+ All Categories
Home > Documents > Potential Predictions of a -Flow Semi-Displacement Vessel ... Ommani.pdf · Semi-Displacement...

Potential Predictions of a -Flow Semi-Displacement Vessel ... Ommani.pdf · Semi-Displacement...

Date post: 19-Apr-2018
Category:
Upload: vanquynh
View: 221 times
Download: 5 times
Share this document with a friend
29
1 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani Predictions of a Semi-Displacement Vessel Including Applications to Calm-Water Broaching www.cesos.ntnu.no CeSOS Centre for Ships and Ocean Structures Babak Ommani CeSOS Conference 29-May-2013 Potential-Flow
Transcript

1 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Predictions of a

Semi-Displacement Vessel

Including Applications to

Calm-Water Broaching

www.cesos.ntnu.no CeSOS – Centre for Ships and Ocean Structures

Babak Ommani

CeSOS Conference

29-May-2013

Potential-Flow

2 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Semi-Displacement Vessels

Fabbri et al. 2009, INSEAN

0.4 ~ 1.2Fn

/Fn U Lg

3 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Semi-Displacement Vessels

Increase in the Role of Hydrodynamic Force Comparing to Hydrostatic

Conventional Semi-Displacement Planning Hydrofoil

Dynamic instability !!

Hydrostatic Hydrodynamic

Force

Submerged

Volume

Velocity

squared

4 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

General types of instability

Increasing Froude number

Broaching

Non-oscillatory

Cohen and Blount, 1986

5 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Calm-Water Broaching

Lugni et al. 2004, INSEAN

6 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Equations of Motion

𝑋 𝑌 𝑍

𝑥 𝑦

𝑧

𝐶𝐺

U

Sway

22

24

26

42

44

46

62

64

66

B

B

B

B

B

B

B

B

B

22

24

26

42

44

46

62

64

66

A

A

A

A

A

A

A

A

A

18 Coeffs.

acc. vel.

Roll

Yaw

Linear

decomposition

7 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Overview

• Introduction

• Numerical Implementation

• Advancing and Oscillating Flat Plate

• Linear Dynamic Stability Analysis

• Conclusions

8 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Numerical Implementation

• Potential flow

• Neumann-Kelvin Linearization

– Linearized Body Boundary Condition

• Mean body position

– Linearized Free-Surface Boundary Condition

• Mean free surface

– Initial Condition, Radiation Condition

• Linearized pressure on the body

• Forces and moments

Ux

2 0

p U gzt x

j j

S

F pn ds

9 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Numerical Implementation

• Rankine Panel Method

• Collocation Method

• Discretization

,( )

( )

,( )

S

S

G p qC p p q ds

n q

qG p q ds

n q

10 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Simplification

𝑋 𝑌 𝑍

𝑥 𝑦

𝑧

𝐶𝐺

• Transfer to center plane – Semi-Displacement vessel to a Flat Plate

𝐿

𝐻

U

11 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Oscillatory motion of a Plate

VS

BodyFS

XY

Z

x

y

z

Conservation of

Vorticity

• Time-domain solver – Fourth order Runge-Kutta

12 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Sway Motion

0.32

=H/L=0.2

Fn

0.96

=H/L=0.2

Fn

/L g

/L g

13 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Vessel Model

• Vessel M

Lugni et al. 2004, INSEAN

14 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Dynamic Stability Analysis

• Back to the simplified

model – Surface piercing flat plate

– Advancing and oscillating

• Hydrodynamic coefficients – Sway-yaw (8 coeffs.)

– Sway-yaw-roll (18 coeffs)

• Frequency and Froude

number dependent

Computed

Extrapolated

0 0( , )Fn

( , )Fn plane

15 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Dynamic Stability

• Sway-Yaw analysis, Computational

Domain

0 0( , )Fn

22

26

62

66

A

A

A

A

22

26

62

66

B

B

B

B

Stable

every where

st

ae

ia Harmonic

Motion

Sway-Yaw Free-system

response frequency

16 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Dynamic Stability

• Sway-Roll-Yaw analysis, 22

24

26

42

44

46

62

64

66

B

B

B

B

B

B

B

B

B

22

24

26

42

44

46

62

64

66

A

A

A

A

A

A

A

A

A

18 Coeffs.

0 0( , )Fn

Computational

Domain

4 3 2

4 3 2

1 0 0

C s C s C s

C s C

*

1 1,s s *

2 2,s s

Two Frequencies? Time-Domain

analysis is needed

17 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Dynamic Stability

• Sway-Roll-Yaw analysis, 22

24

26

42

44

46

62

64

66

B

B

B

B

B

B

B

B

B

22

24

26

42

44

46

62

64

66

A

A

A

A

A

A

A

A

A

18 Coeffs.

0 0( , )Fn

Computational

Domain

4 3 2

4 3 2

1 0 0

C s C s C s

C s C

*

1 1,s s *

2 2,s s

Sway-Yaw Free-system

response frequency

Two Frequencies? Time-Domain

analysis is needed

18 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Dynamic Stability

• Sway-Roll-Yaw analysis, 22

24

26

42

44

46

62

64

66

B

B

B

B

B

B

B

B

B

22

24

26

42

44

46

62

64

66

A

A

A

A

A

A

A

A

A

18 Coeffs.

Computational

Domain

4 3 2

4 3 2

1 0 0

C s C s C s

C s C

*

1 1,s s *

2 2,s s

Roll Free-system

response frequency

Stable

every where

Sway-Yaw Free-system

response frequency

Two Frequencies? Time-Domain

analysis is needed

19 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Dynamic Stability

• Sway-Roll-Yaw analysis, sensitivity

• Many uncertain parameters – Hydrodynamic coefficients

• Due to simplification

– Vessel geometrical properties

• Due to insufficient data GM KM KG

KGKM

GM

20 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Dynamic Stability

• Sway-Roll-Yaw analysis, sensitivity

(1 )A v A

21 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Dynamic Stability

• Sway-Roll-Yaw analysis, sensitivity Unstable

roots

22 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Dynamic Stability

• Sway-Roll-Yaw analysis, Computational

Domain

0.675KG

D

Computational

Domain

0.5KG

D

23 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Dynamic Stability

• Sway-Roll-Yaw analysis,

Computational

Domain

0.5KG

D

Sway-Yaw Free-system

response frequency

24 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Dynamic Stability

• Sway-Roll-Yaw analysis,

Computational

Domain

0.5KG

D

Sway-Yaw Free-system

response frequency

Roll Free-system

response frequency

25 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Dynamic Stability

• Sway-Roll-Yaw analysis,

Computational

Domain

0.5KG

D

Sway-Yaw Free-system

response frequency

Roll Free-system

response frequency

Unstable

System

11 0a

1Re( )s

*

1 1,s s

1Im( )s

Recorded Instability

26 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Dynamic Stability

• Sway-Roll-Yaw analysis,

Computational

Domain

0.5KG

D

Sway-Yaw Free-system

response frequency

Roll Free-system

response frequency

Unstable

System

11 0a

1Re( )s

*

1 1,s s

1Im( )s

27 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Conclusions

• A simplified hydrodynamic model is used for semi-

displacement vessel.

• Roll motion influences the dynamic stability in sway and

yaw.

• Cross coupling hydrodynamic coefficients matter.

• It seemed that high stiffness in Roll can cause instability in

sway-yaw!!

• It was not possible to capture instability induced by Loss

of restoring moment in Roll

• Simplified hydrodynamic model may be the reason

28 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

Thank you!

29 www.cesos.ntnu.no 29-May-2013, CeSOS Conference Babak Ommani

References

• Chapman, R. (1975), Numerical solution for hydrodynamic forces on a surface-piercong plate oscillating in yaw and sway, in

`Proc. 1st International Conference on Numerical Ship hydrodynamics', Bethesda, MD,USA, pp. 330-350.

• Fabbri, L., Di Memmo, A., Palini, M. and Lugni, C. (2009), Prova di manovrabilit�a su uno scafo semidislocante, Technical

Report 2009-084rt, INSEAN, Rome, Italy.

• Faltinsen, O.M. (2005). Hydrodynamics of High-Speed Marine Vehicles. New York: Cambridge University Press.

• Lugni, C., Colagrossi, A., Landrini, M. and Faltinsen, O. (2004), Experimental and numerical study of semi-displacement mono-

hull and catamaran in calm water and incident waves, in `Proc. of 25th Symposium on Naval Hydrodynamics', Canada.

• Ommani, Babak, and O. M. Faltinsen. 2011. “Study on Linear 3D Rankine Panel Method for Prediction of Semi-Displacement

Vessels’ Hydrodynamic Characteristics at High Speed.” In Proceedings of the 11th International Conference on Fast Sea

Transportation (FAST 2011). Honolulu, HI, USA.

• Ommani, Babak, O. M. Faltinsen, and C. Lugni. 2012. “Hydrodynamic Forces on a Semi-Displacement Vessel on Straight

Course with Drift Angle.” In Proceedings of the 10th International Conference on Hydrodynamics (ICHD). St. Petersburg,

Russia.

• Ommani, Babak, O. M. Faltinsen, 2013. “Linear dynamic stability analysis of a surface piercing plate advancing at high forward

speed.” Accepted for publication in, Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and

Arctic Engineering(OMAE2013). Nantes, France.

• van den Brug, J. B., Beukelman, w. and Prins, G. J. (1971), Hydrodynamic forces on a surface piercing at plate, Technical

Report 325, Delft University of Technology, Ship Building Labratory.


Recommended