+ All Categories
Home > Documents > Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques...

Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques...

Date post: 14-Oct-2020
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
20
1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins 1- Compaction - Diagenesis 2- Fluid circulation in sedimentary basins 3- The case of the organic matter What is organic matter ? Evolution of organic matter and geohistory Petroleum system in the light of basin evolution 2 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Diagenesis - introduction High porosity Contact with water of the depositional environment Interstitial waters present (interaction with sediment) Onset of compaction and cementation Porosity decrease Secondary porosity possible Deshydratation of hydrated minerals Recrystallisation Pressure (1bar/4m) & Temperature (1°C/30m) Gradients METAMORPHISM DIAGENESIS 0km 5km 1km 10km water Rm: 1 bar = 10 5 Pa ; 1kbar = 100 Mpa at 4km depth: pressure ± 4 kbar = 400 Mpa Rm: for thermal gradient 30°C/km: at 4km depth: temperature ± 120°C
Transcript
Page 1: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

1

1

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Post-depositional evolution of sedimentary basins

1- Compaction - Diagenesis 2- Fluid circulation in sedimentary basins 3- The case of the organic matter

What is organic matter ? Evolution of organic matter and geohistory Petroleum system in the light of basin evolution

2

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Diagenesis - introduction

High porosity Contact with water of the depositional environment Interstitial waters present (interaction with sediment) Onset of compaction and cementation

Porosity decrease Secondary porosity possible

Deshydratation of hydrated minerals

Recrystallisation

Pres

sure

(1ba

r/4m

) & T

empe

ratu

re (1

°C/3

0m) G

radi

ents

MET

AM

ORP

HIS

M

DIA

GEN

ESIS

0km

5km

1km

10km

water

DIA

GEN

ESIS

Rm: 1 bar = 105 Pa ; 1kbar = 100 Mpa at 4km depth: pressure ± 4 kbar = 400 Mpa Rm: for thermal gradient 30°C/km: at 4km depth: temperature ± 120°C

Page 2: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

2

3

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Compaction of sediments

Physical transformation of sediments

Re-organization of grains (or minerals) with increasing compaction => fabric

Bennet, 1981

Compaction => porosity loss with depth

increasing compaction

Compaction => density increase with depth

Compaction => deformation = volume loss

Porosity loss => permeability loss 3

London Clay (UK) of Eocene age with around 200m burial www.dpr.csiro.au

Early Cretaceous Muderong Shale (Australia) with ~1.1.km burial www.dpr.csiro.au

Jurassic shale (North Sea) from ~3 km depth www.dpr.csiro.au

4

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Compaction => Porosity vs burial

Porosity (in %)

Burr

ial (

km)

0 1

2 3

Compaction of sediments is a progressive process. It can be approached by the porosity reduction with depth of burrial

Early compaction of shales

Wide range of carbonate porosity

Compaction of sandstones

Average sediment porosity curve Porosity curve for different lithologies

Note

varying

Scale !

Giles, 1997

Page 3: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

3

5

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Diagenesis

Chemical (mineralogical) transformation of sediments

- Dissolution and precipitation • over short distances -> intergranular • at very shallow surface pressure and temperature

- Mineralogical phase change (e.g. : illite -> chlorite; Aragonite -> calcite)

- Biological interference => Bacterial activity enhances precipitation (e.g. Algae, …)

-  Strong influence on porosity: • cementation decreases porosity • dissolution increases porosity (Karst)

Burial (time

+ de

pth)

- Early cementation close to water/sediment interface

6

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Diagenesis : cementation

6

Cementation => porosity decrease

Cementation => Progressive process

Cathodoluminescence : shows successive generations of calcite crystallisation

Calcite cementation develops from inter-granular contacts and fills the

remaining porosity.

Natural light Cathodoluminescence

porosity cement

porosity

Page 4: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

4

7

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Carbonate sediment diagenesis

Dolomitization 2CaCO3 + Mg2+ -> CaMg (CO3)2 + Ca2++

Mixing zone

Marine water

Karsts = dissolution Fresh water Sea level

change

Mg2+

CaCO3 CaMg (CO3)2

Gravity flow

Meteoritic water

Dolomite (euhedras) replace calcite ooids

ooids

Dolomite euhedra in limestone

Dolomitization => porosity increase

Numerous and complex processes => 1 example

8

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Fluid circulation in basins

Eruption of mud due to accidental drilling in overpressured layer (Indonesia)

Still erupting 105t mud per day, Several km2 covered by 20m of mud

Page 5: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

5

9

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Fluid circulation in basins = fluid pressure gradient • Pressure gradient between formations => fluids move from zones of higher pressure toward zones of lower pressure • Causes of fluid pressure variation (overpressure) ?

Fluid can move freely within the permeable

formation, during burrial => equilibrium =>

Fluid Pr. = hydrostatic Pr.

Seal fm.

Fluid remains trapped by the impervious Fm. (seal) => fluid pressure increases in

the permeable Fm => Fluid Pr. > hydrostatic Pr.

permeable fm.

1: Increasing load 2: Increasing fluid volume

Seal fm.

Fluid volume increases due to clay deshydratation, HC generation, diagenesis,

connection to overpressure reservoir => fluid pressure increases in the permeable Fm

=> Fluid Pr. > hydrostatic Pr.

10

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Evolution of pore fluid pressure in basins

Converse & al 2000

hydrostatique

lithostatique

Experimental values of pore fluid pressures in wells

1 atmosphere = 1 bar = 105 Pa

Water ρ= 1; hydrostatic gradient = 0,1 MPa/m

Sediment ρ=2,3 ; lithostatic gradient = 0,23MPa/m

Domain of fluid pressure evolution with depth

Page 6: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

6

11

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Fluid pressure increase and failure

Normal stress σ

Shear Stress

τ Failure envelope for

a sedimentary rock

σ3 σ2 σ1

Effective stress = Total stress - fluid pressure fluid pressure increases => effective stress decreases

normal stress decrease => failure envelope => hydraulic fracturing

Failure => seal fracturing => fluid pressure release

12

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Faults and fluid transfer Fault can be a seal or a drain

Unsealed cataclastic slip band

Quartz sealed shear band

Labaume & Moretti 2001

Function of deformation mecanisms

Function of lithology alternance

Page 7: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

7

13

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Basin-scale fluid movement

14

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Compaction => Fluid explusion Compaction => Fluid explusion

© M

. Sé

rann

e

Page 8: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

8

15

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Polygonal faults

Lonergan & al. 1998

Polygonal faulting in sediment allows water expulsion through faults and compaction (Volume decrease) in sedimentary basins. Exple from the North Sea.

Compaction with stretching of the layer (left) in extensional basins. Compaction without stretching (right) most frequent. Associated with volume loss (grain repacking and fluid explulsion).

16

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Geometry & dynamics of polygonal faulting

Aurelien Gay 2002

Page 9: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

9

17

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Fluid expulsion structures: polygonal faults & chimneys

Chimneys (polygonal faults nodes) Polygonal faults network

Aurelien Gay 2002

18

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Fluid expulsion structures on sea-floor: pockmarks

2km

4km

4km

4km

Gay & al 2007

Page 10: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

10

19

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Fossil fluid expulsion structures: field analogues

Chimneys (« Terres Noires » Oxfordian, Nyons)

« Septaria », Digne Thrust nappe

Conduit (crystallization)

Ca CO3 concretion around conduit

20

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Synthesis : « plumbing system » of fluid expulsion

Aurelien Gay 2007

Which Fluids ? -  syndepositional water -  intersticial water -  Brines -  biogenic methane -  hydrocarbons

Page 11: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

11

21

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Fluid(s)-circulation(s)

21 Trave & al 1999

South Pyrenean Foreland basin 1st type of fluid

2nd type of fluid (meteoric)

3nd type of fluid (brines)

- Geochemical tracing (Sr, C13) distinguish marine and meteoric waters

- Precipitation of diagnostic minerals (dikite) => long distance fluid migration (basement)

-  Close relationship with tectonics

-  Retroaction of fluids on tectonics = lubricate thrusts planes

Rm: long-distance brine circulation in basins => Convective circulation =>Transport & precipitation along basin margins => Mineralizations (« MVT »)

22

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Basin-scale fluid circulation and mineralizations

A.E. Evans, 1993

Mississippi Valley Type deposits (MVT)

Overpressured, hot fluid escapes from deep parts of the basin and

moves upwards towards shallower, cooler parts, where it precipitates

ores. Exple: Pb / Zn in the Margin of the

Southeast Basin of France

Gravity-driven fluid flows from a hydraulic head in a highland area,

driving out and replenishing formation waters

Page 12: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

12

23

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Evolution of Organic Matter

24

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Evolution of organic matter in basins

Organic matter

kerogen HC (oil) HC (gas) Nothing left!

In basins, the increase of pressure and temperature is acquired by burial of sedimentary layers containing organic matter. It requires time (over geologic time scale). => Reconstruction of the Basin geohistory is pivotal!

Page 13: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

13

25

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Organic carbon cycle

Organic matter results from photosynthesis => sun energy

Quasi-balance between storage and emission of organic CO2

Unbalance comes from man-made emissions. 99% of OM is oxydized 0.4% of OM is preserved by burial to become Kerogen, then Hydrocarbons

26

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Evolution of organic matter

Carbon Enrichment

Type I: Sapropelic kerogen (algal)

Type III: humic kerogen (land-plants)

Oxygen loss

Hyd

roge

n lo

ss

Type II: Lipid-rich kerogen (marine phyto & zooplancton)

3 types of organic matter characterised by their content of C, H, O I : cyanobacteria & freshwater algae, anoxic lakes

II: marine plancton III: terrestrial plant matter

Each kerogen type evolves with (P,T) increase, expressed by oxygen and hydrogen loss, along distinct paths.

« Type IV » (altered, no economic interest)

Page 14: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

14

27

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

The current view is that primary microbial gas (predominantly methane with δ13C <-55‰) formed from decomposition of sedimentary organic matter accounts for ~20% of the world s natural gas resources and the rest is catagenetic oil-associated (30%) and deep metagenetic non-associated, thermogenic gas (50%) . Recently, experiments demonstrated that anaerobic biodegradation of oil results in formation of secondary microbial methane and such gas was documented in subsurface accumulations worldwide.

Hydrocarbon generated

Burrial (km)

Hydrocarbon formation function of burial of source rock.

Modified from Tissot & Velde 1978

Evolution of organic matter

primary microbial gas (± 20% vol)

Catagenic oil-associated gas (± 30% vol)

non-associated thermogenic gas (± 50% vol)

28

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Monitoring OM maturation and HC generation

Evolution of the rate of transformation of different kerogens, with time. It takes some 20 to 30 My before anything happens : this the time necessary for burial. Then fast transformation (15My) The inset give the thermal history (simple) Vitrinite is one component of OM with slow rate of transformation => used to calibrate maturation

Page 15: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

15

29

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Monitoring HC generation

Vitrinite evolution for three different thermal histories : 1= fast then slow burial, 2= Constant burial, 3= slow then fast burial

The Oil and Gas Windows are the domain where OM maturation has reached the appropriate conditions for oil and gas generation respectively. Passed the Gas window, all HC has disappeared.

Whence HC are generated they must migrate wher they can be kept safely!

Mode of burial (= basin geohistory) fast burial=> fast HC generation; slow burial => delayed HC generation. Fast rates of subsidence prefered!

30

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Monitoring maturation : Rock Eval pyrolysis

Am

ount

of

HC

S1 = the amount of free hydrocarbons (gas and oil) in the sample (in milligrams of hydrocarbon per gram of rock). If S1 >1 mg/g, it may be indicative of an oil show. S1 normally increases with depth. Contamination of samples by drilling fluids and mud can give an abnormally high value for S1. S2 = the amount of hydrocarbons generated through thermal cracking of nonvolatile organic matter. S2 is an indication of the quantity of hydrocarbons that the rock has the potential of producing should burial and maturation continue. This parameter normally decreases with burial depths >1 km. S3 = the amount of CO2 (in milligrams CO2 per gram of rock) produced during pyrolysis of kerogen. S3 is an indication of the amount of oxygen in the kerogen and is used to calculate the oxygen index (see below). Contamination of the samples should be suspected if abnormally high S3 values are obtained. High concentrations of carbonates that break down at lower temperatures than 390°C will also cause higher S3 values than expected. Tmax = the temperature at which the maximum release of hydrocarbons from cracking of kerogen occurs during pyrolysis (top of S2 peak). Tmax is an indication of the stage of maturation of the organic matter.

Page 16: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

16

31

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Gas shale

Oil shale

Tight Gas Reservoir

Bituminous sand

Coalbed Methane

Surface

Oil reservoir Gas reservoir

Different types of hydrocarbons 1/1

Liquid HC Gas HC

Conventional vs Unconventional = depends on the extraction process

Source rock

32

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Different types of hydrocarbons 2/2 Gas hydrates

BSR (bottom simulating reflector)

Kvenvolden & Barnard, 1988

1.5C

2C

40C

30C

20C

10C

0C

40C

30C

20C

10C

0C

40C

30C

20C

10C

0C

40C

30C

20C

10C

0C

4500

4000

3500

3000

2500

2000

1500

1000

500

sea level

3C

3C

4C

4C

7C13C

18CShelf

continentalslope

continentalrise

geothermal gradient = 27.3C/km

hydrate zone

Dep

th (m

)

free gas"BSR"

Modified after Kvenvolden & Baranrd, 1988

gas hydrates in sediment (core)

Page 17: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

17

33

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Burial of source-rock

Oil window

Gas window

Source rock

Burial curve (total subsidence history of each stratigraphic interval) in the Central Graben o the North Sea Assuming a geotherm constant through time, isotherms remain horizontal. The source rock is buried and enters the oil window in Paleocene time; it is presently in the gas window.

Modified after Selley 1980

34

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

200

Age des formations (en Millions d'années)180 160 140 120 100 80220240260280300 60 40 20 Actuel

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Prof

onde

ur (e

n km

)

�� � � � � � � �� � � � � � �

�� � � � � � � �� � � � �

P

ê� � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � e� � �� � � �� � � � �à��� � � � � � � � �� � � � � �ê� � � �� � � � � � � � � � �� � � � � � e� � �� � � � �à � � �� ��ê� � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � e� � �� � � � �à �� � � � �� � � � � � � t� n� � � � � � � � � �� � � � � � � � � � � � � � � Fr�

� � � � � � �

� � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � �� � �� � � � �

180

� � � � � � � �� � � � � � � �

� �

280

� � � � � � � �� � � � � � � �

160 140 120 100 80 60 40 20

� � � � � � � �� � � � �

� � � � �e� � �� � � �� � � � �

� �� �

� � � � � � � � � � � � �

200220240260 180

� � � � � � � �� � � � � � �� � � � � � �

280

� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � �

� � � � � � � �� � � � �

� � � � �e� � �� � � �� � � � �à

� �� �

� � � � � � � � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � �� � � � �� � �� � � � �� � �� � � � �� � �� � � � �� � �� � � � �� � �� � � � �� � �� � � � �� � �� � � � �� � �� � � � �� � �� � � � �� � �� � � � �� � �� � � � �� � �� � � � �� � �� � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� �� �� �

� � � � � � � �� � � � � � � �� � � � � � � �

Gaz de schistes dans les bassins languedociens ?

Page 18: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

18

35

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Oil systems : Passive margin Oil systems : Passive margin

Basin Modeling provides the kinematics, temperature history & distribution, timing of deformation (to allow migration toward reservoirs) Basin analysis => basin modeling

Burial history of different sediment m. (total subsidence curves), superimposed onto the thermal history (from basin modeling) => delineate the domain of oil window. The lower part of the synrift has now passed the oil window. If the tectonics has not allowed migration of the generated HC, they are now cracked. The HC found in the Tertiary cannot be generated in these Fm. They have migrated here.

Gabon margin

36

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Oil system in the W. African Margin

Source-rocks: •Synrift (type I and type II), •Early post-rift lagunal (type II), •Post-rift slope & delta (type II & type III)

Reservoirs: •clastic in syn-rift tilted blocks, •roll-over in Albian-Cenomanian carbonate platform •turbidites channels in Oligo-Miocene

Migration : • along syn-rift faults • laterally beneath salt layer • along growth faults (reactivated) • through tubidite channels

Page 19: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

19

37

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

Oil system : Foreland basin NW Canadian Foreland Basin

Creaney & Allan

Nordegg Fm Duvernay Fm

Source rock

geohistory

structure

seal

38

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

VRFOH�PpWDPRUSKLTXH

PDWLqUH�RUJDQLTXH

EUrFKHV�F{QHV�DOOXYLDX[

VLOWV�HW�DUJLOHV

ODFXVWUHV

JUqV�IOXYLDWLOHV

pYDSRULWHV

FDOFDLUH�SODWHIRUPH�PDULQH

PDUQR�FDOFDLUH�SODWHIRUPH�

PDUQHV��VLOWV

GH�SHQWH��

FKHQDX[�WXUELGLWHV

HDX

H[WUDSROp�SDU

VLVPLTXH�

DXWUHV�IRUDJHV

GRQQpHV�GH�IRUDJH

IRQG�GH

SXLWV

��

���NP��

NP

2XHVW %DVVLQ�GH�&DPSRV $WODQWLTXH)RUDJH�$ (VW

��

��

3OLRFqQH�$FWXHO0LRFqQH

0LRFqQH�LQI�

2OLJRFqQH

3DOpRFqQH�(RFqQH

$OELHQ

$OELHQ

$SWLHQ

$SWLHQ

$SWLHQ1pRFRPLHQ

1pRFRPLHQ

3UpFDPEULHQ

&UpWDFp�7HUPLQDO

&UpW�7HUP�

7HUWLDLUH

$FWXHO

6WUDWLJUDSKLH 3URIRQGHXU

�NP�

3URIRQGHXU��NP�

/LWKRORJLH

+LVWRLUH�GH�OHQIRXLVVHPHQW�GX�VRFOH

GH�OD�URFKH�PqUH�HW�GH�GLIIpUHQWHV�IRUPDWLRQV

$JH

�0D�

$JH��0D�

��

��

���

���

���

���

)RUDJH�$

)RUDJH�$

��� ����������������������������

��

IHQrWUH�j�KXLOH

IHQrWUH

j�JD]

$OELHQ

HQIRXLVVHPHQW�GXWRLW�GX�VRFOH

URFKH�PqUH

Page 20: Post-depositional evolution of sedimentary basins...1 1 Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne Post-depositional evolution of sedimentary basins

20

39

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Arc

hite

ctur

e de

s Ba

ssins

- M

iche

l Sér

anne

 Exercice Bassin de Campos    Le Bassin de Campos, dont on donne une coupe géologique simplifiée, se situe sur la marge continentale du SE du Brésil. Ce bassin produit des hydrocarbures dans des réservoirs marqués en noir sur la coupe. On connaît la colonne lithologique et stratigraphique au niveau du forage A, comportant les profondeurs des principales unités reconnues sur la coupe géologique. La sismique réflexion a permis d’extrapoler les parties les plus profondes du bassin (sous l’interruption de la colonne litho-stratigraphique du forage A). On possède une courbe de subsidence totale et d’enfouissement de différentes formations de ce forage. La sismique réfraction montre l’interface croûte/manteau à 20km de profondeur sous le forage, alors qu’elle se situe à 35km de profondeur vers l’intérieur des terres. On donne les valeurs de densité moyennes suivantes : eau : rw = 1 g/cm3 ; sédiments (moyenne) : rs = 2.3 g/cm3 asthénosphère : ra = 3.18 g/cm3  

Questions   • 1 - (sur 2 pts) Quelle est la subsidence totale au niveau du forage A? (signalez très brièvement les hypothèses que vous faites).   • 2 - (sur 4 pts) Cette subsidence totale au niveau du forage A est la résultante de deux composantes. Calculez la valeur de ses 2 composantes (pour simplifier, on se place dans le cas d’une isostasie locale).   • 3 - (sur 4 pts) Comparez les géométries, la chronologie par rapport à l'évolution de la marge, les causes et les effets des deux types de failles normales observées sur la coupe.   • 4 - (sur 5 pts) En vous appuyant sur les documents fournis (le récit du cours sera considéré hors-sujet), quelles sont les principales étapes de la formation et de l’évolution de ce bassin sédimentaire ? (répondez de manière précise mais concise).   • 5 - (sur 5 pts) Décrivez brièvement le système pétrolier (en utilisant les mots-clefs : matière organique, roche-mère, maturation, chronologie, fenêtre à huile, migration, réservoir, piège…) en relation avec les étapes de l'évolution géodynamique de la marge telles que vous les avez décrites en 4. Aidez-vous des courbes de subsidence et d’enfouissement.


Recommended