+ All Categories
Home > Documents > PM Generator Characteristics for Oscillatory Engine Based...

PM Generator Characteristics for Oscillatory Engine Based...

Date post: 30-Jan-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
26
PM Generator Characteristics for Oscillatory Engine Based Portable Power System A. Zachas, L. Wu, R.G. Harley & J.R. Mayor Grainger CEME Seminar 5 March 2007 Slide 1 of 26 Sponsored by Powerix Technologies under contract to DARPA DSO
Transcript
  • PM Generator Characteristics for Oscillatory Engine Based

    Portable Power System

    A. Zachas, L. Wu, R.G. Harley & J.R. Mayor

    Grainger CEME Seminar 5 March 2007

    Slide 1 of 26

    Sponsored by Powerix Technologies under contract to DARPA DSO

  • Overview

    Introduction Research Objectives Portable Power System Oscillatory Motion Generator Model & Waveform Characteristics Initial Power Estimate Influence of Generator Parameters Experimental Results Conclusion

    Slide 2 of 26

  • Introduction

    Need for lightweight portable power system in remote locations

    Meso‐scaled internal combustion swing engine (MISCE) developed to operate from several fuel sources

    Oscillatory motion as opposed to rotational motion

    Characteristics of a surface mount PM generator determined for this motion

    Slide 3 of 26

  • Research Objectives

    Understand the oscillatory motion Model oscillatory motion in FEA package Determine characteristic waveforms for oscillatory motion

    Evaluate effect of generator parameters on the characteristic waveform

    Use waveforms to estimate output power from generator

    Experimental validation of simulation results

    Slide 4 of 26

  • Portable Power System

    MICSE Power Generation System technology is a synergy of two novel energy conversion devices, micro‐swing engines and swing‐optimized PMAC swing‐generators

    Micro Internal Combustion Swing Engine (MICSE) converts high specific energy liquid fuels to oscillatory mechanical power (chemical‐mechanical)

    MICSE systems are internal combustion engines with four chambers separated by an oscillating swing arm

    Mechanical‐to‐electrical power conversion via a direct‐coupled swing‐optimized permanent magnet AC induction generator

    MPG systems are adaptable to a wide range of practical fuels, including butane/propane and JP‐8

    MPGs can be based on two‐stroke and four‐stroke MICSE designs and enables application‐specific tailoring of the power system

    1 2

    34

    Slide 5 of 26

  • Initial Swing-engine Testing In‐chamber static combustion testing 

    matched earlier calorimeter testing with cold‐start quench losses 

  • MICSE SummaryMTD-1Ex 350W MICSE SystemPower Level (W) 350

    Thermal Efficiency 20%

    Quenching Loss 20%

    Trapping Efficiency 20%

    Burned Mass Fraction 80%

    Chemical to Mechanical Efficiency 2.2%

    Size (LxWxH) 3.3“ x 4“ x 6ʺ

    Total mass (with active valve‐train) (g) 1213

    Valve‐train power draw (W) 20

    Slide 7 of 26

  • Oscillatory Motion

    Harmonic Hz %1 60 89.73 180 7.55 300 1.57 420 0.7

    ( ) cos(2 )ˆm t ft

    Slide 8 of 26

  • Generator Model

    Modeled with 2D finite element package and used a transient solver to apply motion to the rotor

    No load back emf and flux linkage determined by the software

    A1+A1-

    A2-

    A2+A3+

    A8+

    B1+

    B8+

    B2-B1-

    C7-

    C8-

    C1+C8+

    SOUTH

    NORTH

    Slide 9 of 26

  • FEM No Load Results

    Slide 10 of 26

  • Initial Power Estimates

    Performed FFT analysis on no load back EMF to find dominant harmonics

    Estimated winding resistance and winding inductance using machine geometry

    Connected no load back EMF as the source to a standard 6‐diode bridge rectifier and a resistive load

    Slide 11 of 26

    V-

    V+

    Vb4

    Vc4

    Va4D1 D5D3

    D6D2

    Rload

    315

    Cd

    300m

    IC = 393

    D4

    La 0.013581367

    Lb 0.013581367

    Lc 0.013581367

    Vb1

    Va3

    Vc1 Rc

    4.913599306

    Ra

    4.913599306

    Rb

    4.913599306

    Vb2

    Vc2

    Vb3

    Vc3

    C3 5.0955u

    R3 1e9

    C2 6.1655u

    R4 1e9

    C1 5.0955u

    R5 1e9

    Va2 Va5Va1

    Vb5

    Vc5

    Va6 Va7

    Vb6 Vb7

    Vc6 Vc7

    FFT (Ea)FFT (Eb)FFT (Ec)

  • Initial Power Estimates Maximum current density of 

    6 x 106A/m2 % of input power used for 

    additional losses (friction, windage, hysteresis, armature reaction, etc)

    Output power of about 417 W

    Slide 12 of 26

    Case PLoad (W) VLoad ILoad RLoad Pin (W) Papp (W) Iarms Ibrms

    Icrms

    1 497.7 108.15 4.602 23.5 537.8 632.35 5.06 5.08 4.81

    2 489.2 108.35 4.515 24.0 527.2 622.30 4.98 5.00 4.74

    3 481.0 108.56 4.431 24.5 518.0 612.45 4.89 4.92 4.67

    4 473.1 108.75 4.350 25.0 508.9 602.80 4.81 4.84 4.61

    Stray Load 5.18 W

    Friction & Windage 5.18 W

    Copper 37.00 W

    Stator Core

    16.25 WArmature Reaction 36.26 W

    Loss Breakdown: Case 3 RLoad = 24.5 Ω

    Input Power 518 W

    Total Losses 100 W

    Average Power 418 W

    Efficiency 81%

  • Generator Parameters

    Magnet pitch to coil pitch• full pitch to maximize induced back EMF

    Slide 13 of 26

  • Generator Parameters

    Tooth and stator thickness and material• maximize material utilization through FEA studies• minimize core loss effects due to increased oscillation frequency• carried out extensive material study• considering fabrication & availability, fine non‐oriented 

    electrical steel (Si Fe) was selected

    Slide 14 of 26

    Material Saturation Flux DensityCore Loss at 400Hz   (@ 1T)

    M19 – 26 Gauge (0.47 mm) 1.7 T (17 kG) 24.48 W/kg

    Cogent NO 005 (0.12 mm) 1.8 T (18 kG) 11.8 W/kg

    Metglas™ 2605C0 (0.023 mm) 1.8 T (14 kG) 6.0 W/kg

    Hiperco® 50 2.2 T (22 kG) 17.64 W/kg

  • Generator Parameters

    Number of magnet poles• more poles produce “conventional shape at peak speed

    60 slot 20 pole rotational

    60 slot 20 pole oscillation

    Slide 15 of 26

  • Generator Parameters

    Number of magnet poles• more poles produce “conventional shape at peak speed

    18 slot 6 pole oscillation

    30 slot 10 pole oscillation

    Slide 16 of 26

  • Generator Parameters

    Magnet thickness• large compared to airgap, yet try not waste material

    1mm magnet thickness

    2mm magnet thickness

    Slide 17 of 26

  • Generator Parameters

    Magnet thickness• large compared to airgap, yet try not waste material

    3mm magnet thickness

    3.5mm magnet thickness

    Slide 18 of 26

  • Generator Parameters

    Cogging torque• reduce by skewing of the magnets• Stagger magnets to create skew• 3 steps of 4o to give 12o skew

    Rotor Starting position• found to have little or no effect if the number of poles and swing angle were large

    Rotor Speed• increased through use of a 1:4 gearbox by maintaining the same swing frequency but covering a larger swing angle

  • Swing-optimized PMAC Prototype

    MTD-1G1 MTD-1G2Stator outer diameter (mm) 62Rotor outer diameter (mm) 32.5Axial length (mm) 40Rotor Inertia (kg.m2) 2.615 x 10‐5Air Gap (mm) 0.25Number of stator slots 30Number of poles 10Winding AWG 22 bifilarNo. turns per phase 130,130,130 140,130,140Phase Resistance at 100oC (Ω) 0.681 0.61,0.58Max RMS current (A) 5

    Thermo‐mechanical design optimization studies resulted in integrated cooling fins and to allow >6A/m2 current densities

    Stator windings were potted with thermally conductive epoxy improve winding thermal management 

    Two 450W PMAC swing‐optimized generators were fabricated with different winding configurations for maximum copper fill factor

    Stator ring and spider laminates

  • Experimental Validation 1 Four‐bar linkage built to 

    simulate MICSE motion –converts rotational motion to oscillatory motion

    Gearing provides 4x increase in speed and amplitude compared to direct drive

    A

    BC

    Front

    Rotation

    Oscillation

  • Experimental Results 1

    MTD 1G2: Maxwell 2D Back EMF vs Time

    -30

    -20

    -10

    0

    10

    20

    30

    0 0.02 0.04 0.06 0.08 0.1 0.12

    Time (sec)

    Volta

    ge (V

    )

    Phase A Maxwell Phase B MaxwellPhase C Maxwell

    MTD-1G1 No-load 8.4Hz

    -30

    -20

    -10

    0

    10

    20

    30

    0.000 0.020 0.040 0.060 0.080 0.100 0.120

    Time (s)

    Volta

    ge (V

    )

    Phase APhase BPhase C

    MTD-1Gx Model Validation

    Simulated Back EMF at 8.4Hz

    Measured Back EMF at 8.4Hz (MTD-1G1)

    Slight differences in model & prototype

    Mismatch between simulation & test frequencies

    Approximate velocity profile 2D FEA model without skew Mechanical slip and 

    vibration present in four‐bar linkage

  • Load Oscillatory Performance

    Test Freq. Vrms Power

    1 2.15 2.5 3.8

    2 4 5.0 15.1

    3 8.66 10.3 63.2

    4 16 18.9 213.5

    55 ~700

    Oscillatory Power Testing

    Actual power measured at frequencies up to 16Hz Estimated power at 55Hz is >700W based on FEA

    simulation

  • Experimental Results 2

    MTD-1Gx Model Validation

    Simulated Back EMF at 16Hz

    Measured Back EMF at 16Hz (MTD-1G1)

    No load back EMF Generator coupled directly 

    to MICSE and operating at approximately 16Hz oscillation frequency

  • Conclusion

    Ultra portable power delivery system has been introduced

    Approximate velocity profile for oscillatory motion for use in FEA has been determined

    Influence of generator parameters has been evaluated

    Characteristic no load waveforms presented Simulations have been validated with experimental and test data

  • Questions


Recommended