+ All Categories
Home > Documents > Possibilities at the Luminosity Frontier: Physics Beyond the...

Possibilities at the Luminosity Frontier: Physics Beyond the...

Date post: 10-Jun-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
17
Chapter 4 2986 Possibilities at the Luminosity 2987 Frontier: Physics Beyond the 2988 Standard Model 2989 Conveners: Krishna Kumar and Michael Ramsey-Musolf 2990 4.1 Introduction 2991 It is natural to ask whether the envisioned machine parameters of the EIC could enable new 2992 discoveries in the broad subfield of Fundamental Symmetries (FS), which addresses one of 2993 the overarching goals of nuclear physics namely the exploration of the origin and evolution 2994 of visible matter in the early universe. The theoretical and experimental studies in this 2995 subfield are complementary to those of particle physics and cosmology. Indeed a broader 2996 categorization of the full range of initiatives that encompass the FS goals fall under the 2997 titles “Energy Frontier”, “Cosmic Frontier” and “Intensity/Precision Frontier”. 2998 The FS subfield of nuclear physics is part of intensity/precision frontier whose specific 2999 primary goal is the study of electroweak interactions of leptons and hadrons with progres- 3000 sively higher sensitivity. By comparing the measured interaction amplitudes with theoretical 3001 predictions within the framework of the Standard Model (SM) of strong, weak and electro- 3002 magnetic interactions, insights are gained into the symmetries and interactions of matter in 3003 the universe at its earliest moments of existence, indirectly accessing energy scales similar 3004 to, and sometimes beyond, the reach of the highest energy accelerators. 3005 The EIC offers a unique new combination of experimental probes given the high center- 3006 of-mass energy, high luminosity and the ability to polarize the electron and hadron beams. 3007 Electron-hadron collisions would be analyzed by a state-of-the-art hermetic detector package 3008 with high efficiency and resolution. In this section we explore new FS measurements that 3009 become possible with these capabilities, the physics impact of potential measurements, and 3010 the experimental requirements to enable the measurements. 3011 Electroweak interaction studies at the EIC can also be used to probe novel aspects of 3012 nucleon structure via measurements of spin observables constructed from weak interaction 3013 amplitudes mediated by the W and Z bosons. Indeed, some parity-violating observables be- 3014 come accessible that have never before been measured. These measurements are considered 3015 in detail in Chap. 2.2 along with other fundamental observables that probe the longitudinal 3016 spin structure of the nucleon. 3017 107
Transcript
Page 1: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

Chapter 42986

Possibilities at the Luminosity2987

Frontier: Physics Beyond the2988

Standard Model2989

Conveners: Krishna Kumar and Michael Ramsey-Musolf2990

4.1 Introduction2991

It is natural to ask whether the envisioned machine parameters of the EIC could enable new2992

discoveries in the broad subfield of Fundamental Symmetries (FS), which addresses one of2993

the overarching goals of nuclear physics namely the exploration of the origin and evolution2994

of visible matter in the early universe. The theoretical and experimental studies in this2995

subfield are complementary to those of particle physics and cosmology. Indeed a broader2996

categorization of the full range of initiatives that encompass the FS goals fall under the2997

titles “Energy Frontier”, “Cosmic Frontier” and “Intensity/Precision Frontier”.2998

The FS subfield of nuclear physics is part of intensity/precision frontier whose specific2999

primary goal is the study of electroweak interactions of leptons and hadrons with progres-3000

sively higher sensitivity. By comparing the measured interaction amplitudes with theoretical3001

predictions within the framework of the Standard Model (SM) of strong, weak and electro-3002

magnetic interactions, insights are gained into the symmetries and interactions of matter in3003

the universe at its earliest moments of existence, indirectly accessing energy scales similar3004

to, and sometimes beyond, the reach of the highest energy accelerators.3005

The EIC offers a unique new combination of experimental probes given the high center-3006

of-mass energy, high luminosity and the ability to polarize the electron and hadron beams.3007

Electron-hadron collisions would be analyzed by a state-of-the-art hermetic detector package3008

with high efficiency and resolution. In this section we explore new FS measurements that3009

become possible with these capabilities, the physics impact of potential measurements, and3010

the experimental requirements to enable the measurements.3011

Electroweak interaction studies at the EIC can also be used to probe novel aspects of3012

nucleon structure via measurements of spin observables constructed from weak interaction3013

amplitudes mediated by the W and Z bosons. Indeed, some parity-violating observables be-3014

come accessible that have never before been measured. These measurements are considered3015

in detail in Chap. 2.2 along with other fundamental observables that probe the longitudinal3016

spin structure of the nucleon.3017

107

Page 2: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

4.2 Specific Opportunities in Electroweak Physics3018

4.2.1 Charged Lepton Flavor Violation3019

With the discovery of neutrino oscillations, we now know that lepton flavor is not a con-3020

served quantity in fundamental interactions. It is natural to ask whether lepton flavor3021

non-conservation can be observed in charged lepton interactions. In addition, the impli-3022

cation of neutrino mass leads to the fundamental question of whether neutrinos are their3023

own anti-particles (Majorana neutrinos) which could have profound implications for the3024

origin of the matter-antimatter asymmetry in the universe. Speculative new theories of3025

the early universe that predict Majorana neutrinos often also predict observable rates of3026

charged lepton flavor violation (CLFV). Searches for CLFV are thus one of the most sen-3027

sitive accelerator-based low energy probes of the dynamics of the early universe and the3028

physics of the smallest length scales, in a manner complementary to searches for new physics3029

at the energy frontier at the Large Hadron Collider.3030

The most sensitive CLFV searches to date have come from searches for the neutrinoless3031

conversion of stopped muons to electrons in nuclei, searches for the rare decay of a free muon3032

to an electron and photon, and searches for the rare decay of a kaon to an electron and3033

muon. The limits from these processes, though extremely sensitive, all involve the e ↔ µ3034

transition. Speculative CLFV theories can predict enhanced rates for e ↔ τ transitions.3035

Existing limits for the e ↔ τ transition come from searches for rare τ decays at the high3036

luminosity e+e− colliders at a center of mass energy of 5 to 10 GeV, the so-called B-factories.3037

In lepton-hadron interactions, one could search for the rare cases where an electron3038

converts to a muon or tau lepton, or a muon converts to a tau lepton. However, this is3039

impossible to observe due to large and irreducible background in fixed target experiments.3040

The only successful such searches for e→ τ transitions have been carried out at the HERA3041

electron-hadron collider experiments ZEUS and H1. In a collider environment, the event3042

topology for rare signal events can be differentiated from conventional electroweak deep3043

inelastic scattering (DIS) events [246, 247, 248]3044

The CLFV process could be mediated by a hypothesized new heavy boson known as a3045

leptoquark, which carries both lepton and baryon quantum numbers and appears naturally3046

in many SM extensions such as Grand Unified Theories, supersymmetry, and compositeness3047

and technicolor models (for a concise review, see [249]). Figure 4.1 shows the Feynman3048

diagrams that could be responsible for the CLFV transition that might be observed at3049

an EIC. The most recent published search by H1 finds no evidence for CLFV e → τ3050

transitions [180], which can in turn be converted to a limit on the mass and the couplings3051

of leptoquarks in specific SM extensions [250].3052

A high energy, high luminosity EIC, with 100 to 1000 times the accumulated luminos-3053

ity of HERA experiments would allow a large increase in sensitivity. A recent study has3054

shown that an EIC with 90 GeV center-of-mass energy could surpass the current limits3055

with an integrated luminosity of 10 fb−1 [251]. The study also showed that the EIC could3056

compete or surpass the updated leptoquark limits from rare CLFV tau decays for a subset3057

of quark flavor-diagonal couplings. A follow up study beyond this including knowledge of3058

inefficiencies from H1 and ZEUS collaboration for τ reconstruction indicates [252] that these3059

estimates are too optimistic by a factors of 10-20, thus requiring 100− 200 fb−1 luminosity3060

integrated over the EIC lifetime. At the highest possible luminosities envisioned for the3061

EIC, these luminosities are deemed achievable. Over the lifetime of the EIC, the e → τ3062

reach would thus be comparable to the reach of rare τ decays at future high luminosity3063

108

Page 3: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

Figure 4.1: Feynman diagrams for e → τ scattering processes via leptoquarks, which carryfermion number F = 3B + L equal to 0 or ±2 [251]

super-B factories.3064

It must be emphasized that the unambiguous observation of a CLFV process would3065

be a paradigm-shifting discovery in subatomic physics, with wide-ranging implications for3066

nuclear physics, particle physics and cosmology. It is quite possible that future potential3067

discoveries at the energy and cosmic frontiers could make CLFV searches at the EIC even3068

more compelling.3069

4.2.2 Precision Measurements of Weak Neutral Current Couplings3070

A comprehensive strategy to indirectly probe for new high energy dynamics via sensitivetests of electroweak interactions at the intensity frontier must also include precision mea-surements of flavor-diagonal weak neutral current interactions mediated by the Z boson. Forelectron-hadron interactions at Q2 � M2

Z , weak neutral current amplitudes are accessedvia parity violation, since pseudoscalar observables sensitive to weak-electromagnetic inter-ference terms can be constructed from the product of vector and axial-vector electron andquark electroweak currents. The parity-violating part of the electron-hadron interaction atQ2 �M2

Z can be given in terms of phenomenological couplings Cij

LPV =GF√

2[eγµγ5e(C1uuγµu+ C1ddγµd) + eγµe(C2uuγµγ5u+ C2ddγµγ5d)]

with additional terms as required for the heavy quarks. Here C1j (C2j) gives the vector3071

(axial-vector) coupling to the jth quark.3072

Within the SM context, each coupling constant is precisely predicted since they are3073

all functions of the weak mixing angle sin2 θW . Over the past two decades, the C1i’s have3074

been measured with steadily improving precision in table-top atomic parity violation exper-3075

iments and in fixed target parity-violating electron scattering experiments, most recently3076

at Jefferson Laboratory (JLab). Comparing these measurements to SM predictions has3077

produced strong constraints on new high energy dynamics, such as limits on TeV-scale3078

heavy Z’ bosons and certain classes of interactions in supersymmetric theories, in a manner3079

complementary to direct searches at colliders [253, 254].3080

At the EIC, the availability of high luminosity collisions of polarized electrons with3081

polarized 1H and 2H would allow the construction of parity-violating observables that are3082

sensitive to all four semi-leptonic coupling constants introduced above. The observable with3083

the best sensitivity to cleanly measure coupling constants without significant theoretical3084

109

Page 4: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

APV (Cs)

E158

SLAC

LEP

Moller (Jlab)

QWEAK (Jlab)

SOLID (Jlab)

EIC

(statistical errors only)

ν-DIS

-3 -2 -1 0 1 2 3

0.230

0.232

0.234

0.236

0.238

0.240

0.242

log10(Q [GeV])

sin

2 θ

W

eff (

Q)

Figure 4.2: Projected statistical uncertainties on the sin2 θW in a series of Q2 bins (√s = 140

GeV, 200 fb−1.) The black points are published results while the blue points are projectionsfrom the JLab program.

uncertainty is APV in e−2H collisions. APV is constructed by averaging over the hadron3085

polarization and measuring the fractional difference in the deep inelastic scattering (DIS)3086

rate for right-handed vs left-handed electron bunches.3087

The collider environment and the hermetic detector package at high luminosity will3088

allow precision measurements of APV over a wide kinematic range. In particular, the EIC3089

will provide the opportunity to make highly precise measurements of APV at high values of3090

the 4-momentum transfer Q2, and in the range 0.2<∼x<∼ 0.5 for the fraction of the nucleon3091

momentum carried by the struck quark Bjorken-x, such that hadronic uncertainties from3092

limited knowledge of parton distribution functions and higher-twist effects are expected to3093

be negligible.3094

By mapping APV as a function of Q2 and the inelasticity of the scattered electron y3095

(something that is very challenging to do in fixed target experiments), a clean separation of3096

two linear combination of couplings namely 2C1u−C1d and 2C2u−C2d will become feasible3097

as a function of Q2. Thus, at the highest luminosities and center-of-mass energies envisioned3098

at the EIC, very precise measurements of these combinations can be achieved at a series of3099

Q2 values, providing an important and complementary validation of the electroweak theory3100

at the quantum loop level. Figure 4.2 shows a first estimate of projected uncertainties on3101

the weak mixing angle extracted from such a dataset [252], for a center of mass energy3102

of 140 GeV and an integrated luminosity of 200 fb−1. Effect of radiative corrections and3103

detector effects need to be considered in future to further refine this study.3104

A unique feature of DIS APV measurements is the sensitivity to the C2i coupling con-3105

stants which involve the amplitudes with axial-vector quark currents. While the C2i’s are3106

kinematically accessible at large scattering angle measurements in fixed target elastic elec-3107

tron scattering, axial-hadronic radiative correction uncertainties cloud the interpretation of3108

the measurements in terms of fundamental electroweak physics. Parity-violating DIS using3109

2H is the only practical way to measure one combination accurately, namely 2C2u − C2d.3110

110

Page 5: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

qq

qZ

V Aγ

q

-

Z’ couples to quarks;electron couplings ~ 0

Figure 4.3: Feynman diagram for an amplitude with a vector electron current and axial-vectorhadron current which would be sensitive to a heavy new vector boson that couples to quarksand has no couplings to leptons. [255]

New experiments have been proposed at JLab to constrain this combination to better than3111

10%. At the highest envisioned luminosities, the EIC would offer the opportunity to further3112

improve on this constraint by a factor of 2 to 3.3113

One example of the importance of achieving sensitive constraints on the C2i couplings3114

is depicted in Fig. 4.3, which shows how a heavy Z′ boson (predicted in many SM exten-3115

sions) could introduce an additional amplitude and induce a deviation in the measured3116

C2i couplings [255]. A remarkable feature of this amplitude is the fact it is sensitive to3117

the Z′ boson even in the case that it might not couple to leptons (so-called lepto-phobic3118

Z′). The limits on the existence of such bosons from other precision weak neutral current3119

measurements as well as from colliders is very weak because all signatures require non-zero3120

lepton-Z′ couplings. Note that this amplitude cannot contribute to any tree-level ampli-3121

tudes nor amplitudes involving the C1i couplings at the quantum loop level. The projected3122

uncertainty from the JLab measurements will be sensitive to a lepto-phobic Z′ with a mass3123

<∼ 150 GeV, significantly better than the current limit from indirect searches when there is3124

no significant Z-Z′ mixing.3125

The JLab extraction will rely on a simultaneous fit of electroweak couplings, higher-twist3126

effects and violation of charge symmetry to a series of APV measurements in narrow x and3127

Q2 bins. It is highly motivated to find ways to improve the sensitivity to the C2i couplings3128

further, given its unique sensitivity for TeV-scale dynamics such as the aforementioned3129

Z′ bosons. The kinematical range for the APV measurement at the EIC would enable a3130

significantly improved statistical sensitivity in the extraction of the C2i couplings. Apart3131

from statistical reach, the EIC measurements will have the added advantage of being at3132

significantly higher range of Q2 so that higher-twist effects should be totally negligible.3133

A study of the statistical reach shows that an EIC measurement can match the statis-3134

tical sensitivity of the 12 GeV JLab measurement with ∼ 75 fb−1. It is also worth noting3135

that the EIC measurements will be statistics-limited, unlike the JLab measurement. The3136

need for precision polarimetry, the limiting factor in fixed target measurements, will be sig-3137

nificantly less important at the corresponding EIC measurement because 2C2u−C2d would3138

be extracted by studying the variation of APV as a function of the kinematic parameter3139

namely the fractional energy loss y. Thus, with an integrated luminosity of several 1003140

fb−1 in phase II of the EIC, the precision could be improved by a further factor of 2 to 3.3141

Depending on the discoveries at the LHC over the next decade, it is quite possible that such3142

sensitivity to C2i couplings, which is quite unique, would prove to be critical to unravel the3143

111

Page 6: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

nature of TeV-scale dynamics.3144

4.3 EIC Requirements for Electroweak Physics Measurements3145

For the CLFV e → τ transition search, it was pointed out that the collider environment3146

facilitates separating potential signal events from conventional DIS events, as demonstrated3147

by successful searches carried out at modest integrated luminosity at HERA. This is because3148

the lepton in the final state tends to be isolated at low Q2 from the hadron jet. The detector3149

will have to be suitably designed so as to allow high energy electron identification at high3150

Q2 where when it might be buried in the jet fragment.3151

In addition, compared to HERA, it is reasonable to expect that the EIC detector will3152

have significant technological enhancements that will allow increased sensitivity, and im-3153

proved background rejection. The momentum resolution for tracks and the granularity of3154

the calorimeter will be improved. Detector coverage will extend down to much smaller3155

angles. Most importantly, a vertex detector is envisioned which will greatly improve the3156

robustness of the search. Since the lifetime of the τ lepton is 290 fs, for the typical energies3157

expected for signal events the decay length will be between a few 100 µm to several mm,3158

which will allow displaced vertices to be easily identified.3159

For the flavor-diagonal precision electroweak measurements, the apparatus being de-3160

signed will be adequate to select the events required to make the precision asymmetry3161

measurements. The challenge will be in controlling normalization errors, particularly, the3162

electron beam polarization. For the anticipated precision of the APV measurements, the3163

electron beam polarization must be monitored to significantly better than 1%. At the com-3164

pletion of the JLab12 program, it is expected that techniques will be developed to monitor3165

the beam polarization at the level of 0.5%. It will be necessary to transfer this technology3166

to the collider environment.3167

112

Page 7: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

Acknowledgment3778

This document is a result of a community wide effort. We particularly thank the fol-3779

lowing colleagues for their contributions to the preparation of this document:3780

J. L. Albacete (IPNO, Universite Paris-Sud 11, CNRS/IN2P3)3781

M. Anselmino (Torino University & INFN)3782

N. Armesto (University of Santiago de Campostella)3783

A. Bacchetta (University of Pavia)3784

T. Burton (Brookhaven National Lab)3785

N.-B. Chang(Shandong University)3786

W.-T. Deng (Frankfurt U., FIAS & Shandong University)3787

A. Dumitru (Baruch College, CUNY)3788

R. Dupre (CEA, Centre de Saclay)3789

S. Fazio (Brookhaven National Lab)3790

V. Guzey (Jefferson Lab)3791

H. Hakobyan(Universidad Tecnica Federico Santa Maria)3792

Y. Hao (Brookhaven National Lab)3793

D. Hasch (INFN, Frascatti)3794

M. Huang(Duke University)3795

C. Hyde (Old Dominion University)3796

B. Kopeliovich (Universidad Tecnica Federico Santa Maria)3797

K. Kumericki (University of Zagreb)3798

M. Lamont (Brookhaven National Lab)3799

T. Lappi (University of Jyvaskyla)3800

J.-H. Lee (Brookhaven National Lab)3801

Y. Lee (Brookhaven National Lab)3802

E. M. Levin (Tel Aviv University & Universidad Tecnica Federico Santa Marıa)3803

F.-L. Lin (Brookhaven National Lab)3804

V. Litvinenko (Brookhaven National Lab)3805

C. Marquet (CERN)3806

A. Metz (Temple University)3807

V. S. Morozov (Jefferson Lab)3808

D. Muller (Ruhr-University Bochum)3809

P. Nadel-Turonski (Jefferson Lab)3810

A. Prokudin (Jefferson Lab)3811

V. Ptitsyn, (Brookhaven National Lab)3812

X. Qian (Caltech)3813

R. Sassot (University de Buenos Aires)3814

G. Schnell (University of Basque Country, Bilbao)3815

P. Schweitzer (University of Connecticut)3816

M. Stratmann (Brookhaven National Lab)3817

M. Sullivan (SLAC)3818

S. Taneja (Stony Brook University & Dalhousie University)3819

T. Toll (Brookhaven National Lab)3820

D. Trbojevic (Brookhaven National Lab)3821

R. Venugopalan (Brookhaven National Lab)3822

138

Page 8: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

X. N. Wang (Lawrence Berkeley National Lab & Central China Normal University)3823

B.-W. Xiao (Central China Normal University)3824

Y.-H. Zhang (Jefferson Lab)3825

L. Zheng (Brookhaven National Lab)3826

139

Page 9: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

References3827

[1] NSAC Long Range Plan (2007), http://science.energy.gov/np/nsac/.3828

[2] D. Boer et al., (2011), arXiv:1108.1713, 547 pages, A report on the joint BNL/INT/Jlab3829

program on the science case for an Electron-Ion Collider, September 13 to November 19, 2010,3830

Institute for Nuclear Theory, Seattle/ v2 with minor changes, matches printed version.3831

[3] M. Gluck, E. Reya, and A. Vogt, Eur.Phys.J. C5, 461 (1998), arXiv:hep-ph/9806404.3832

[4] P. Jimenez-Delgado and E. Reya, Phys. Rev. D79, 074023 (2009), arXiv:0810.4274.3833

[5] European Muon Collaboration, J. Ashman et al., Phys. Lett. B206, 364 (1988).3834

[6] P. Hagler, Phys. Rept. 490, 49 (2010), arXiv:0912.5483.3835

[7] A. V. Belitsky, X.-d. Ji, and F. Yuan, Phys. Rev. D69, 074014 (2004), arXiv:hep-ph/0307383.3836

[8] M. Hillery, R. O’Connell, M. Scully, and E. P. Wigner, Phys.Rept. 106, 121 (1984).3837

[9] Y. L. Dokshitzer, Sov.Phys.JETP 46, 641 (1977).3838

[10] V. Gribov and L. Lipatov, Sov.J.Nucl.Phys. 15, 438 (1972).3839

[11] G. Altarelli and G. Parisi, Nucl.Phys. B126, 298 (1977).3840

[12] E. Zijlstra and W. van Neerven, Nucl.Phys. B417, 61 (1994).3841

[13] R. Mertig and W. van Neerven, Z.Phys. C70, 637 (1996), arXiv:hep-ph/9506451.3842

[14] W. Vogelsang, Phys. Rev. D54, 2023 (1996), arXiv:hep-ph/9512218.3843

[15] A. Vogt, S. Moch, M. Rogal, and J. Vermaseren, Nucl.Phys.Proc.Suppl. 183, 155 (2008),3844

arXiv:0807.1238.3845

[16] R. L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990).3846

[17] X.-D. Ji, Phys. Rev. Lett. 78, 610 (1997), arXiv:hep-ph/9603249.3847

[18] M. Wakamatsu, Phys. Rev. D81, 114010 (2010), arXiv:1004.0268.3848

[19] X. Ji, X. Xiong, and F. Yuan, (2012), arXiv:1202.2843.3849

[20] M. Wakamatsu, Nuovo Cim. C035N2, 247 (2012).3850

[21] European Muon Collaboration, J. Ashman et al., Nucl.Phys. B328, 1 (1989).3851

[22] F. Close and R. Roberts, Phys. Rev. Lett. 60, 1471 (1988).3852

[23] F. Close and R. Roberts, Phys. Lett. B316, 165 (1993), arXiv:hep-ph/9306289.3853

[24] Spin Muon Collaboration, B. Adeva et al., Phys. Rev. D58, 112001 (1998).3854

[25] COMPASS Collaboration, V. Alexakhin et al., Phys. Lett. B647, 8 (2007), arXiv:hep-3855

ex/0609038.3856

[26] COMPASS Collaboration, M. G. Alekseev et al., Phys. Lett. B690, 466 (2010),3857

arXiv:1001.4654.3858

140

Page 10: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

[27] HERMES Collaboration, K. Ackerstaff et al., Phys. Lett. B404, 383 (1997), arXiv:hep-3859

ex/9703005.3860

[28] HERMES Collaboration, A. Airapetian et al., Phys. Rev. D75, 012007 (2007), arXiv:hep-3861

ex/0609039.3862

[29] Jefferson Lab Hall A Collaboration, X. Zheng et al., Phys. Rev. C70, 065207 (2004),3863

arXiv:nucl-ex/0405006.3864

[30] CLAS Collaboration, K. Dharmawardane et al., Phys. Lett. B641, 11 (2006), arXiv:nucl-3865

ex/0605028.3866

[31] E142 Collaboration, P. Anthony et al., Phys. Rev. D54, 6620 (1996), arXiv:hep-ex/9610007.3867

[32] E143 collaboration, K. Abe et al., Phys. Rev. D58, 112003 (1998), arXiv:hep-ph/9802357.3868

[33] E154 Collaboration, K. Abe et al., Phys. Rev. Lett. 79, 26 (1997), arXiv:hep-ex/9705012.3869

[34] E155 Collaboration, P. Anthony et al., Phys. Lett. B463, 339 (1999), arXiv:hep-ex/9904002.3870

[35] E155 Collaboration, P. Anthony et al., Phys. Lett. B493, 19 (2000), arXiv:hep-ph/0007248.3871

[36] M. Hirai, S. Kumano, T.-H. Nagai, and K. Sudoh, Phys. Rev. D75, 094009 (2007), arXiv:hep-3872

ph/0702250.3873

[37] D. de Florian, R. Sassot, and M. Stratmann, Phys. Rev. D76, 074033 (2007), arXiv:0707.1506.3874

[38] D. de Florian, R. Sassot, and M. Stratmann, Phys. Rev. D75, 114010 (2007), arXiv:hep-3875

ph/0703242.3876

[39] S. Albino, B. Kniehl, and G. Kramer, Nucl.Phys. B803, 42 (2008), arXiv:0803.2768.3877

[40] Spin Muon Collaboration, B. Adeva et al., Phys. Lett. B420, 180 (1998), arXiv:hep-3878

ex/9711008.3879

[41] COMPASS Collaboration, M. Alekseev et al., Phys. Lett. B660, 458 (2008), arXiv:0707.4077.3880

[42] COMPASS Collaboration, M. Alekseev et al., Phys. Lett. B693, 227 (2010), arXiv:1007.4061.3881

[43] HERMES Collaboration, A. Airapetian et al., Phys. Rev. D71, 012003 (2005), arXiv:hep-3882

ex/0407032.3883

[44] PHENIX Collaboration, S. Adler et al., Phys. Rev. Lett. 93, 202002 (2004), arXiv:hep-3884

ex/0404027.3885

[45] PHENIX Collaboration, A. Adare et al., Phys. Rev. D76, 051106 (2007), arXiv:0704.3599.3886

[46] PHENIX Collaboration, A. Adare et al., Phys. Rev. Lett. 103, 012003 (2009), arXiv:0810.0694.3887

[47] STAR Collaboration, B. Abelev et al., Phys. Rev. D80, 111108 (2009), arXiv:0911.2773.3888

[48] STAR Collaboration, B. Abelev et al., Phys. Rev. Lett. 97, 252001 (2006), arXiv:hep-3889

ex/0608030.3890

[49] STAR Collaboration, B. Abelev et al., Phys. Rev. Lett. 100, 232003 (2008), arXiv:0710.2048.3891

[50] STAR Collaboration, M. Sarsour, AIP Conf.Proc. 1149, 389 (2009), arXiv:0901.4061.3892

[51] STAR Collaboration, P. Djawotho, J.Phys.Conf.Ser. 295, 012061 (2011).3893

[52] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Phys. Rev. Lett. 101, 0720013894

(2008), arXiv:0804.0422.3895

[53] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Phys. Rev. D80, 034030 (2009),3896

arXiv:0904.3821.3897

[54] S. Kumano, Phys. Rept. 303, 183 (1998).3898

141

Page 11: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

[55] G. Bunce, N. Saito, J. Soffer, and W. Vogelsang, Ann.Rev.Nucl.Part.Sci. 50, 525 (2000),3899

arXiv:hep-ph/0007218, To be published in Dec. 2000 by Annual Reviews.3900

[56] PHENIX Collaboration, A. Adare et al., Phys. Rev. Lett. 106, 062001 (2011), arXiv:1009.0505.3901

[57] STAR Collaboration, M. Aggarwal et al., Phys. Rev. Lett. 106, 062002 (2011),3902

arXiv:1009.0326.3903

[58] D. de Florian and W. Vogelsang, Phys. Rev. D81, 094020 (2010), arXiv:1003.4533.3904

[59] N. Cabibbo, E. C. Swallow, and R. Winston, Ann.Rev.Nucl.Part.Sci. 53, 39 (2003), arXiv:hep-3905

ph/0307298.3906

[60] M. J. Savage and J. Walden, Phys. Rev. D55, 5376 (1997), arXiv:hep-ph/9611210.3907

[61] S.-L. Zhu, G. Sacco, and M. Ramsey-Musolf, Phys. Rev. D66, 034021 (2002), arXiv:hep-3908

ph/0201179.3909

[62] P. G. Ratcliffe, Czech.J.Phys. 54, B11 (2004), arXiv:hep-ph/0402063.3910

[63] S. Sasaki and T. Yamazaki, Phys. Rev. D79, 074508 (2009), arXiv:0811.1406.3911

[64] E. Leader, A. V. Sidorov, and D. B. Stamenov, Phys. Rev. D84, 014002 (2011),3912

arXiv:1103.5979.3913

[65] E. C. Aschenauer, R. Sassot, and M. Stratmann, Phys. Rev. D86, 054020 (2012),3914

arXiv:1206.6014.3915

[66] L. Mankiewicz, A. Schafer, and M. Veltri, Comput.Phys.Commun. 71, 305 (1992).3916

[67] J. Bjorken, Phys. Rev. 179, 1547 (1969).3917

[68] M. Anselmino et al., J. Phys. Conf. Ser. 295, 012062 (2011), arXiv:1012.3565.3918

[69] HERMES Collaboration, A. Airapetian et al., Phys. Rev. Lett. 94, 012002 (2005), arXiv:hep-3919

ex/0408013.3920

[70] COMPASS Collaboration, M. Alekseev et al., Phys. Lett. B673, 127 (2009), arXiv:0802.2160.3921

[71] The Jefferson Lab Hall A Collaboration, X. Qian et al., Phys. Rev. Lett. 107, 072003 (2011),3922

arXiv:1106.0363, 6 pages, 2 figures, 2 tables, published in PRL.3923

[72] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Phys. Lett. B530, 99 (2002).3924

[73] J. C. Collins, Phys. Lett. B536, 43 (2002).3925

[74] A. V. Belitsky, X. Ji, and F. Yuan, Nucl. Phys. B656, 165 (2003).3926

[75] D. Boer, P. J. Mulders, and F. Pijlman, Nucl. Phys. B667, 201 (2003), arXiv:hep-ph/0303034.3927

[76] X. Ji, J.-W. Qiu, W. Vogelsang, and F. Yuan, Phys. Rev. Lett. 97, 082002 (2006).3928

[77] A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, JHEP 08, 023 (2008).3929

[78] S. Meissner, A. Metz, and K. Goeke, Phys. Rev. D76, 034002 (2007), arXiv:hep-ph/0703176.3930

[79] J. Arrington, K. de Jager, and C. F. Perdrisat, J.Phys.Conf.Ser. 299, 012002 (2011),3931

arXiv:1102.2463.3932

[80] M. Strikman and C. Weiss, Phys. Rev. D69, 054012 (2004), arXiv:hep-ph/0308191.3933

[81] M. Strikman and C. Weiss, Phys. Rev. D80, 114029 (2009), arXiv:0906.3267.3934

[82] M. Burkardt, Int. J. Mod. Phys. A18, 173 (2003), arXiv:hep-ph/0207047.3935

[83] M. Diehl, Eur. Phys. J. C25, 223 (2002), arXiv:hep-ph/0205208.3936

[84] M. Burkardt, Nucl. Phys. A735, 185 (2004), arXiv:hep-ph/0302144.3937

[85] L. Gamberg and M. Schlegel, AIP Conf.Proc. 1374, 309 (2011), arXiv:1012.3395.3938

142

Page 12: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

[86] M. Burkardt and G. Schnell, Phys. Rev. D74, 013002 (2006), arXiv:hep-ph/0510249.3939

[87] X.-D. Ji, J.Phys.G G24, 1181 (1998), arXiv:hep-ph/9807358.3940

[88] M. Burkardt, Phys. Rev. D72, 094020 (2005), arXiv:hep-ph/0505189.3941

[89] J. C. Collins, L. Frankfurt, and M. Strikman, Phys. Rev. D56, 2982 (1997).3942

[90] J. C. Collins and A. Freund, Phys. Rev. D59, 074009 (1999).3943

[91] K. Kumericki, D. Mueller, and K. Passek-Kumericki, Nucl. Phys. B794, 244 (2008), arXiv:hep-3944

ph/0703179.3945

[92] A. Belitsky and A. Radyushkin, Phys. Rept. 418, 1 (2005), arXiv:hep-ph/0504030.3946

[93] V. Braun and A. Manashov, (2011), arXiv:1111.6765.3947

[94] A. V. Belitsky, D. Mueller, and A. Kirchner, Nucl. Phys. B629, 323 (2002).3948

[95] B. Pire, L. Szymanowski, and J. Wagner, (2011), arXiv:1111.5913.3949

[96] D. Ivanov, A. Schafer, L. Szymanowski, and G. Krasnikov, Eur. Phys. J. C34, 297 (2004),3950

arXiv:hep-ph/0401131.3951

[97] M. Diehl and W. Kugler, Eur. Phys. J. C52, 933 (2007), arXiv:0708.1121.3952

[98] S. Goloskokov and P. Kroll, Eur.Phys.J. C50, 829 (2007), arXiv:hep-ph/0611290.3953

[99] M. Diehl, W. Kugler, A. Schafer, and C. Weiss, Phys. Rev. D72, 034034 (2005), arXiv:hep-3954

ph/0506171.3955

[100] S. Goloskokov and P. Kroll, Eur. Phys. J. C53, 367 (2008), arXiv:0708.3569.3956

[101] S. Ahmad, G. R. Goldstein, and S. Liuti, Phys. Rev. D79, 054014 (2009), arXiv:0805.3568.3957

[102] S. Goloskokov and P. Kroll, Eur.Phys.J. A47, 112 (2011), arXiv:1106.4897.3958

[103] N. Warkentin, M. Diehl, D. Ivanov, and A. Schafer, Eur.Phys.J. A32, 273 (2007), arXiv:hep-3959

ph/0703148.3960

[104] M. El Beiyad et al., Phys. Lett. B688, 154 (2010), arXiv:1001.4491.3961

[105] D. Amrath, M. Diehl, and J.-P. Lansberg, Eur.Phys.J. C58, 179 (2008), arXiv:0807.4474.3962

[106] K. Kumericki and D. Mueller, Nucl. Phys. B841, 1 (2010), arXiv:0904.0458.3963

[107] M. Diehl, arXiv:1206.0844, Proceedings of DIS 2012.3964

[108] S. Fazio, Proceedings of DIS 2012.3965

[109] A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller, Phys. Rev. D70, 117504 (2004),3966

arXiv:hep-ph/0410050.3967

[110] J. Bartels and H. Kowalski, Eur.Phys.J. C19, 693 (2001), arXiv:hep-ph/0010345.3968

[111] K. Kumericki and D. Muller, arXiv:1205.6967, Proceedings of DIS 2012.3969

[112] J. Koempel, P. Kroll, A. Metz, and J. Zhou, Phys. Rev. D85, 051502 (2012), arXiv:1112.1334.3970

[113] A. Malki et al., Phys. Rev. C65, 015207 (2002), arXiv:nucl-ex/0005006.3971

[114] R. Subedi et al., Science 320, 1476 (2008), arXiv:0908.1514.3972

[115] L. Frankfurt, M. Sargsian, and M. Strikman, Int.J.Mod.Phys. A23, 2991 (2008),3973

arXiv:0806.4412.3974

[116] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).3975

[117] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).3976

[118] E. Iancu, A. Leonidov, and L. D. McLerran, Phys. Lett. B510, 133 (2001).3977

143

Page 13: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

[119] I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).3978

[120] E. Kuraev, L. Lipatov, and V. S. Fadin, Sov. Phys. JETP 45, 199 (1977).3979

[121] M. Froissart, Phys. Rev. 123, 1053 (1961).3980

[122] I. Balitsky, Nucl. Phys. B463, 99 (1996).3981

[123] I. Balitsky, Nucl. Phys. B463, 99 (1996).3982

[124] Y. V. Kovchegov, Phys. Rev. D60, 034008 (1999).3983

[125] Y. V. Kovchegov, Phys. Rev. D61, 074018 (2000).3984

[126] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rept. 100, 1 (1983).3985

[127] A. H. Mueller and J. w. Qiu, Nucl. Phys. B268, 427 (1986).3986

[128] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, Phys. Rev. D59, 014014 (1998).3987

[129] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, Phys. Rev. D59, 034007 (1999).3988

[130] J. Jalilian-Marian, A. Kovner, and H. Weigert, Phys. Rev. D59, 014015 (1999).3989

[131] E. Iancu, A. Leonidov, and L. D. McLerran, Nucl. Phys. A692, 583 (2001).3990

[132] E. Iancu, K. Itakura, and L. McLerran, Nucl. Phys. A708, 327 (2002).3991

[133] A. H. Mueller and D. N. Triantafyllopoulos, Nucl. Phys. B640, 331 (2002).3992

[134] L. D. McLerran and R. Venugopalan, Phys. Rev. D49, 2233 (1994).3993

[135] Y. V. Kovchegov, Phys. Rev. D54, 5463 (1996).3994

[136] J. Jalilian-Marian, A. Kovner, L. D. McLerran, and H. Weigert, Phys. Rev. D55, 5414 (1997).3995

[137] A. H. Mueller, Nucl. Phys. B335, 115 (1990).3996

[138] J. L. Albacete, Phys. Rev. Lett. 99, 262301 (2007).3997

[139] J. L. Albacete, N. Armesto, J. G. Milhano, and C. A. Salgado, Phys. Rev. D80, 0340313998

(2009), arXiv:0902.1112.3999

[140] J. L. Albacete et al., arXiv:1012.4408.4000

[141] K. Golec-Biernat and M. Wusthoff, Phys. Rev. D59, 014017 (1999).4001

[142] K. J. Golec-Biernat and M. Wusthoff, Phys. Rev. D60, 114023 (1999).4002

[143] J. Jalilian-Marian and Y. V. Kovchegov, Prog. Part. Nucl. Phys. 56, 104 (2006).4003

[144] H. Weigert, Prog. Part. Nucl. Phys. 55, 461 (2005), arXiv:hep-ph/0501087.4004

[145] E. Iancu and R. Venugopalan, Quark Gluon Plasma 3 (World Scientific, 2004), hep-4005

ph/0303204.4006

[146] F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan, Ann.Rev.Nucl.Part.Sci. 60, 4634007

(2010), arXiv:1002.0333.4008

[147] Y. V. Kovchegov and E. Levin, Quantum Chromodynamics at High Energy (Cambridge Uni-4009

versity Press, 2012).4010

[148] H. Kowalski and D. Teaney, Phys. Rev. D68, 114005 (2003).4011

[149] N. N. Nikolaev and B. Zakharov, Phys. Lett. B332, 184 (1994), arXiv:hep-ph/9403243.4012

[150] K. J. Eskola, H. Paukkunen, and C. A. Salgado, JHEP 04, 065 (2009), arXiv:0902.4154.4013

[151] K. J. Eskola, V. J. Kolhinen, and C. A. Salgado, Eur. Phys. J. C9, 61 (1999).4014

[152] M. Hirai, S. Kumano, and T. H. Nagai, Phys. Rev. C76, 065207 (2007), arXiv:0709.3038.4015

144

Page 14: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

[153] D. de Florian and R. Sassot, Phys. Rev. D69, 074028 (2004), arXiv:hep-ph/0311227.4016

[154] I. Balitsky, Phys. Rev. D75, 014001 (2007), arXiv:hep-ph/0609105.4017

[155] Y. V. Kovchegov and H. Weigert, Nucl. Phys. A784, 188 (2007).4018

[156] E. Gardi, J. Kuokkanen, K. Rummukainen, and H. Weigert, Nucl. Phys. A784, 282 (2007).4019

[157] J. L. Albacete and Y. V. Kovchegov, Phys. Rev. D75, 125021 (2007).4020

[158] L. L. Frankfurt and M. I. Strikman, Phys. Rept. 160, 235 (1988).4021

[159] A. P. Bukhvostov, G. V. Frolov, L. N. Lipatov, and E. A. Kuraev, Nucl. Phys. B258, 6014022

(1985).4023

[160] J. Bartels, K. Golec-Biernat, and L. Motyka, Phys. Rev. D81, 054017 (2010), arXiv:0911.1935.4024

[161] K. J. Golec-Biernat and M. Wusthoff, Phys. Rev. D59, 014017 (1998), arXiv:hep-ph/9807513.4025

[162] S. Munier, A. M. Stasto, and A. H. Mueller, Nucl. Phys. B603, 427 (2001).4026

[163] H. Abramowicz and A. Caldwell, Rev.Mod.Phys. 71, 1275 (1999), arXiv:hep-ex/9903037.4027

[164] A. Martin, W. Stirling, R. Thorne, and G. Watt, Eur. Phys. J. C63, 189 (2009),4028

arXiv:0901.0002.4029

[165] D. Kharzeev, E. Levin, and L. McLerran, Nucl. Phys. A748, 627 (2005).4030

[166] F. Dominguez, C. Marquet, B.-W. Xiao, and F. Yuan, Phys. Rev. D83, 105005 (2011),4031

arXiv:1101.0715.4032

[167] F. Dominguez, B.-W. Xiao, and F. Yuan, Phys. Rev. Lett. 106, 022301 (2011).4033

[168] PHENIX Collaboration, A. Adare et al., Phys. Rev. Lett. 107, 172301 (2011), arXiv:1105.5112.4034

[169] STAR Collaboration, E. Braidot, Nucl.Phys. A854, 168 (2011), arXiv:1008.3989.4035

[170] T. Sjostrand, S. Mrenna, and P. Z. Skands, JHEP 05, 026 (2006), arXiv:hep-ph/0603175.4036

[171] S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252, hep-ph/0012252.4037

[172] B. Kopeliovich, Phys. Rev. C68, 044906 (2003), arXiv:nucl-th/0306044.4038

[173] H. Kowalski, T. Lappi, C. Marquet, and R. Venugopalan, Phys. Rev. C78, 045201 (2008),4039

arXiv:0805.4071.4040

[174] H. Kowalski, T. Lappi, and R. Venugopalan, Phys. Rev. Lett. 100, 022303 (2008).4041

[175] W. Buchmuller, M. McDermott, and A. Hebecker, Nucl.Phys. B487, 283 (1997), arXiv:hep-4042

ph/9607290.4043

[176] Y. V. Kovchegov and L. D. McLerran, Phys. Rev. D60, 054025 (1999).4044

[177] L. Frankfurt, V. Guzey, and M. Strikman, Phys. Lett. B586, 41 (2004).4045

[178] L. Frankfurt, V. Guzey, and M. Strikman, Phys.Rept. 512, 255 (2012), arXiv:1106.2091.4046

[179] H. Kowalski, L. Motyka, and G. Watt, Phys. Rev. D74, 074016 (2006).4047

[180] F. Aaron et al., Eur.Phys.J. C72, 1836 (2012).4048

[181] CLAS Collaboration, W. Brooks et al., AIP Conf.Proc. 1441, 211 (2012), arXiv:1110.3268.4049

[182] European Muon Collaboration, J. J. Aubert et al., Phys. Lett. B123, 275 (1983).4050

[183] J. W. Qiu and I. Vitev, Phys. Rev. Lett. 93, 262301 (2004), hep-ph/0309094.4051

[184] D. d’Enterria, (2009), arXiv:0902.2011.4052

[185] X.-N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).4053

145

Page 15: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

[186] X.-f. Guo and X.-N. Wang, Phys. Rev. Lett. 85, 3591 (2000).4054

[187] PHENIX Collaboration, S. Tarafdar, (2012), arXiv:1208.0456.4055

[188] T. Kneesch, B. A. Kniehl, G. Kramer, and I. Schienbein, Nucl. Phys. B799, 34 (2008),4056

arXiv:0712.0481.4057

[189] B. Z. Kopeliovich, J. Nemchik, E. Predazzi, and A. Hayashigaki, Nucl. Phys. A740, 2114058

(2004).4059

[190] A. Accardi, D. Grunewald, V. Muccifora, and H. J. Pirner, Nucl. Phys. A761, 67 (2005).4060

[191] X. Guo and J. Li, (2007), arXiv:0705.4211.4061

[192] E. Wang and X.-N. Wang, Phys. Rev. Lett. 89, 162301 (2002).4062

[193] B.-W. Zhang, E.-k. Wang, and X.-N. Wang, Nucl.Phys. A757, 493 (2005), arXiv:hep-4063

ph/0412060.4064

[194] F. Caola, S. Forte, and J. Rojo, Nucl. Phys. A854, 32 (2011).4065

[195] BRAHMS Collaboration, I. Arsene et al., Phys. Rev. Lett. 93, 242303 (2004), arXiv:nucl-4066

ex/0403005, Four pages, four figures. Published in PRL. Figures 1 and 2 have been updated,4067

and several changes made to the text Journal-ref: Phys. Rev. Lett. 93 (2004) 242303.4068

[196] PHENIX Collaboration, S. S. Adler et al., Phys. Rev. Lett. 98, 172302 (2007).4069

[197] STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 97, 152302 (2006), arXiv:nucl-4070

ex/0602011.4071

[198] A. Dumitru, A. Hayashigaki, and J. Jalilian-Marian, Nucl.Phys. A765, 464 (2006), arXiv:hep-4072

ph/0506308.4073

[199] J. L. Albacete and C. Marquet, Nucl.Phys. A854, 154 (2011), arXiv:1009.3215.4074

[200] D. Kharzeev, E. Levin, and L. McLerran, Phys. Lett. B561, 93 (2003), arXiv:hep-ph/0210332.4075

[201] J. L. Albacete et al., Phys. Rev. D71, 014003 (2005).4076

[202] D. Kharzeev, Y. V. Kovchegov, and K. Tuchin, Phys. Rev. D68, 094013 (2003).4077

[203] D. Kharzeev, Y. V. Kovchegov, and K. Tuchin, Phys. Lett. B599, 23 (2004).4078

[204] V. Guzey, M. Strikman, and W. Vogelsang, Phys. Lett. B603, 173 (2004), arXiv:hep-4079

ph/0407201.4080

[205] B. Kopeliovich et al., Phys. Rev. C72, 054606 (2005), arXiv:hep-ph/0501260.4081

[206] C. Marquet, Nucl. Phys. A796, 41 (2007).4082

[207] J. L. Albacete and C. Marquet, Phys. Rev. Lett. 105, 162301 (2010).4083

[208] B. Z. Kopeliovich, A. V. Tarasov, and A. Schafer, Phys. Rev. C59, 1609 (1999), arXiv:hep-4084

ph/9808378.4085

[209] A. Accardi et al., arXiv:hep-ph/0308248.4086

[210] PHENIX Collaboration, K. Adcox et al., Nucl. Phys. A757, 184 (2005).4087

[211] STAR Collaboration, J. Adams et al., Nucl. Phys. A757, 102 (2005).4088

[212] PHOBOS Collaboration, B. B. Back et al., Nucl. Phys. A757, 28 (2005).4089

[213] BRAHMS Collaboration, I. Arsene et al., Nucl. Phys. A757, 1 (2005).4090

[214] M. Gyulassy and L. McLerran, Nucl. Phys. A750, 30 (2005).4091

[215] I. Tserruya, (2011), arXiv:1110.4047.4092

[216] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998), hep-th/9711200.4093

146

Page 16: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

[217] O. Aharony et al., Phys. Rept. 323, 183 (2000), hep-th/9905111.4094

[218] P. F. Kolb and U. W. Heinz, (2003), arXiv:nucl-th/0305084, Invited review for ’Quark Gluon4095

Plasma 3’. Editors: R.C. Hwa and X.N. Wang, World Scientific, Singapore.4096

[219] D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001), arXiv:nucl-4097

th/0011058.4098

[220] M. Luzum and P. Romatschke, Phys. Rev. C79, 039903 (2009).4099

[221] A. Kovner, L. D. McLerran, and H. Weigert, Phys. Rev. D52, 6231 (1995), arXiv:hep-4100

ph/9502289.4101

[222] A. Krasnitz and R. Venugopalan, Nucl.Phys. B557, 237 (1999), arXiv:hep-ph/9809433.4102

[223] S. Mrowczynski, Phys. Lett. B314, 118 (1993).4103

[224] P. B. Arnold, J. Lenaghan, and G. D. Moore, JHEP 0308, 002 (2003), arXiv:hep-ph/0307325,4104

Erratum added online, sep/29/2004.4105

[225] Y. V. Kovchegov, (2011), arXiv:1112.5403.4106

[226] P. M. Chesler and L. G. Yaffe, Phys. Rev. Lett. 106, 021601 (2011), arXiv:1011.3562.4107

[227] J. Bartels, K. J. Golec-Biernat, and H. Kowalski, Phys. Rev. D66, 014001 (2002).4108

[228] J. L. Albacete and A. Dumitru, arXiv:arXiv:1011.5161 [hep-ph]., arXiv:1011.5161.4109

[229] PHOBOS Collaboration, B. B. Back et al., Phys. Rev. C65, 061901 (2002).4110

[230] The ALICE, B. Abelev et al., Phys. Rev. Lett. 105, 252301 (2010), arXiv:1011.3916.4111

[231] B. Schenke, P. Tribedy, and R. Venugopalan, (2012), arXiv:1206.6805.4112

[232] B. Schenke, P. Tribedy, and R. Venugopalan, (2012), arXiv:1202.6646.4113

[233] J. Y. Ollitrault, Phys. Rev. D46, 229 (1992).4114

[234] D. Kharzeev, E. Levin, and M. Nardi, Nucl. Phys. A743, 329 (2004).4115

[235] G. Policastro, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 87, 081601 (2001), hep-4116

th/0104066.4117

[236] P. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 94, 111601 (2005), hep-4118

th/0405231.4119

[237] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. C85, 024901 (2012), arXiv:1109.6289.4120

[238] PHENIX Collaboration, A. Adare et al., Phys. Rev. Lett. 107, 252301 (2011), arXiv:1105.3928.4121

[239] C. Marquet and H. Weigert, Nucl.Phys. A843, 68 (2010), arXiv:1003.0813.4122

[240] HERMES Collaboration, A. Airapetian et al., Nucl. Phys. B780, 1 (2007).4123

[241] W. K. Brooks and H. Hakobyan, Nucl. Phys. A830, 361c (2009).4124

[242] B. Kopeliovich, J. Nemchik, and E. Predazzi, arXiv:nucl-th/9607036, nucl-th/9607036.4125

[243] HERMES Collaboration, A. Airapetian et al., Eur.Phys.J. C20, 479 (2001), arXiv:hep-4126

ex/0012049.4127

[244] W.-t. Deng and X.-N. Wang, Phys. Rev. C81, 024902 (2010), arXiv:0910.3403.4128

[245] L. A. Anchordoqui, A. M. Cooper-Sarkar, D. Hooper, and S. Sarkar, Phys. Rev. D74, 0430084129

(2006), arXiv:hep-ph/0605086.4130

[246] H1 Collaboration, C. Adloff et al., Eur. Phys. J. C11, 447 (1999), arXiv:hep-ex/9907002.4131

[247] ZEUS Collaboration, S. Chekanov et al., Eur. Phys. J. C44, 463 (2005), arXiv:hep-ex/0501070.4132

147

Page 17: Possibilities at the Luminosity Frontier: Physics Beyond the …skipper.physics.sunysb.edu/~abhay/eicwp12/draft/chapter4.pdf · 2012-10-08 · 3030 at the energy frontier at the Large

[248] H1 Collaboration, A. Aktas et al., Eur. Phys. J. C52, 833 (2007), arXiv:hep-ex/0703004.4133

[249] C. H. Albright and M.-C. Chen, Phys. Rev. D77, 113010 (2008), arXiv:0802.4228.4134

[250] W. Buchmuller, R. Ruckl, and D. Wyler, Phys. Lett. B191, 442 (1987).4135

[251] M. Gonderinger and M. J. Ramsey-Musolf, JHEP 1011, 045 (2010), arXiv:1006.5063.4136

[252] D. Boer et al., (2011), arXiv:1108.1713.4137

[253] M. Ramsey-Musolf, Phys. Rev. C60, 015501 (1999).4138

[254] R. D. Young, R. D. Carlini, A. W. Thomas, and J. Roche, Phys. Rev. Lett. 99, 122003 (2007).4139

[255] M. R. Buckley and M. J. Ramsey-Musolf, (2012).4140

[256] F. Jacquet and A. Blondel, DESY 79/48 (1979), in Proceedings of the Study of an ep facility4141

for Europe, U. Amaldi (ed.).4142

[257] U. Bassler and G. Bernardi, NIM A361, 197 (1995), arXiv:hep-ex/9412004.4143

[258] http://www.desy.de/~pol2000/Welcome.html.4144

[259] https://wiki.bnl.gov/rhicspin/Polarimetry.4145

[260] G. Gaycken et al., NIM A560, 44 (2006).4146

[261] C. Hu-Guo et al., JINST 4, P04012 (2009).4147

148


Recommended