+ All Categories
Home > Documents > PLC Front-end Curtis Mayberry Texas Instruments HPA Linear Applications 8/19/11.

PLC Front-end Curtis Mayberry Texas Instruments HPA Linear Applications 8/19/11.

Date post: 21-Dec-2015
Category:
Upload: marylou-grant
View: 221 times
Download: 1 times
Share this document with a friend
Popular Tags:
102
PLC Front-end Curtis Mayberry Texas Instruments HPA Linear Applications 8/19/11
Transcript

PLC Front-end

Curtis Mayberry

Texas Instruments

HPA Linear Applications

8/19/11

Background

• Student at Iowa State University

• Originally from Ames, IA

• Interest in Analog applications and design

• Graduating December 2011

Coop Term Goals

• Complete PLC Front-end reference design including:– Schematic

– Layout

– Testing

– Documentation

• Continue developing analog circuit analysis skills

• Create a board-level analog circuit design

• Learn about applications engineering and its role in TI’s business

• Learn about TI as an employer

Programmable Logic Controller

• Programmable automation controller

• Used in a variety of industries including the automotive, chemical, and food industries

• Microcontroller offers reprogrammable real-time

control solution

• 4 major Components: – Power supply– Controller– Communications– Input/Output

• Universal voltage Input: 0-5v, ±5v, 0-10v, ±10v• Current loop sensor communication: 0-20mA, 4-20mA• Temperature sensors: thermistor, RTD, thermocouple• Pressure, flow, level, vibration and motion sensors• Digital I/O (GPIO)• Analog Output (DAC8760)

Motivation

• #1 collateral request from FAEs

• Existing ADI reference design

• Customer Requests and New Customer Opportunities

Project Definition

• PLC Analog Front-End

• Focus on analog Inputs:– Universal voltage Input: 0-5v, ±5v, 0-10v, ±10v

– Current loop sensor communication: 0-20mA, 4-20mA

– Temperature sensors: thermistor, RTD, thermocouple

• SM-USB-Dig controller

• Labview Interface to SM-USB-Dig

• Documentation– Create design review and final presentation

– Ensure a smooth transition to next stage of project

Block Diagram

RTDTC

Thermistor+/-10v, +/-5v

4-20mA

Signal Conditioning

MicrocontrollerADC

High-Accuracy

Super-Mini DigLabview

Stage 1 Stage 2

DAC

Stage 1 Only

Implementation

Schematic

• Schematic design review

• Minor schematic design revisions made following review

Layout

• Optimized Analog inputs– Short, symmetric traces

• Recessed power and control circuitry

Board Assembly and Troubleshooting

• No Errors in Analog Front-end

• Assembled V and I Front-end for early software development

• Minor Errors contained in power and Control circuitry

• Five known errors:– Pull up resistors on LDO EN pins– Move pull up on digital switch (trace

needed to be cut)– Ground connection needed to SM-

USB-DIG– Need to move SM-USB-DIG

connector closer to edge of board– Need pull-up resistors on CS lines

Software

• Started with SM-Dig shell

• Added CS control to select front-end

• Added DMM Control

• Added Data logging

• Added Data Displays for 6 front-ends

• Added configuration capabilities

for all 6 front-end modules

Labview Interface Front Panel

Labview Interface DMM Control

Testing: Temperature Sensing

Testing: Temperature Sensing

• All Temperature Sensors were submerged and read between 0 oC and 125oC

• Thermal bath wasn’t settling at negative temperatures

• Post-processed 3 point calibration

Thermistor Input (Direct)

• Uncalibrated Worst Case Error: 0.4 oc

• 3 point Calibration (35oc, 65oc, 105oc)

• Calibrated Worst Case Error: 0.3 oc– 0.24% accuracy

Thermistor B Input (Bridge)

• Uncalibrated Worst Case Error: 0.9 oc

• 3 point Calibration (35oc, 65oc, 105oc)

• Calibrated Worst Case Error: 0.38 oc– 0.304% Accuracy

RTD Input

• Outlier Removed at 15oC

• Uncalibrated Worst Case Error: 0.9 oc

• 3 point Calibration (35oc, 65oc, 105oc)

• Calibrated Worst Case Error: 0.015 oc– 0.012%

Thermocouple

• Uncalibrated Worst Case Error: 1.2 oc

• 3 point Calibration (35oc, 65oc, 105oc)

• Calibrated Worst Case Error: 0.4 oc– 0.32% error

Results: Temperature Sensing

Maximum calibrated Error 0oC – 125oC

• Thermistor: 0.3oC

• Thermistor B: 0.38oC

• RTD: 0.015 oC

• Thermocouple: 0.4oCError Summary

Calibrated UncalibratedMag (oC) Percent Mag (oC) Percent

Thermistor 0.3 0.24% 0.4 0.32%Thermistor B 0.38 0.30% 0.9 0.72%RTD 0.015 0.01% 0.9 0.72%Thermocouple 0.4 0.32% 1.2 0.96%

Testing: Universal Inputs

Testing: Universal Inputs

• Post-processed 3 point calibration

• Tested using a Fluke precision voltage and current source in 0.5 V or 0.5 mA step size

• Input measured using HP 8.5 digit digital multimeter

Universal Voltage: ±10v

• Outlier Removed at 5.5 V

• Uncalibrated Worst Case Error: 10 mV– 0.05% Accuracy

• 3 point Calibration (-6v, 0v, 6v)

• Calibrated Worst Case Error: 0.153 mV– 0.000765% Accuracy

Universal Voltage: 0 - 10v

• Outlier Removed at 5.5 V

• Uncalibrated Worst Case Error: 10 mV– 0.1% Accuracy

• 3 point Calibration (2v, 5v, 8v)

• Calibrated Worst Case Error: 0.35 mv– 0.00175% Accuracy

• Worse than +/-10v

Universal Voltage: ±5v

• Outlier Removed at -0.5 V

• Uncalibrated Worst Case Error: 3 mV– 0.03% Accuracy

• 3 point Calibration (-3v, 0v, 3v)

• Calibrated Worst Case Error: 0.25 mV– 0.0025%

Universal Voltage: 0 - 5v

• Uncalibrated Worst Case Error: 2.5 mV

– 0.05% Accuracy

• 3 point Calibration (0.5v, 2.5v, 4.5v)

• Calibrated Worst Case Error: 0.15 mV– 0.003% Accuracy

Current Loop: 4-20 mA

• Uncalibrated Worst Case Error: 1.8 uA– 0.0115%

• 3 point Calibration (6.5mA, 12mA, 17.5mA)

• Outlier removed at 14mA

• Calibrated Worst Case Error: 2.5 uA– 0.0156%

• Calibration ineffective due to no consistent gain or offset error, main error component is current source

• Change in Error when the source changed output range

Current Loop: 0-20 mA

• Uncalibrated Worst Case Error: 22uA– 0.11% Accuracy

• 3 point Calibration (3.5mA, 10mA, 16.5mA)

• Calibrated Worst Case Error: 21 uA– 0.105% Accuracy

Results: Universal Front-Ends

Calibrated maximum error:

• Universal V– ±10 v: 0.153 mV

– 0-10 v: 0.35 mV

– ±5 v: 0.25 mV

– 0-5 v: 0.15 mV

• Current Loop– 4-20 mA: 2.5 uA

– 0-20 mA: 21 uA

Error SummaryCalibrated Uncalibrated

Mag Percent Mag Percent±10v 0.153mV 765u% 10mV 0.05%

0-10v 0.35mV 1.75m% 10mV 0.10%±5v 0.25mV 2.5m% 3mV 0.03%

0-5v 0.15mV 3m% 2.5mV 0.05%

Accomplishments

• Completed PLC Front-End Design– PLC Research– Sensor Research– Component Selection– Schematic Design and Review– Layout Design and Review– Fabrication– Software– Debugging– Testing

• Completed Forum Post

• Learned a lot about board-level development, Op-amps, and about TI’s business

Other Accomplishments

• Volunteered:– Day of Hope

– Disability Connection Carnival

• Networked with teammates and other coops

• Learned about analog applications

• Learned about the relationship between field and factory applications engineering

• Developed a better understanding of all the engineering roles

Project Continuation and Career Plans

Final Goal: Complete PLC Reference Design utilizing TI parts

• Progress will continue during second stage

• Potential Microcontroller TI 32-bit Stellaris LM3S1Z16

• Potential output DAC: DAC8760

Career Plans:

• Attend graduate school for analog design

• Return to TI for another Coop Experience as a graduate student

Feedback

• Great Project– Interesting and rewarding

– Well-defined and complete

• Excellent Mentoring by Pete and Collin– Given Freedom to work independently while still having support available

– Great job with on-boarding and providing the resources I needed

– Great teachers for both Technical and non-technical material

• AFA conference and Tucson Testing Trip were Great Opportunities

• CORT relocation service hard to work with before coming to TI

Thank You

• Special Thank You to my mentors:

Collin Wells

Pete Semig

• Also to my managers:

Art Kay

Matt Hann

• Data Converter Applications TeamTom Hendrick, Greg Hupp, Kevin Duke, Tony Calabria

Appendices

• Appendix A: Elaborated Testing Results

• Appendix B: Design review

Appendix A: Elaborated Testing Results

Calibration Curves, raw data plots, resistance plots

Thermistor

Thermistor B

RTD Input with Outlier Removed

RTD Input with Outlier at 15oc

Thermocouple

Universal Voltage: ±10v – no outlier

Universal Voltage: ±10v – with Outlier

Universal Voltage: 0 - 10v – no Outlier

Universal Voltage: 0 - 10v –with Outlier

Universal Voltage: ±5v – no Outlier

Universal Voltage: ±5v - with Outlier

Universal Voltage: 0 - 5v

Current Loop: 4-20 mA - no Outlier

Current Loop: 4-20 mA with Outlier

Current Loop: 0-20 mA - no Outlier

Appendix B: Design Review

Original Design Review

7-5-11

Revised Project Description

Block Diagram

RTDTC

Thermistor+/-10v, +/-5v

4-20mA

Signal Conditioning MicrocontrollerADC

Cost-Effective

High-Accuracy

Super-Mini DigLabview

Stage 1 Stage 2

The Plan

• May 16: First Day

• May 21: Project Definition & training (1 week)

• June 5 - June 10: FAE conference in Tucson (1 week)

• July 5: Block Diagrams, calculations (accuracy), simulations, Part selection & ordering, initial schematic (4 weeks)

• July 14: PCB layout (2 weeks)

• July 21: Basic LabView Coding & Testing preparation (1 week)

• July 29: Initial lab results -Oven(~1 weeks)

• August 3: Accuracy tests (Tucson?)

• August 5: Final Report (2 days)

• August 10: Preliminary Presentation (2 days)

• August 12: Final Presentation (2 days)

• August 18: Last Day (1 week)

Universal Inputs

0-10v and +/- 10v, 0-5v and +/- 5v, 4-20mA

Universal Voltage Input

• 0-5v, 0-10v, +/- 5v and +/- 10v universal voltage input

• Change resistance values to change input voltage levels

• Second order RC filter with poles at 39 Hz and 3900Hz

• Opamp to scale down input

• 2.5v reference generated to scale input

• Opa2333: Low offset voltage and drift, rail-to-rail input, dual opamp part

Noise Calculations: Voltage Reference

• 2.5v Reference– REF5025: 625nVRMS

– OPA333: 869 nVRMS

– Filter KTC noise: 202.8nVRMS

– Reference Output 10kΩ: 202.8 nVRMS

– Total Noise: 1.108µVRMS

RMSHznV

BB

n

HznV

nVHzen

HzHzBW

86963.249)55(

63.249)57.1)(159(

noise) 1/f (no 55 :noise BB

RMS

KJ

R

n

nV

Hzkken

HzHzBW

8.202

)9.249)(10)(15.298)(1038.1(4

9.249)57.1)(15.159(

23

RMSKJ

filter nVnF

ken 84.202

100

)15.298)(1038.1( 23

RMSREF VnVnVnVen 108.1)625()8.202(2)869( 222

– Current Noise: 26.34nVRMS (negligible)

RMS

HznV

BB

nV

kHzen

34.26

)67.16(63.249)100(

RMSppREF nVVen 625)5.7(21

5025

Noise Calculations

• Input Filter – 82nF filter KTC noise: 224 nVRMS

– 820pF filter noise: 211.47 nVRMS

– Total Noise: 308.5 nVRMS

• Amplifier Noise:– Feedback Network (16.67kΩ):

828nVRMS

– OPA333 noise: 869.5nVRMS

– Total Noise: 1.2µVRMS

RMSHznV

BB

n

HznV

nVHzen

HzHzBW

5.8699.249)55(

9.249)57.1)(15.159(

noise) 1/f (no 55 :noise BB

RMS

KJ

R

nV

Hzkken

47.211

)4.1)(818.38)(50)(15.298)(1038.1(4 23

Noise Calculations: Total

• ADC V+ input noise total: 1.503µVRMS

• ADC V- input noise total:1.089uVRMS

RMS

kk

kk

V

V

nVVnVVen

503.1

)8.202()2.1)2.1(()5.308))(2.1(()108.1))(2.1(( 2

filteroutput

2

amplifier

2

filterinput

1201002

Ref

12020

RMSV VnVnVnVen 089.1)625()8.202()869( 222

Noise Calculations: Bringing it all together

• ADC noise: 1.35 µVRMS

– Noise at Apga =1 and 5 SPS

FS of %000358.060

771.13295.2

)089.1()503.1()35.1(noiseOuput 2

-V

2

V

2

ADC

bits

VV

VVV

PPRMS

Resistor Mismatch Errors (Worse Case)

• Resistor Options (worse case)– Set 1: 668.7 µV (0.1% resistors)

– Set 2: 3.337 mV (0.1% resistors)

– Set 2: 1.668 mV (0.05% resistors)

– Set 2:666.8 µV (0.02% resistors)

– Total: 1.797mV

mV

vVERROR

337.3

)100

20

%1.0100%1.020120

%1.02020)(67.1(

VvVERROR 67.668)100

20

20*%1.0100

20*%1.020)(67.1(

mV

vVERROR

668.1

)100

20

%05.0100%05.020120

%05.02020)(10(

V

vVERROR

8.666

)100

20

%02.0100%02.020120

%02.02020)(10(

mVmVV 797.1)668.1()7.668(ErrorGain Mismatch Total 22

Set 1

Set 2

Resistor Tolerance Monte Carlo Simulation

• Ran Monte Carlo Simulation using 0.1% resistors

• 2.5 mV max error on output

• Used an ideal op-amp to isolate the error source

• Small variation between resistor tolerances

Error Estimation

• ADC– 15µV offset– INL: 6 ppm– Gain Error: 0.02%– External Reference: 0.05%*2.024V = 1.024 mV– Total: 1.230 mV

• Level shifting OPA2333– Offset: 10 µV– Offset drift: 0.05 µV/oc– CMRR >106 dB– PSRR: 5 µV/V (max)

• 2.5v Reference OPA2333– Offset: 10 µV– Offset drift: 0.05 µV/oc (3µV over 25oC ± 60oC temperature range)– CMRR >106 dB– PSRR: 5 µV/V (max)

Vv 244*10

66

Vv 8004*0002.0

20,,, 10

CMRR

dcmincmincmcmo AVVAV

PSRRAVV dPSnoiseoffset PS o,

Error Estimation

• Resistor Mismatch: 1.797 mV

• REF5025 2.5v reference: 1.25 mV offset is cancelled out

• Total:

with no “interference”: 2.178 mV

2PSnoise

220,

2222 )(2)10(2))25)(05.0((2)797.1()10(2)230.1( PSRRAVAVCTmVVmV d

CMRR

dcmino

C

Vo

mVmVmV 178.2)797.1()23.1( 22

Simulation: +/- 10v

Simulation: +/- 5v

Universal Current input

• 4-20mA

• Second order RC filter

• Internal 2.048v reference

• 221Ω shunt converts 4-20mA to 884mV-4.420V

• OPA2333: Rail-to-Rail common mode input, low offset voltage and drift

Simulation

2.5v reference

Differential output

Noise Analysis

• OPA333 buffer noise: 869.5 nVRMS

• Resistor Noise– 10kΩ: 202.8 nV– 16kΩ: 123 nV– 1.6kΩ: 31.1 nV

• V+ Total Noise: 901.8 nVRMS

• V- Total Noise: 1.089 µVRMS (Same as Vinput V-)

• ADC noise: 1.35 µVRMS – Noise at Apga =1 and 5 SPS

• Total noise: 11.729 µVPP

RMSHznV

BB

n

HznV

nVHzen

HzHzBW

5.8699.249)55(

9.249)57.1)(15.159(

noise) 1/f (no 55 :noise BB

RMSV VnVnVnVen 089.1)625()8.202()869( 222

FS of %1029249

729.11954.1

)089.1()8.901()35.1(noiseOuput

6

2

-V

2

V

2

ADC

bits

VV

VnVV

PPRMS

Error Estimation

• ADC– 15µV offset– INL: 6 ppm– gain error: 0.02%– Noise error: 7.78 µVpp– External Reference: 1.024 mV

• Shunt resistor tolerance: 20mA*221*.1% =4.42 mV

• Level shifting OPA333– Offset: 10 µV– Offset drift: 0.05 µV/oc– CMRR >106 dB– PSRR: 5 µV/V (min)

• 2.5v Reference OPA333– Offset: 10 µV– Offset drift: 0.05 µV/oc (3µV over 25oC ± 60oC temperature range)– CMRR >130 dB– PSRR: 2 µV/V

• REF5025: 1.25mV

• Total

Vv 244*10

66

Vv 8004*0002.0

20,,, 10

CMRR

dcmincmincmcmo AVVAV

PSRRAVV dPSnoiseoffset PS o,

mVmVmVVV 669.4)2.4()25.1()10(2)839( 2222

2PSnoise

220,

22222 )(2)10(2))25)(05.0((2)2.4()25.1()10(2)839( PSRRAVAVCTmVmVVV d

CMRR

dcmino

C

Vo

Temperature Sensors

Thermistor

RTD

Thermocouple

Targeted industrial temperature range: -40oc to 85oc

Thermistor

• Temperature proportional to resistance

• Calibrated: 25oC and 85oC

• NTC thermistor– 30kΩ ±1% @ 25oC

• 2 Designs: – Single-ended – Bridged

)1

15.3981

(3992exp(

30

%1399285/25

Tk

kR

Simulation

Error Estimation

• Resistor Mismatch: 374.81µV

• Current Accuracy:0v– Ratio metric measurement

• Thermistor Errors: 5.027 mV– Thermistor 25oC R-tolerance: 3.731mV (R±1%)

– Beta Error: 3.37 mV (Beta±1%)

• ADC Errors: – 15µV offset

– INL: 6 ppm

– gain error: 0.02%

– External reference R: 2mV

• Minimum 4.4 mV/oC

• Total Error: 5.425mV (~1.23oC)

V

kkk

kkkA

81.374

)15001.*3060

)001.*3030)(30()(50(Error mismatch R

Vv 122*10

66

Vv 4002*0002.0

mV

kkk

kkkA

731.3

)20001.*4080

)001.*4040)(40()(50(Error -R thermistor

Output Voltage Temperature Dependence

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

temp (degrees C)

Ou

tpu

t V

olt

age

(mV

)

B nominal

B + 1%

B - 1%

Simulation

Error Estimation

• Resistor Mismatch: 1.677mV (0.1% resistors)

• Current Accuracy: 0v– Ratio metric reading (external ref)– Mismatch between current sources:

• ±0.15% of FS (50 µV) = 75nV (negligible)

• Thermistor Errors: 5.027 mV– Thermistor 25oC R-tolerance: 3.731mV (R±1%)– Beta Error: 3.37 mV (Beta±1%)

• ADC Errors: 400.5µV– 15µV offset– INL: 6 ppm– gain error: 0.02%

• Minimum 4.4 mV/oC

• Total Error: 5.311mV

mVVmV

VkAmVkA

677.1)750()5.1(Error

750)001.*15)(50(:Right 5.1)001.*30)(50(

22mismatch R

Vv 122*10

66

Vv 4002*0002.0

RTD

• PT100, PT 1000

• Resistance proportional to temperature

• Callendar-Van Dusen equation

Simulation

Error Estimation

• Class A RTD probe: ±0.15oC @ 0oC

• ADC Errors: 400.5µV– 15µV offset– INL: 6 ppm– gain error: 0.02%– External reference tolerance:

• Total Error: 2.040 mV

Vv 122*10

66

Vv 4002*0002.0

case)(worst 2

)001.*20)(100(

mV

kAErrorREFERENCE

Thermocouple

• Seebeck effect

• Need to measure voltage across the element

• Cold junction compensation: RTD close to the cold junction

• PCB layout designed to keep the cold junction isothermal with the RTD

• Types: K, J, T, E, N, R, S, B

• Different materials, temperature ranges, TC

• Example: K type: ~55µV/oC

Error Estimation

• RTD Error: 2.040 mV

• Thermocouple element error: Varies by type

• Max element error (using K type): 1.1oC or 0.4%

Digital Interface

SM-USB-DIG

Stage 2 Interface

• Add MCU

• Excluded from stage 1 (Rev. A)

• MCU controls data converters

• MCU communicates through SM-USB-DIG to computer

• Adds extra capabilities

Power

• Powered by a lab supply for prototyping

• Banana plug input jack

Floor plan

Front-Ends

Control and Power

The Plan

• May 16: First Day

• May 21: Project Definition & training (1 week)

• June 5 - June 10: FAE conference in Tucson (1 week)

• July 5: Block Diagrams, calculations (accuracy), simulations, Part selection & ordering, initial schematic (4 weeks)

• July 14: PCB layout (2 weeks)

• July 21: Basic LabView Coding & Testing preparation (1 week)

• July 29: Initial lab results -Oven(~1 weeks)

• August 3: Accuracy tests (Tucson?)

• August 5: Final Report (2 days)

• August 10: Preliminary Presentation (2 days)

• August 12: Final Presentation (2 days)

• August 18: Last Day (1 week)


Recommended