+ All Categories
Home > Documents > PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo...

PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo...

Date post: 06-Mar-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
15
1 1 PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 2 Outline PMR Media • State of the art granular oxide media • Key current issues with PMR media • Media improvement opportunities • Beyond current media structures and designs • Summary
Transcript
Page 1: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

1

1

PMR Media Technology

Tom Yamashita and Gerardo Bertero

Komag, Inc.IDEMA Singapore Conference

March 7, 2007

2Outline

• PMR Media • State of the art granular oxide media• Key current issues with PMR media • Media improvement opportunities• Beyond current media structures and designs

• Summary

Page 2: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

2

3

1999199919991999 2000200020002000 2001200120012001 2002200220022002 2003200320032003 2004200420042004 2005200520052005 2006200620062006 2007200720072007 2008200820082008 2009200920092009 2010201020102010 2011201120112011 2012201220122012

10101010

100100100100

1,0001,0001,0001,000

10101010

1515151520202020

3030303040404040

60606060

80808080120120120120

160160160160240240240240

320320320320480480480480

640640640640960960960960

12801280128012801920192019201920

100% CAGR100% CAGR100% CAGR100% CAGR60% CAGR60% CAGR60% CAGR60% CAGR40% CAGR40% CAGR40% CAGR40% CAGRCapacity/Platter (95mm)Capacity/Platter (95mm)Capacity/Platter (95mm)Capacity/Platter (95mm)

Areal Density and Capacity vs. TimeAreal Density and Capacity vs. Time95 mm Disk Capacities and Technology Transitions95 mm Disk Capacities and Technology Transitions

Year of Product IntroductionYear of Product IntroductionYear of Product IntroductionYear of Product Introduction

Are

al D

ensi

ty (G

b/in

Are

al D

ensi

ty (G

b/in

Are

al D

ensi

ty (G

b/in

Are

al D

ensi

ty (G

b/in

22 22 )) ))

Longitudinal

Long. SAF

Perpendicular

DTR, BPM, HAMR?

250

4

LMR and PMR Recording Geometries

LMR PMR

Recording Head

Read ElementRead Shield

Soft Magnetic Underlayer

Recording Layer

Write Shield

Page 3: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

3

5

LMR Media Structure

Stabilizing Layer

Ru

Bottom Magnetic Layer

Exchange Enhancing Layer

Underlayers

Top Magnetic Layer

M

M

~80 Å

~160 Å

~30 Å

BC

CH

CP

6CoCrPt-Oxide Perpendicular Media Structure

Substrate (AlMg or Glass)Substrate (AlMg or Glass)Substrate (AlMg or Glass)Substrate (AlMg or Glass)

OvercoatsOvercoatsOvercoatsOvercoats

CoCrPtO Hard Magnetic LayerCoCrPtO Hard Magnetic LayerCoCrPtO Hard Magnetic LayerCoCrPtO Hard Magnetic Layer

Seed LayerSeed LayerSeed LayerSeed Layer

SAF Soft Magnetic Under Layer

SAF Soft Magnetic Under Layer

SAF Soft Magnetic Under Layer

SAF Soft Magnetic Under Layer

Adhesion LayerAdhesion LayerAdhesion LayerAdhesion Layer

Capping Layer

RuRuRuRu----Alloy Interlayer Alloy Interlayer Alloy Interlayer Alloy Interlayer

Page 4: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

4

7Comparison of LMR and PMR Media Cross-Sections

SubstrateSubstrateSubstrateSubstrate

SubstrateSubstrateSubstrateSubstrate

Recording LayerRecording LayerRecording LayerRecording Layer

Magnetic Soft

Magnetic Soft

Magnetic Soft

Magnetic Soft Underlayer

Underlayer

Underlayer

Underlayer

LMRLMRLMRLMR

PMRPMRPMRPMR

8

-150 -100 -50 0 50 100 150-30

-20

-10

0

10

20

30

m (m

emu/

cmm

(mem

u/cm

m (m

emu/

cmm

(mem

u/cm

22 22 )) ))

H (Oe)H (Oe)H (Oe)H (Oe)

Radial Circum.

-150 -100 -50 0 50 100 150-2

-1

0

1

2

M (m

emu)

M (m

emu)

M (m

emu)

M (m

emu)

H (Oe)H (Oe)H (Oe)H (Oe)

Radial Circum

-150 -100 -50 0 50 100 150-30

-20

-10

0

10

20

30

m (m

emu/

cmm

(mem

u/cm

m (m

emu/

cmm

(mem

u/cm

22 22 )) ))

H (Oe)H (Oe)H (Oe)H (Oe)

Radial Circum

Typical Magnetic Domains in SUL Structures

Single SUL CoTaZr

SAF SULCoTaZr/Ru/CoTaZr

HB SULCoCrTa/Ru/CoTaZr

Page 5: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

5

9Nucleation Layer

• Main purpose is to:• Break magnetic exchange between SUL and Recording layer• Control recording layer crystallogrphic orientation• Control recording layer grain size• Help with recording layer grain isolation

• These nucleation layers provide smaller magnetic grain sizes and more magnetic grain isolation.

10Rocking Curves of Co and Ru (0002) Peaks

Ru Co(∆θ∆θ∆θ∆θ50) (∆θ∆θ∆θ∆θ50)

S7817 2.68 3.29S7176 2.53 3.02A8155 2.26 2.90P8035 2.06 2.76

15 18 21 24 270

500000

1000000

1500000

Inte

nsity

(cou

nts)

Inte

nsity

(cou

nts)

Inte

nsity

(cou

nts)

Inte

nsity

(cou

nts)

Theta (degree)Theta (degree)Theta (degree)Theta (degree)

S7817 RuCr10

S7176 RuCr15

A8155 RuCr15

P8035D RuCr15

15 18 21 24 270

100000

200000

300000

400000

Inte

nsity

(cou

nts)

Inte

nsity

(cou

nts)

Inte

nsity

(cou

nts)

Inte

nsity

(cou

nts)

Theta (degree)Theta (degree)Theta (degree)Theta (degree)

S7817 RuCr10

S7176 RuCr15

A8155 RuCr15

P8035D RuCr15

Ru (0002) Co (0002)

Page 6: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

6

11

10 nm

Magnetic Grain Morphology LMR/PMR

LMR PMR

12Current Issues with PMR Media

• Production Ramp of PMR media• Yields and Utilization • Cost Reduction

• Learning curve for• Drive and head integration • Measurements – magnetic and recording • Process monitor and control

• Ruthenium problem • Price went from <$200/troy oz. to over $800/troy oz in the last 4

months.• HDD industry is now the biggest consumer of Ruthenium • ~ 1M troy/oz mined per year = 1 m3 of metal• Production of Ruthenium tied to Platinum mining (Quantity mined

is not likely to increase on the short term).

Page 7: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

7

13

PMR Media Improvements

• SUL domain noise is not a problem with SAF SUL structures.

• C-axis orientation is already very good.

• Physical grain size is rather small already.

• Magnetic grain size is optimized (increased somewhat) by adding intergranular exchange.

Where can we expect improvements to come from ?

Given the above,

14PMR Media Improvement OpportunitiesPMR Media Improvement OpportunitiesPMR Media Improvement OpportunitiesPMR Media Improvement Opportunities

� SUL Domain and Magnetic Noise Reduction� SAF SUL Structure improvements� Domain free SULs

� Grain Size Uniformity� DC noise reduction� Narrower transition parameter

� IL Thickness Reduction� Better writability ���� Higher Hc� Sharper head field gradients ���� Narrower transition parameter

� Improved Magnetic Layer Structures� ECC Media/Exchange Spring Media� Narrower transitions, better DC noise, better writability

Page 8: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

8

15

How Much Improvement ?How Much Improvement ?How Much Improvement ?How Much Improvement ?

At the Intermag 2006 Conference:

• Limit of PMR recording using non-patterned granular media is placed at ~400-500 Gb/in2 (E.g., R. Wood (CA01), S. Greaves (ER02), M. Kryder (ZA)).

• Current (or about to be launched) commercial PMR programs are designed at 130-180 Gb/in2 recording.

• Assuming 3 to 4 dB SNRme needed for every doubling of areal density, we will need to deliver 6 - 12 dB of SNRme improvement on non-patterned, granular oxide media (of any kind).

16

With IL thickness reduction we expect:With IL thickness reduction we expect:With IL thickness reduction we expect:With IL thickness reduction we expect:• Stronger writing fieldsStronger writing fieldsStronger writing fieldsStronger writing fields• Sharper write field gradientsSharper write field gradientsSharper write field gradientsSharper write field gradients• Higher OWHigher OWHigher OWHigher OW• Higher SNRHigher SNRHigher SNRHigher SNR

Interlayer Thickness Reduction EffectsInterlayer Thickness Reduction EffectsInterlayer Thickness Reduction EffectsInterlayer Thickness Reduction Effects

x

2x

Page 9: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

9

17Optimizing Exchange in Granular MediaOptimizing Exchange in Granular MediaOptimizing Exchange in Granular MediaOptimizing Exchange in Granular Media

Intergranular exchange coupling is key for overwrite, SNR and nucleation field optimization. However, each of these properties optimize at different points so, tradeoffs must be made when optimizing media performance as a whole. Various approaches and schemes have been proposed to facilitate this task, e.g.,

• Capping layer media• Coupled granular composite media, CGC

The capping layer approach is the most practical for performance and manufacturability.

18Capping Layer EffectCapping Layer EffectCapping Layer EffectCapping Layer Effect

Hc (Oe)Hc (Oe)Hc (Oe)Hc (Oe) S*S*S*S* Hn (Oe)Hn (Oe)Hn (Oe)Hn (Oe)5000 0.45 -1900

Hc (Oe)Hc (Oe)Hc (Oe)Hc (Oe) S*S*S*S* Hn (Oe)Hn (Oe)Hn (Oe)Hn (Oe)5100 0.58 -2936

Nucleation field improvement for ATI robustness

S6651S6651S6651S6651

-150

-100

-50

0

50

100

150

-20000 -15000 -10000 -5000 0 5000 10000 15000 20000

S7176 S7176 S7176 S7176

-100

-75

-50

-25

0

25

50

75

100

-20000 -15000 -10000 -5000 0 5000 10000 15000 20000

w/o Cap Layer w Cap Layer

Page 10: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

10

19

ECC and Exchange Spring ECC and Exchange Spring ECC and Exchange Spring ECC and Exchange Spring MediaMediaMediaMedia

���������������� ������������������� ������������������� ������������������� ���

Material with extremely high anisotropy Ku and volume Vhard.

Store information. Provide thermal stability

Soft material with volume Vsoft. Facilitate switching

of the grain.

2

s s

EM H V

ξ ∆=hardKu V×

hard softV V+

This figure of merit term can be used to compare the switching fields of different kinds of media with the same thermal barrier, volume and magnetization

UNIVERSITY OF MINNESOTAUNIVERSITY OF MINNESOTAUNIVERSITY OF MINNESOTAUNIVERSITY OF MINNESOTA

Courtesy of Prof. R. Victora

Page 11: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

11

���������������� ������������������� ������������������� ������������������� ���

2

s s

EM H V

ξ ∆=

Perpendicular Media1.0ξ =

45° tilted Media

2.0ξ =

ECC Media

Mhard/Msoft

Jex/

(KuV

)

1.71.81.9

UNIVERSITY OF MINNESOTAUNIVERSITY OF MINNESOTAUNIVERSITY OF MINNESOTAUNIVERSITY OF MINNESOTA

ξ ����

Courtesy of Prof. R. Victora

���� ���� � ������� ���� � ������� ���� � ������� ���� � ���

• The switching process of ECC media include two steps: first, magnetizations of the soft regions coherently rotate to a certain angle; second,complete switching of each grain.

• ECC media switches more rapidly than conventional media.

• ECC media impervious to misalignment (up to 20°) of easy axes.

• The write field profile associated with ECC media is narrower in the cross track direction than that associated with conventional perpendicular media.

• The combination of enhanced thermal stability and reduced adjacent track erasure should allow recording at 1 Terabit/inch2.

UNIVERSITY OF MINNESOTAUNIVERSITY OF MINNESOTAUNIVERSITY OF MINNESOTAUNIVERSITY OF MINNESOTA

Courtesy of Prof. R. Victora

Page 12: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

12

( )ε ε

ε ε

−=+

2

2 1

1

hard K Ac

hard J A

KHJ ε = s

KH

KK

=s HJ J

ε = sA

H

AA

�������� ������ ������������������

��� ������ � ��������� ��������� ���� �������������� ��!���""��

�#

$#

%#

��

$�

%� = × 214

hardc

hard

KHJ

=s HA A

= 0sK

= × 215

hardc

hard

KH

J= / 5s HK K

ε = sJ

H

JJ

−= × 2( )14

hard softc

hard

K KH

J

Courtesy of Dr. Dieter Suess

�������������

∆&�'�(���

�" )" !""

*���� +� ,

∆&�+&

�-,

� �.

∆ = 14E F AK

∆ = 1E K V

∆ = 14E F AK

∆ = 14 5E F AK

��������/�0��������1��2�1����)

����� ����2����0�)34

*����=

15HALK

=1

HALK

Courtesy of Dr. Dieter Suess

Page 13: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

13

25Angular Dependence of Switching FieldAngular Dependence of Switching FieldAngular Dependence of Switching FieldAngular Dependence of Switching Field

0 15 30 45 60 75 900.6

0.7

0.8

0.9

1.0

1.1

1.2

h cr (=

Hcr

θ/H

cr θ

=0o)

Angle (degree)Angle (degree)Angle (degree)Angle (degree)

tCap

C7 - 0 nm C3 - 6 nm C6 - 12 nm S8675 Expected

Exchange Spring media behavior

26Ho and KuV/kT of ES Media

1E-9 1E-7 1E-5 1E-3 0.1 102000

4000

6000

8000

10000

n = 2/3 and fn = 2/3 and fn = 2/3 and fn = 2/3 and foooo = 1 GHz = 1 GHz = 1 GHz = 1 GHz

HHHHoooo K K K K

uuuuV/kTV/kTV/kTV/kT

9149 101.59149 101.59149 101.59149 101.57733 112.87733 112.87733 112.87733 112.85118 169.65118 169.65118 169.65118 169.6

HH HHcrcr crcr (O

e) (O

e) (O

e) (O

e)

Time (sec)Time (sec)Time (sec)Time (sec)

ttttCapCapCapCap

C7 - 0 nm C3 - 6 nm C6 - 12 nm

Page 14: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

14

DTR LMR Process

DTR processing to form groovesBy wet-etch process .

Clean textured NPP

Sputter Full Stack LMR Media

DTR LMR ProcessDTR LMR ProcessDTR LMR ProcessDTR LMR Process(etched(etched(etched(etched----NiPNiPNiPNiP))))

etchedetchedetchedetched----NiPNiPNiPNiP DiskDiskDiskDisk

Sputtered LMR film stackSputtered LMR film stackSputtered LMR film stackSputtered LMR film stack

Finished DTR LMR DiskFinished DTR LMR DiskFinished DTR LMR DiskFinished DTR LMR Disk

TEM xTEM xTEM xTEM x----sectionsectionsectionsection

28DTR PMR Structure

DTR processing to form groovesby wet-etch process.

Clean Polished NPP

Sputter Full Stack PMR Media

DTR PMR ProcessDTR PMR ProcessDTR PMR ProcessDTR PMR Process(etched(etched(etched(etched----NiPNiPNiPNiP))))

SAF Soft SAF Soft SAF Soft SAF Soft UnderlayerUnderlayerUnderlayerUnderlayer (SUL)(SUL)(SUL)(SUL)

EtchedEtchedEtchedEtched----NiPNiPNiPNiP

NiP groove width/depth: 155 nm / 33 nm at 380 nm TP

Finished DTR PMR DiskFinished DTR PMR DiskFinished DTR PMR DiskFinished DTR PMR Disk

TEM xTEM xTEM xTEM x----sectionsectionsectionsection

Page 15: PMR Media Technology - IDEMA · 2011. 1. 28. · PMR Media Technology Tom Yamashita and Gerardo Bertero Komag, Inc. IDEMA Singapore Conference March 7, 2007 Outline 2 • PMR Media

15

29Summary

• We are working on both performance and manufacturability aspectsof PMR media.

• Much improvement in grain size, intergranular exchange, SUL noise and c-axis dispersion has already been accomplished.

• Opportunities for SNR improvement remain with IL thickness reduction mainly (must have appropriate heads to take advantage of such improvement).

• Additional improvements will be possible with new structures incorporating concepts from ECC and exchange spring media structures.

• Given the head and media strong interactions with PMR recording, need to work closely with customers to identify other areas of improvement based on specific applications.


Recommended