana. J. enn. mnt. 3, 217,2001.

    101.NygreN o., vAughAN g. T., FloreNce T. m., mor-risoN g. m. P., wArNer i. m., DAle l. s. Dtna-tion of platinum in blood by adsorptive voltammetry. Anal.

    Chem. 62, 1637, 1990.

    102.AlT F., messerschmiDT J. weber g. intatnof low molecular weight platinum species in grass. Anal.

    Chim. Acta 359, 65, 1998.103.rAuch s., morrisoN g. m. Patn pta t

    freshwater isopod Asellus Aquaticus in urban rivers. Sci.

    Total Environ. 235, 261, 1999.104.AlT F., eschNAuer h.r., mergler b., messer-

    schmiDT J., Tlg g. A nttn t t and n-cology of platinum. Fresenius J. Anal. Chem. 357, 1013, 1997.

    105.NygreN o., luNDgreN c., Dtnatn f patnn a and n d and n f nn taffattending patients receiving cisplatin chemotherapy. Int.

    A. op. enn. hat 70, 209, 1997.


Recommended