+ All Categories
Home > Documents > Polymer Ionics Introduction

Polymer Ionics Introduction

Date post: 05-Apr-2018
Category:
Upload: mohamed-vaquas
View: 227 times
Download: 0 times
Share this document with a friend

of 44

Transcript
  • 7/31/2019 Polymer Ionics Introduction

    1/44

    Introduction to the field ofpolymer ionics:

    Definitions and historical development

    Prof. Dr. Agnieszka Pawlicka

  • 7/31/2019 Polymer Ionics Introduction

    2/44

    Summary

    1. Introduction to the field of polymer ionics

    1.1. Definition of polymers and conductivity

    1.2. Definition of polyelectrolytes, polymer electrolytes,polymeric gels

    1.3. Historical development

    1.4. Current state of art in the field of polymerelectrolytes

    Poly(ethylene oxide) systems, grafted, crosslinked,plasticized and composite systems;

    1.5. Advantages and disadvantages of differentsystems

  • 7/31/2019 Polymer Ionics Introduction

    3/44

    What are polymers ?

    Polymers are composts formed by an almost regular repetition of units (atomicgroups) connected by chemical bonds which to form linear long chains orbranched, or three-dimensional net (polymerization) .

    Monomer

    What is a polymer?

  • 7/31/2019 Polymer Ionics Introduction

    4/44

    What is a conduction?

    Conduction is the movement of electrically charged particles through atransmission medium (electrical conductor).

    The movement of charge constitutes an electric current.

    The charge transport may result as a response to an electric field, or asa result of a concentration gradient in carrier density, that is, bydiffusion.

    The physical parameters governing this transport depend upon the

    material.

    Electrical conduction

    Heat conduction or thermal conduction is the spontaneous transfer ofthermal energy through matter, from a region of higher temperature to a regionof lower temperature, and hence acts to even out temperature differences.

    http://en.wikipedia.org/wiki/Electric_chargehttp://en.wikipedia.org/wiki/Transmission_mediumhttp://en.wikipedia.org/wiki/Electrical_conductorhttp://en.wikipedia.org/wiki/Current_%28electricity%29http://en.wikipedia.org/wiki/Electric_fieldhttp://en.wikipedia.org/wiki/Fick%27s_lawhttp://en.wikipedia.org/wiki/Heat_transferhttp://en.wikipedia.org/wiki/Heat_transferhttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Heat_transferhttp://en.wikipedia.org/wiki/Heat_transferhttp://en.wikipedia.org/wiki/Fick%27s_lawhttp://en.wikipedia.org/wiki/Electric_fieldhttp://en.wikipedia.org/wiki/Current_%28electricity%29http://en.wikipedia.org/wiki/Electrical_conductorhttp://en.wikipedia.org/wiki/Transmission_mediumhttp://en.wikipedia.org/wiki/Electric_charge
  • 7/31/2019 Polymer Ionics Introduction

    5/44

    Topics to cover

    Metals, semiconductors, and insulators.

    Band structure & electron conduction. Electrical conductivity in metals.

    Semiconducting materials.

    Conducting polymers. Ionic conduction & polymer electrolytes.

    Electrical Conductivity in Materials

  • 7/31/2019 Polymer Ionics Introduction

    6/44

    Metals: good conductors with electrical conductivity on the order of 107

    -1m-1 (105 S/cm) Metallic bonding leads to a sea of electrons that are free to move around.

    Insulators: electricalconductivity ~ 10-10 to 10-20-1m-1. Ionic or strong covalent bonds where valence electrons are tightly bound

    (localized).

    Semiconductors: electricalconductivity ~ 10-6 to 104-1m-1. Covalent (or predominantly covalent) bonds that are relatively weak

    (valence electrons are not as tightly bound as in insulators).

    Types of conductivity electronic conduction: motion of electrons and/or holes (in most solid

    materials). ionic conduction: motion of charged atoms and/or molecules.

    Metals, Semiconductors and Insulators

  • 7/31/2019 Polymer Ionics Introduction

    7/44

    Electrical Conduction

    Free electronsneeded forelectricalconduction(applied electricfield is sufficient togenerate large

    number of freeelectrons).

    METALS

    SEMICONDUCTORS OR INSULATORS

    Due to the bandgap, much more

    energy input isnecessary to createcharge carriers(electrons inconduction band orholes in valenceband).

  • 7/31/2019 Polymer Ionics Introduction

    8/44

    Fermi level

    Fermi level" is the term used to describe the top ofthe collection of electron energy levels at absolutezero temperature.

    This concept comes from Fermi-Dirac statistics.Electrons are fermions and by the Pauli exclusionprinciple cannot exist in identical energy states. Soat absolute zero they pack into the lowest availableenergy states and build up a "Fermi sea" of electronenergy states.

    The Fermi level is the surface of that sea at absolutezero where no electrons will have enough energy torise above the surface. The concept of the Fermienergy is a crucially important concept for theunderstanding of the electrical and thermalproperties of solids.

    Both ordinary electrical and thermal processesinvolve energies of a small fraction of an electronvolt. But the Fermi energies of metals are on theorder of electron volts.

    This implies that the vast majority of the electronscannot receive energy from those processesbecause there are no available energy states forthem to go to within a fraction of an electron volt of

    their present energy. Limited to a tiny depth ofenergy, these interactions are limited to "ripples onthe Fermi sea".

    http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfd.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/particles/spinc.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/pauli.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/pauli.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/solids/fermi2.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/solids/fermi2.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/solids/fermi2.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/solids/fermi2.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/pauli.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/pauli.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/particles/spinc.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfd.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfd.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfd.html
  • 7/31/2019 Polymer Ionics Introduction

    9/44

    Although the Fermi function has a finite value in the gap, there is noelectron population at those energies (that's what you mean by agap). The population depends upon the product of the Fermi function

    and the electron density of states. So in the gap there are noelectrons because the density of states is zero. In the conductionband at 0K, there are no electrons even though there are plenty ofavailable states, but the Fermi function is zero. At high temperatures,both the density of states and the Fermi function have finite values inthe conduction band, so there is a finite conducting population.

    The Fermi function f(E) gives theprobability that a given availableelectron energy state will beoccupied at a given temperature.The Fermi function comes fromFermi-Dirac statistics and has theform

    http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disene.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfd.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfd.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfd.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfd.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disene.html
  • 7/31/2019 Polymer Ionics Introduction

    10/44

    Electrical conduction inSemiconductors

    Bonding and band gap

    Structure m.p. (K) Eg (eV)

    C (Diamond) Diamond 3773 5.5

    Si Diamond 1683 1.1

    Ge Diamond 1210 0.7

    Need to create free electrons (or holes) for electricalconduction. The smaller the band gap, the less energy isrequired to create charge carriers.

    Conductivity of intrinsic (undoped) semiconductors:

    kT

    Egexp Conductivity increases with T.

  • 7/31/2019 Polymer Ionics Introduction

    11/44

    What is a conducting polymer?

    Conjugated polymers: long conjugated systems;Energy states related with structural defectsDefects are caused by alterations in the molecular geometry and in the charges distribution.

    What are conducting polymers ?

    Quasi-particles doping

    Delocalization

    OBS: The carriers not are electrons neither holeslocalized in the interior of bands but are chargeddefects, localized long the polymeric chain.

    Conjugated Polymers: Organic semiconductors with -bonds delocalizing along the polymer chain

    Conjugated PolymersSynthetic Metals

    go

  • 7/31/2019 Polymer Ionics Introduction

    12/44

    Quasi-particles

    The use of term quasiparticle seems to be ambiguous.

    Some authors use the term in order to distinguish them from real particles, others to describean excitation similar to a single particle excitation as opposed to a collective excitation.

    Both definitions mutually exclude each other as with the former definition collectiveexcitations which are no "real" particles are considered to be quasiparticles. The problemsarising from the collective nature of quasiparticles have also been discussed within thephilosophy of science, notably in relation to the identity conditions of quasiparticles andwhether or not they should be considered "real" by the standards of, for example, entityrealism.

    Phonons are the quanta of classical sound waves and sound waves do not need thenotion of atoms.

    Magnons are the quanta of classical spinwaves, which also do not need elementaryspins.

    Photons inside an isolator are the quanta of classical dressed electromagnetic wavesand do not need the notion of electrons for the definition of the refractive index.Plasmons are the quanta of the plasma oscillations and they only need chargedensity and mass density and no electrons or ions.

    Polarons are the quanta of the oscillating polarization in a lightly dopedsemiconductor and also do not need elementary charge or mass.

    http://en.wikipedia.org/wiki/Entity_realismhttp://en.wikipedia.org/wiki/Entity_realismhttp://en.wikipedia.org/wiki/Phononhttp://en.wikipedia.org/wiki/Magnonhttp://en.wikipedia.org/wiki/Photonhttp://en.wikipedia.org/wiki/Plasmonhttp://en.wikipedia.org/wiki/Plasma_oscillationhttp://en.wikipedia.org/wiki/Polaronhttp://en.wikipedia.org/wiki/Polaronhttp://en.wikipedia.org/wiki/Plasma_oscillationhttp://en.wikipedia.org/wiki/Plasmonhttp://en.wikipedia.org/wiki/Photonhttp://en.wikipedia.org/wiki/Magnonhttp://en.wikipedia.org/wiki/Phononhttp://en.wikipedia.org/wiki/Phononhttp://en.wikipedia.org/wiki/Entity_realismhttp://en.wikipedia.org/wiki/Entity_realism
  • 7/31/2019 Polymer Ionics Introduction

    13/44

    eParticles in physics

    Elementary particlesFermions: Quarks: u d c s t b Leptons: e- e+ - + - + e

    Bosons: Gauge bosons: g W Z0Other: Ghosts

    Composite particlesHadrons: Baryons(list)/Hyperons/Nucleons: p n b Mesons(list)/Quarkonia: K

    J/

    Other: Atomic nuclei Atoms Exotic atoms: Positronium Molecules

    Hypothetical

    elementary particles

    Superpartners:Axino Dilatino Chargino Gluino Gravitino Higgsino Neutralino Sfermion Slepton

    Squark

    Other:Axion Dilaton Goldstone boson Graviton Higgs boson Tachyon X Y W' Z'

    Hypothetical

    composite particlesExotic hadrons: Exotic baryons: Pentaquark Exotic mesons: Glueball Tetraquark

    Other: Mesonic molecule

    Quasiparticles Davydov soliton Exciton Magnon Phonon Plasmon Polariton Polaron

    http://en.wikipedia.org/wiki/List_of_particleshttp://en.wikipedia.org/wiki/Physicshttp://en.wikipedia.org/wiki/Elementary_particlehttp://en.wikipedia.org/wiki/Fermionhttp://en.wikipedia.org/wiki/Quarkhttp://en.wikipedia.org/wiki/Up_quarkhttp://en.wikipedia.org/wiki/Down_quarkhttp://en.wikipedia.org/wiki/Charm_quarkhttp://en.wikipedia.org/wiki/Strange_quarkhttp://en.wikipedia.org/wiki/Top_quarkhttp://en.wikipedia.org/wiki/Bottom_quarkhttp://en.wikipedia.org/wiki/Leptonhttp://en.wikipedia.org/wiki/Electronhttp://en.wikipedia.org/wiki/Electronhttp://en.wikipedia.org/wiki/Positronhttp://en.wikipedia.org/wiki/Positronhttp://en.wikipedia.org/wiki/Muonhttp://en.wikipedia.org/wiki/Muonhttp://en.wikipedia.org/wiki/Muonhttp://en.wikipedia.org/wiki/Muonhttp://en.wikipedia.org/wiki/Muonhttp://en.wikipedia.org/wiki/Tau_leptonhttp://en.wikipedia.org/wiki/Tau_leptonhttp://en.wikipedia.org/wiki/Tau_leptonhttp://en.wikipedia.org/wiki/Tau_leptonhttp://en.wikipedia.org/wiki/Tau_leptonhttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Bosonhttp://en.wikipedia.org/wiki/Gauge_bosonhttp://en.wikipedia.org/wiki/Photonhttp://en.wikipedia.org/wiki/Gluonhttp://en.wikipedia.org/wiki/W_and_Z_bosonshttp://en.wikipedia.org/wiki/W_and_Z_bosonshttp://en.wikipedia.org/wiki/W_and_Z_bosonshttp://en.wikipedia.org/wiki/W_and_Z_bosonshttp://en.wikipedia.org/wiki/Faddeev-Popov_ghosthttp://en.wikipedia.org/wiki/Bound_statehttp://en.wikipedia.org/wiki/Hadronhttp://en.wikipedia.org/wiki/Baryonhttp://en.wikipedia.org/wiki/List_of_baryonshttp://en.wikipedia.org/wiki/Hyperonhttp://en.wikipedia.org/wiki/Nucleonhttp://en.wikipedia.org/wiki/Protonhttp://en.wikipedia.org/wiki/Neutronhttp://en.wikipedia.org/wiki/Delta_baryonhttp://en.wikipedia.org/wiki/Lambda_particlehttp://en.wikipedia.org/wiki/Sigma_%28particle%29http://en.wikipedia.org/wiki/Xi_particlehttp://en.wikipedia.org/wiki/Omega_particlehttp://en.wikipedia.org/wiki/Cascade_Bhttp://en.wikipedia.org/wiki/Cascade_Bhttp://en.wikipedia.org/wiki/Mesonhttp://en.wikipedia.org/wiki/List_of_mesonshttp://en.wikipedia.org/wiki/Quarkoniumhttp://en.wikipedia.org/wiki/Pionhttp://en.wikipedia.org/wiki/Kaonhttp://en.wikipedia.org/wiki/Rho_mesonhttp://en.wikipedia.org/wiki/J/%CF%88_particlehttp://en.wikipedia.org/wiki/Upsilon_particlehttp://en.wikipedia.org/wiki/Atomic_nucleushttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Exotic_atomhttp://en.wikipedia.org/wiki/Positroniumhttp://en.wikipedia.org/wiki/Moleculehttp://en.wikipedia.org/wiki/Hypothetical_particleshttp://en.wikipedia.org/wiki/Hypothetical_particleshttp://en.wikipedia.org/wiki/Superpartnerhttp://en.wikipedia.org/wiki/Axinohttp://en.wikipedia.org/wiki/Dilatinohttp://en.wikipedia.org/wiki/Charginohttp://en.wikipedia.org/wiki/Gluinohttp://en.wikipedia.org/wiki/Gravitinohttp://en.wikipedia.org/wiki/Higgsinohttp://en.wikipedia.org/wiki/Neutralinohttp://en.wikipedia.org/wiki/Sfermionhttp://en.wikipedia.org/wiki/Sleptonhttp://en.wikipedia.org/wiki/Squarkhttp://en.wikipedia.org/wiki/Axionhttp://en.wikipedia.org/wiki/Dilatonhttp://en.wikipedia.org/wiki/Goldstone_bosonhttp://en.wikipedia.org/wiki/Gravitonhttp://en.wikipedia.org/wiki/Higgs_bosonhttp://en.wikipedia.org/wiki/Tachyonhttp://en.wikipedia.org/wiki/X_and_Y_bosonshttp://en.wikipedia.org/wiki/W%27_bosonhttp://en.wikipedia.org/wiki/Z%27_bosonhttp://en.wikipedia.org/wiki/Category:Hypothetical_composite_particleshttp://en.wikipedia.org/wiki/Category:Hypothetical_composite_particleshttp://en.wikipedia.org/wiki/Exotic_hadronhttp://en.wikipedia.org/wiki/Exotic_baryonhttp://en.wikipedia.org/wiki/Pentaquarkhttp://en.wikipedia.org/wiki/Exotic_mesonhttp://en.wikipedia.org/wiki/Glueballhttp://en.wikipedia.org/wiki/Tetraquarkhttp://en.wikipedia.org/wiki/Mesonic_moleculehttp://en.wikipedia.org/wiki/Quasiparticlehttp://en.wikipedia.org/wiki/Davydov_solitonhttp://en.wikipedia.org/wiki/Excitonhttp://en.wikipedia.org/wiki/Magnonhttp://en.wikipedia.org/wiki/Phononhttp://en.wikipedia.org/wiki/Plasmonhttp://en.wikipedia.org/wiki/Polaritonhttp://en.wikipedia.org/wiki/Polaronhttp://en.wikipedia.org/wiki/Polaronhttp://en.wikipedia.org/wiki/Polaritonhttp://en.wikipedia.org/wiki/Plasmonhttp://en.wikipedia.org/wiki/Phononhttp://en.wikipedia.org/wiki/Magnonhttp://en.wikipedia.org/wiki/Excitonhttp://en.wikipedia.org/wiki/Davydov_solitonhttp://en.wikipedia.org/wiki/Quasiparticlehttp://en.wikipedia.org/wiki/Mesonic_moleculehttp://en.wikipedia.org/wiki/Tetraquarkhttp://en.wikipedia.org/wiki/Glueballhttp://en.wikipedia.org/wiki/Exotic_mesonhttp://en.wikipedia.org/wiki/Pentaquarkhttp://en.wikipedia.org/wiki/Exotic_baryonhttp://en.wikipedia.org/wiki/Exotic_hadronhttp://en.wikipedia.org/wiki/Category:Hypothetical_composite_particleshttp://en.wikipedia.org/wiki/Category:Hypothetical_composite_particleshttp://en.wikipedia.org/wiki/Z%27_bosonhttp://en.wikipedia.org/wiki/W%27_bosonhttp://en.wikipedia.org/wiki/X_and_Y_bosonshttp://en.wikipedia.org/wiki/Tachyonhttp://en.wikipedia.org/wiki/Higgs_bosonhttp://en.wikipedia.org/wiki/Gravitonhttp://en.wikipedia.org/wiki/Goldstone_bosonhttp://en.wikipedia.org/wiki/Dilatonhttp://en.wikipedia.org/wiki/Axionhttp://en.wikipedia.org/wiki/Squarkhttp://en.wikipedia.org/wiki/Sleptonhttp://en.wikipedia.org/wiki/Sfermionhttp://en.wikipedia.org/wiki/Neutralinohttp://en.wikipedia.org/wiki/Higgsinohttp://en.wikipedia.org/wiki/Gravitinohttp://en.wikipedia.org/wiki/Gluinohttp://en.wikipedia.org/wiki/Charginohttp://en.wikipedia.org/wiki/Dilatinohttp://en.wikipedia.org/wiki/Axinohttp://en.wikipedia.org/wiki/Superpartnerhttp://en.wikipedia.org/wiki/Hypothetical_particleshttp://en.wikipedia.org/wiki/Hypothetical_particleshttp://en.wikipedia.org/wiki/Moleculehttp://en.wikipedia.org/wiki/Positroniumhttp://en.wikipedia.org/wiki/Exotic_atomhttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Atomic_nucleushttp://en.wikipedia.org/wiki/Upsilon_particlehttp://en.wikipedia.org/wiki/J/%CF%88_particlehttp://en.wikipedia.org/wiki/Rho_mesonhttp://en.wikipedia.org/wiki/Kaonhttp://en.wikipedia.org/wiki/Pionhttp://en.wikipedia.org/wiki/Quarkoniumhttp://en.wikipedia.org/wiki/List_of_mesonshttp://en.wikipedia.org/wiki/Mesonhttp://en.wikipedia.org/wiki/Cascade_Bhttp://en.wikipedia.org/wiki/Cascade_Bhttp://en.wikipedia.org/wiki/Omega_particlehttp://en.wikipedia.org/wiki/Xi_particlehttp://en.wikipedia.org/wiki/Sigma_%28particle%29http://en.wikipedia.org/wiki/Lambda_particlehttp://en.wikipedia.org/wiki/Delta_baryonhttp://en.wikipedia.org/wiki/Neutronhttp://en.wikipedia.org/wiki/Protonhttp://en.wikipedia.org/wiki/Nucleonhttp://en.wikipedia.org/wiki/Hyperonhttp://en.wikipedia.org/wiki/List_of_baryonshttp://en.wikipedia.org/wiki/Baryonhttp://en.wikipedia.org/wiki/Hadronhttp://en.wikipedia.org/wiki/Bound_statehttp://en.wikipedia.org/wiki/Faddeev-Popov_ghosthttp://en.wikipedia.org/wiki/W_and_Z_bosonshttp://en.wikipedia.org/wiki/W_and_Z_bosonshttp://en.wikipedia.org/wiki/W_and_Z_bosonshttp://en.wikipedia.org/wiki/W_and_Z_bosonshttp://en.wikipedia.org/wiki/W_and_Z_bosonshttp://en.wikipedia.org/wiki/Gluonhttp://en.wikipedia.org/wiki/Photonhttp://en.wikipedia.org/wiki/Gauge_bosonhttp://en.wikipedia.org/wiki/Bosonhttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Tau_leptonhttp://en.wikipedia.org/wiki/Tau_leptonhttp://en.wikipedia.org/wiki/Tau_leptonhttp://en.wikipedia.org/wiki/Tau_leptonhttp://en.wikipedia.org/wiki/Tau_leptonhttp://en.wikipedia.org/wiki/Muonhttp://en.wikipedia.org/wiki/Muonhttp://en.wikipedia.org/wiki/Muonhttp://en.wikipedia.org/wiki/Muonhttp://en.wikipedia.org/wiki/Muonhttp://en.wikipedia.org/wiki/Positronhttp://en.wikipedia.org/wiki/Positronhttp://en.wikipedia.org/wiki/Electronhttp://en.wikipedia.org/wiki/Electronhttp://en.wikipedia.org/wiki/Leptonhttp://en.wikipedia.org/wiki/Bottom_quarkhttp://en.wikipedia.org/wiki/Top_quarkhttp://en.wikipedia.org/wiki/Strange_quarkhttp://en.wikipedia.org/wiki/Charm_quarkhttp://en.wikipedia.org/wiki/Down_quarkhttp://en.wikipedia.org/wiki/Up_quarkhttp://en.wikipedia.org/wiki/Quarkhttp://en.wikipedia.org/wiki/Fermionhttp://en.wikipedia.org/wiki/Elementary_particlehttp://en.wikipedia.org/wiki/Physicshttp://en.wikipedia.org/wiki/List_of_particles
  • 7/31/2019 Polymer Ionics Introduction

    14/44

    How good is the conductivity ofpolymers, compared to metals

  • 7/31/2019 Polymer Ionics Introduction

    15/44

    Electrolytes short description

    Ionic conducting electrolytes with lowelectronic conductivity

    Solids, liquids or elastomers

    Liquid electrolytes are preferred

    liquids with high viscosity due to theconvenience or security

  • 7/31/2019 Polymer Ionics Introduction

    16/44

    Liquid Electrolytes

    Electric currents in electrolytes are flows of electrically charged

    atoms (ions).

    Classical example of NaCl if an electric field is placed across a solution of Na+ and Cl, the sodium ions

    will move constantly towards the negative electrode (anode), while the

    chloride ions will move towards the positive electrode (cathode).

    If the conditions are right, redox reactions will take place at theelectrode surfaces, releasing electrons from the chloride, and allow

    electrons to be absorbed into the sodium.

    http://en.wikipedia.org/wiki/Electrolytehttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Ionhttp://en.wikipedia.org/wiki/Sodiumhttp://en.wikipedia.org/wiki/Chlorinehttp://en.wikipedia.org/wiki/Redoxhttp://en.wikipedia.org/wiki/Redoxhttp://en.wikipedia.org/wiki/Chlorinehttp://en.wikipedia.org/wiki/Sodiumhttp://en.wikipedia.org/wiki/Ionhttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Electrolyte
  • 7/31/2019 Polymer Ionics Introduction

    17/44

    Liquid electrolytes

    Ionic charged species should be near the electrodes

    Desirable non reactive salts, which

    - easily form ions in the adequate solvents

    - does not precipitate over the electrodes

    - stable during the photolise process

    For polymeric electrolytes are generally used PCwith LiClO4 (explosive during drying) which can be

    substituted by LiBF4

    Choose of the electrolyte depend on theelectrochemical system

  • 7/31/2019 Polymer Ionics Introduction

    18/44

    Classification of Solid Electrolytes

    Solid Electrolytes

    organic inorganic

    Polymeric

    electrolytes Polyelectrolytes

    Macromolecules

    (PEO or PPO)

    with Li+

    saltsMolecular mass

    low - liquids

    intermediary -

    viscous liquids

    highsolids

    almost rigid

    Polymers with ionic

    groups which

    can give cationsor receive cations

    (PolyAMPS)

    have a groups

    regular distributed

    along the chain

    that give the protons

    Different oxides

    (Cr2O3, Ta2O5);

    Protonic and

    Anionic conduction

    (high for H+

    good for Li+)Better than organic

    due to the stability

    for fotolitic degradation

  • 7/31/2019 Polymer Ionics Introduction

    19/44

    Inorganic Solid Electrolytes

    P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism:Fundamentals and Applications, VCH, Weinheim, 1995.

  • 7/31/2019 Polymer Ionics Introduction

    20/44

    Inorganic electrolytes

    Significant resistance to the interphasecontact problems with contacts

    Solution:

    prototype of ECD with WO3Subsequent evaporation (sputtering) of the thin

    films one on the other

    ITO/counter electrode film/solid electrolyte/electrochromic film/ITO

    - inconvenience high price of the production

  • 7/31/2019 Polymer Ionics Introduction

    21/44

    Other deficiencies

    Relative fragility easy to broken

    Disintegration of the coatings due to the expansionand contraction of the electrode films during the

    insertion and desinsertion of the ions

  • 7/31/2019 Polymer Ionics Introduction

    22/44

    Classification of Solid Electrolytes

    Solid Electrolytes

    organic inorganic

    Polymeric

    electrolytes Polyelectrolytes

    Macromolecules

    (PEO or PPO)

    with Li+

    saltsMolecular mass

    low - liquids

    intermediary -

    viscous liquids

    highsolids

    almost rigid

    Polymers with ionic

    groups which

    can give cationsor receive cations

    (PolyAMPS)

    have a groups

    regular distributed

    along the chain

    that give the protons

    Different oxides

    (Cr2O3, Ta2O5);

    Protonic and

    Anionic conduction

    (high for H+

    good for Li+)Better than organic

    due to the stability

    for fotolitic degradation

  • 7/31/2019 Polymer Ionics Introduction

    23/44

    Polyelectrolytes

    Chitosan is obtained from chitin (structuralelement in the exoskeleton of crustaceans(shrimps, crabs, etc.)

    At least 50% of amino groups.

    Chitosan is positively charged and soluble inLow acidic solution.

    Biodegradable and biocompatible.

    http://upload.wikimedia.org/wikipedia/commons/9/90/Pandborealispile.jpghttp://upload.wikimedia.org/wikipedia/commons/f/fb/Chitosan_Haworth.gif
  • 7/31/2019 Polymer Ionics Introduction

    24/44

    Classification of Solid Electrolytes

    Solid Electrolytes

    organic inorganic

    Polymeric

    electrolytes Polyelectrolytes

    Macromolecules

    (PEO or PPO)

    with Li

    +

    saltsMolecular mass

    low - liquids

    intermediary -

    viscous liquids

    highsolids

    almost rigid

    Polymers with ionic

    groups which

    can give cationsor receive cations

    (PolyAMPS)

    have a groups

    regular distributed

    along the chain

    that give the protons

    Different oxides

    (Cr2O3, Ta2O5);

    Protonic and

    Anionic conduction

    (high for H+

    good for Li+)Better than organic

    due to the stability

    for fotolitic degradation

  • 7/31/2019 Polymer Ionics Introduction

    25/44

    AdvantagesPolymeric electrolytes can be formed in the form of

    very thin films of large surface area giving highpower levels (>100 Wdm-3)

    Fiona M. Gray Solid Polymer Electrolytes, Fundamentals and technological applicationsVCH Publishers, 1991.

  • 7/31/2019 Polymer Ionics Introduction

    26/44

    Solid Organic Electrolytes

    P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism:Fundamentals and Applications, VCH, Weinheim, 1995.

  • 7/31/2019 Polymer Ionics Introduction

    27/44

    Nafion

    Nafion is a sulfonated tetrafluorethylene copolymer discovered in the late 1960s byWalther Grot of DuPont de Nemours. It is the first of a class of synthetic polymerswith ionic properties which are called ionomers. Nafion's unique ionic properties are aresult of incorporating perfluorovinyl ether groups terminated with sulfonate groupsonto a tetrafluoroethylene (Teflon) backbone. Nafion has received a considerableamount of attention as a proton conductor for proton exchange membrane (PEM) fuelcells because of its excellent thermal and mechanical stability.

    The chemical basis of Nafion's superior conductive propertiesremain a focus of research. Protons on the SO3H (sulfonic acid)groups "hop" from one acid site to another. Pores allow movement

    of cations but the membranes do not conduct anions or electrons.Nafion can be manufactured with various cationic conductivities.

    http://en.wikipedia.org/wiki/Copolymerhttp://en.wikipedia.org/wiki/1960shttp://en.wikipedia.org/wiki/DuPonthttp://en.wikipedia.org/wiki/Ionomerhttp://en.wikipedia.org/wiki/Polytetrafluoroethylenehttp://en.wikipedia.org/wiki/Proton_conductorhttp://en.wikipedia.org/wiki/Proton_exchange_membrane_fuel_cellhttp://en.wikipedia.org/wiki/Proton_exchange_membrane_fuel_cellhttp://en.wikipedia.org/wiki/Sulfonic_acidhttp://en.wikipedia.org/wiki/Cationhttp://en.wikipedia.org/wiki/Artificial_membranehttp://en.wikipedia.org/wiki/Anionhttp://en.wikipedia.org/wiki/Electronhttp://en.wikipedia.org/wiki/Image:Nafion_structure.pnghttp://en.wikipedia.org/wiki/Electronhttp://en.wikipedia.org/wiki/Anionhttp://en.wikipedia.org/wiki/Artificial_membranehttp://en.wikipedia.org/wiki/Cationhttp://en.wikipedia.org/wiki/Sulfonic_acidhttp://en.wikipedia.org/wiki/Proton_exchange_membrane_fuel_cellhttp://en.wikipedia.org/wiki/Proton_exchange_membrane_fuel_cellhttp://en.wikipedia.org/wiki/Proton_conductorhttp://en.wikipedia.org/wiki/Polytetrafluoroethylenehttp://en.wikipedia.org/wiki/Ionomerhttp://en.wikipedia.org/wiki/DuPonthttp://en.wikipedia.org/wiki/1960shttp://en.wikipedia.org/wiki/Copolymer
  • 7/31/2019 Polymer Ionics Introduction

    28/44

    History of PE research

    It was already established that

    polyethers can interract with

    various salts and this properties

    was largely used in organometallic

    chemistry

    In 1973 - dr. P.V.Wright described

    conducting properties of

    poly(ethylene oxide)-salt systems

    without solvent.

    Photos during - ISPE-2006, Foz do Igua, Brazil

    We wish to report the preparation of

  • 7/31/2019 Polymer Ionics Introduction

    29/44

    Photos during - ISPE-2006Foz do Igua

    Brazil

    The latter workers also observed that the

    dissolution of potassium iodide inpoly(ethylene oxide) disrupts thecrystallinity of the polymer producing anelastomeric material at room temperature.

    We wish to report the preparation ofcrystalline complexes of sodium andpotassium salts with poly(ethyleneoxide).

  • 7/31/2019 Polymer Ionics Introduction

    30/44

    Important observation

    The work of Iwamoto et al. and the extensive studies

    of alkali metal ion-cyclic ether complexes, indicate that

    the ether oxygen atoms interact directly with the

    cations and not with the anions as suggested byLundberg et al. in their solution study. Similarities in

    the infra-red spectra of the poly(ethylene oxide)

    complexes and the cyclic ether complexes suggest

    that the cations may be similarly disposed towards the

    oxygen atoms.

    P.V. Wright et al. POLYMER, 1973, Vol 14, November 589

  • 7/31/2019 Polymer Ionics Introduction

    31/44

    Photos duringISPE-2004

    MragowoPoland

  • 7/31/2019 Polymer Ionics Introduction

    32/44

    a.c. and d.c.conductivity results

    1 cal = 4.186 J

  • 7/31/2019 Polymer Ionics Introduction

    33/44

  • 7/31/2019 Polymer Ionics Introduction

    34/44

    ISPE-2004Mragowo-

    Poland

    M.B. Armand, in: Fast Ion transport in Solids, ed. W. Van Gool(North-Holland, Amsterdam, 1973)p. 665.

    " ...but it is realistic to expect that in a

    near future a whole set of electrolyteswill be available for either Li, Na or K.Especially thin film polymers will besuitable for an all solid state system, asa good contact is easily achieved withsoft materials..."

  • 7/31/2019 Polymer Ionics Introduction

    35/44

    In 1978 Prof. M. Armand showed the technological importanceof these new materials for storage energy devices.

    Interesting due to the reserach on lithium rechargeablesbateries, which can contain different films, also polymeric.Others applications also can be possible.

    Use of the alternative sources of energy as solar energy andwind, which generate the electricity. These need the low priceand high eficiency energy storage systems.

  • 7/31/2019 Polymer Ionics Introduction

    36/44

    Photos duringISPE-2004Mragowo

    Poland

  • 7/31/2019 Polymer Ionics Introduction

    37/44

    Polymeric electrolytes history

    D.Fauteux et al.Electrochim Acta, 40 (1995) 2185

  • 7/31/2019 Polymer Ionics Introduction

    38/44

    New class of materials

    Polymeric electrolytes (solid polymeric electrolytes;SPEs) are new class of solid state ionics

    Differences between polymeric electrolytes and ionicconducting materials as ceramics, glass, inorganiccrystals:

    a) Charge transport - below Tgb) Conductivity values 100-1000 times lower than

    other materials

  • 7/31/2019 Polymer Ionics Introduction

    39/44

    Flexibility of SPEs

    Important due to the volume change

    during the electrochemical cycling,

    Accommodation without physical

    degradation of the interfacial contacts

    frequently observed in crystalline or

    vitreous solid electrolytes

  • 7/31/2019 Polymer Ionics Introduction

    40/44

    Polymeric gels

    Polymeric gels may exist in two distinct phases, swollen and collapsed states - the volume of gels can decrease as much as 1000 times.

    Volume transition of gels occurs when the gels are stimulated by change ofchemical or physical factors such as temperature, solvent composition, pH, and

    electric field .

    The ability of gels to undergo such significant but reversible changes in volume inresponse to a precisely programmed stimulus allows unique new systems to bemade.

    The number of applications based on volume phase transitions of polymeric gelincreases continuously.

    Applications include temperature-sensitive gels and glucosesensitive gels for controlled delivery insulin

    systems [6], light triggered optical shutter [7], chemical sensors [8], and even an artificial pancreas [9].

    In such application, the knowledge of the diffusion coefficient of ions andmolecules as a fundamental measure of molecular mobility and electrostaticinteractions is of great importance.

    Physical Properties ofPolymeric GelsJ. P. Cohen Addad (Editor)

    ISBN: 978-0-471-93971-9Hardcover324 pagesDecember 1995

    http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=J.+P.+Cohen+Addadhttp://eu.wiley.com/WileyCDA/Section/id-302479.html?query=J.+P.+Cohen+Addadhttp://eu.wiley.com/WileyCDA/Section/id-302479.html?query=J.+P.+Cohen+Addadhttp://eu.wiley.com/WileyCDA/Section/id-302479.html?query=J.+P.+Cohen+Addad
  • 7/31/2019 Polymer Ionics Introduction

    41/44

    Gel electrolytes

    Polymers containing a low-molecular-

    weight fraction that assist ionic transport.

  • 7/31/2019 Polymer Ionics Introduction

    42/44

    Current state of art in the field ofpolymer electrolytes

    PEO-based polymeric electrolytes

    Modification of PEO

    Other polymers with PEO Conductivity of 10-2 S/cm

    Transparency

    Good adhesion to glass properties

    New salts

  • 7/31/2019 Polymer Ionics Introduction

    43/44

    Chemical and Physicalmodifications

    Grafted systems PEO with other polymers PEO on other polymers

    Plasticized systems Addition of plasticizers PVA, Glycerol, Ethylene glycol, etc.

    Composites-based system Addition of nanoparticles of Al2O3, TiO2, SiO2 etc. Addition of carbon nanotubes

  • 7/31/2019 Polymer Ionics Introduction

    44/44

    Advantages and Disadvantages

    Low crystallinity

    High conductivity

    Good stability

    Low glass transition temperature

    Transparency


Recommended