+ All Categories
Home > Documents > Polymer Materials

Polymer Materials

Date post: 04-Jun-2018
Category:
Upload: zakariya-zaki
View: 219 times
Download: 0 times
Share this document with a friend

of 18

Transcript
  • 8/13/2019 Polymer Materials

    1/18

    Introduction to BioMEMS & Medical Microdevices

    Polymer Materials

    Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by

    Dr. Steven S. Saliterman

  • 8/13/2019 Polymer Materials

    2/18

    Steven S. Saliterman, MD, FACP

    Polymer Composite Biomaterials

    Ramakrishna and et al. 2001

  • 8/13/2019 Polymer Materials

    3/18

    Steven S. Saliterman, MD, FACP

    Advantages of Polymers

    1. Improved and easier machinability.

    2. Optical transparency for certain detectionstrategies

    3. Biocompatibility.

    4. Acceptable thermal and electrical properties.

    5. Ability to enclose high-aspect-ratio

    microstructures.

    6. Ability for surface modification and

    functionalization.

  • 8/13/2019 Polymer Materials

    4/18

    Steven S. Saliterman, MD, FACP

    Polymerization

  • 8/13/2019 Polymer Materials

    5/18

    Steven S. Saliterman, MD, FACP

    Addition polymerization:

    Initiation, Free radicals,

    Propagation,

    Termination.

    Step-growth polymerization:

    Condensation polymers

    Photopolymerization

    Photoinitiators.

  • 8/13/2019 Polymer Materials

    6/18

    Steven S. Saliterman, MD, FACP

    Physical Properties

    Mechanical

    Electrical

    Optical

    Thermodynamic Kinetic

    Heat Transport

  • 8/13/2019 Polymer Materials

    7/18

    Steven S. Saliterman, MD, FACP

    Mechanical Properties

    Thermoplastics

    Liquid Crystal Polymers

    Rubbers or elastomers

    Lightly Crosslinked Thermosets

    Heavily crosslinked

    Cure

  • 8/13/2019 Polymer Materials

    8/18

    Steven S. Saliterman, MD, FACP

    Viscoelasticity

    Bower 2002

  • 8/13/2019 Polymer Materials

    9/18

    Steven S. Saliterman, MD, FACP

    Hookes Law

    =

    is the tensile stress (force/unit cross section),

    is Young's modulus of the material, and

    is the linear strain ( length/initial length).

    Where

    E

    e

    e

  • 8/13/2019 Polymer Materials

    10/18

    Steven S. Saliterman, MD, FACP

    Deviation from Ideal Elasticity Time and Temperature dependency of

    response: Boltzmann superposition principle.

    Yield or non-recovery of strain.

    Non-linearity of response.

    Large strains without fracture: Ductile fracture,

    Brittle fracture,

    Crack initiation and propagation, Crazing.

    Anisotropy of response.

  • 8/13/2019 Polymer Materials

    11/18

  • 8/13/2019 Polymer Materials

    12/18

    Steven S. Saliterman, MD, FACP

    Dielectric Constant

    The dielectric constant or relative

    permittivity of a polymer is defined as

    follows:

    =0V

    V

  • 8/13/2019 Polymer Materials

    13/18

    Steven S. Saliterman, MD, FACP

    Electrical Conductivity

    Intrinsically conductive based on -

    electron conjugation.

    Incorporated particles.

    Ion-impregnated (e.g. LiClO4-impregnated poly(ethylene oxide).

    -electron conjugation (e.g.poly(silanes).

  • 8/13/2019 Polymer Materials

    14/18

    Steven S. Saliterman, MD, FACP

    Semiconductor Doping

    Jastrzebski 1976

  • 8/13/2019 Polymer Materials

    15/18

    Steven S. Saliterman, MD, FACP

    Polymer Conduction

    HC

    CH

    HC

    trans-Polyacetylene

    CH

    HC

    CH

    CH2

    H2

    C

    CH2

    H2

    C

    CH2

    H2

    C

    CH2

    H2

    C

    CH2

    H2

    C

    Polyethyelene

  • 8/13/2019 Polymer Materials

    16/18

    Steven S. Saliterman, MD, FACP

    Polarons, Biopolarons & Solitons

    Mitchell 2004]

  • 8/13/2019 Polymer Materials

    17/18

    Steven S. Saliterman, MD, FACP

    Copolymers

    +

    *

    *x

    y

    n

    Cyclic olefin monomer Ethylene

    Cyclic olefin copolymer

    Catalyst

  • 8/13/2019 Polymer Materials

    18/18

    Steven S. Saliterman, MD, FACP

    Summary Polymers are attractive for bioMEMS:

    Improved and easier machinability. Optical transparency for certain detection strategies

    Biocompatibility.

    Acceptable thermal and electrical properties.

    Ability to enclose high-aspect-ratio microstructures. Ability for surface modification and functionalization.

    Soft fabrication techniques often utilizepolymer materials, both synthetic and natural.

    Biopolymers, including DNA and proteins arenatural polymers.


Recommended