+ All Categories
Home > Documents > Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004...

Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004...

Date post: 19-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
64
Power Density vs. Efficiency of Power Electronics Johann W. Kolar Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch
Transcript
Page 1: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

1/64

Power Density vs. Efficiency of Power Electronics

Johann W. Kolar

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory

www.pes.ee.ethz.ch

Page 2: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

2/64

► How It All Began ► Recognizing Power Density Barriers ► Multi-Objective Optimization ► Application Examples ► Generalization ► Conclusions

Outline

Page 3: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

3/64

How It All Began…

Page 4: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

4/64

1. ECPE Demonstrator Program Max. Power Density

Page 5: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

5/64

Demonstrator Program

Development of Ultra Compact Three-Phase Power Supplies

for

by ETH Zurich

Power Electronic Systems Laboratory

ETH Zentrum, ETL H22 Physikstrasse 3 CH-8044 Zurich

Note: 2004 !

Page 6: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

6/64

Demonstrator Program

2004 – 2006 Projects 1 - 3

Page 7: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

7/64

Roadmap of the PERC (Power Electronics Research Center), Japan, coordinated by the National Institute of Advanced Science and Technology

Page 8: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

8/64

System Aspects Multi-Chip Power Module Discrete Passive Components

IPEM Gate Drive Integration Current Sensor Integration Integrated Passives Planar Interconnections Novel Semicond. Techn. Advanced Cooling Concepts

09/2004 03/2005 12/2005 12/2006

10kW/l

20kW/l

50kW/l

System Aspects Thermal Integration EMI Filter Integration

!

Projects 1 - 3

25 GHz.W

Demonstrator Program 3~ AC/DC Power Supplies

Schedule

Page 9: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

9/64

Basic Project Objective Development of Ultra Compact Three-Phase AC/DC Utility Interfaces

Application Areas

■ Variable Speed AC Drives ■ IT Systems ■ Process Technology

Focus ■ Application of Advanced Power Semiconductor Technology (SiC) ■ Integration, and Advanced Cooling Techniques ■ 50kW/l ■ Efficiency, Power Density/Size ■ Consideration of Reliability, EMI Standards and Costs Reduction

Page 10: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

10/64

Project 1 Power Supply with 10kW/l Power Density

Tasks / Efforts

■ Evaluation of Circuit Topologies

■ Electronic Inductor Topology ■ Unity Power Factor Three-Phase PMW Rectifier

Page 11: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

11/64

3-Ф Unity Power Factor PMW Rectifier

New Technologies

COOLMOS / SiC-Diodes Micro-Channel Heat Sink High-Speed DSP-Control Flat Magnetics HBW & CMR Current Sensing

PO = 10 kW UN = 3-F 480VAC UDC = 800 VDC fS = 500 kHz

10 kW/dm3 10 kW/dm3 10 kW/dm3

Page 12: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

12/64

10 kW/dm3 3-Ф Unity Power Factor PMW Rectifier PO = 10 kW UN = 3-F 480VAC UDC = 800 VDC fS = 500 kHz

Page 13: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

13/64

EMC Input Filter

Electrolytic Capacitors

N 30%

30%

N 30% Power Circuit / Cooling

Partitioning of the Converter Volume

Main Share of Passive Components

10 kW/dm3

Page 14: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

14/64

“Red Brick Walls” in Power Electronics

J.W. Kolar, U. Drofenik, J. Biela, M.L. Heldwein, H. Ertl, T. Friedli and S.D. Round

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory

www.pes.ee.ethz.ch

Page 15: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

15/64

0.01

0.1

1

10

100

1000

1970 1980 1990 2000 2010 2020 2030

[5]

[43]

[17]

[15][11]

[14]

[7]

[13]

[10]

Year

Po

wer

den

sity

[k

W/d

m3]

[16]

3-phase AC-DC

Isolated DC-DC

1-phase AC-DC

3-phase AC-AC

Power Density Roadmap

“ Red Brick Walls “ in Power Electronics

[10] Dr. Ohashi, 2002/2006 ■ Requires Separate Consideration of Basic Converter Types

* AC/DC * DC/DC * DC/AC * AC/AC ■ Requires Definition of Cooling Concept

* Natural Convection * Forced Air Cooling * Water Cooling ■ Consider Systems NOT Modules

Page 16: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

16/64

Forced Convection Cooling Power Density Limit

► Ts = 90°C ρlim = 29 kW/dm3

► Ts = 135°C ρlim = 58 kW/dm3

CS

Olim

Vol

P

iO PP

CSPIT

P

CSPI

GVol

as

LossthCS

1

]dm

W[

13

CSPIT as

iLoss PP )1(

Ta = 45°C, CSPI = 20 WK-1dm-3

@ η = 97%

Page 17: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

17/64

Forced Convection Cooling Power Density Limit

► Ts = 90°C ρlim = 29 kW/dm3

► Ts = 135°C ρlim = 58 kW/dm3

CS

Olim

Vol

P

iO PP

]dm

W[

13

CSPIT as

iLoss PP )1(

Ta = 45°C, CSPI = 20 WK-1dm-3

@ η = 97%

Coupling of

Efficiency & Power Density

Page 18: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

18/64

2. ECPE Roadmap Initiative Power Density

Efficiency Costs etc.

Page 19: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

19/64

Page 20: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

20/64

Note: 2007 !

Page 21: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

21/64

Page 22: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

22/64

3. Efficiency (!) “THE” New Target

Page 23: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

23/64

► Requirements (1) Efficiency (2) Power Density (3) Costs

Page 24: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

24/64

4. Time to Come Up with a Theoretical Foundation Multi-Objective Optimization

Page 25: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

25/64

Power Electronics Performance Trends

─ Power Density [kW/dm3] ─ Power per Unit Weight [kW/kg] ─ Relative Costs [kW/$] ─ Relative Losses [%] ─ Failure Rate [h-1]

■ Performance Indices

Page 26: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

26/64

► Mapping of Design Space into System Performance Space

Abstraction of Power Converter Design

Performance Space

Design Space

Page 27: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

27/64

Mathematical Modeling and Optimization of Converter Design

Page 28: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

28/64

Multi-Objective Converter Design Optimization

► Pareto Front - Limit of Feasible Performance Space

Page 29: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

29/64

► Sensitivity to Technology Advancements ► Trade-off Analysis

Technology Sensitivity Analysis Based on η-ρ-Pareto Front

Page 30: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

30/64

Converter Performance Evaluation Based on η-ρ-σ-Pareto Surface

► σ: kW/$

Page 31: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

31/64

Converter Performance Evaluation Based on η-ρ-σ-Pareto Surface

► ´ Technology Node´

Page 32: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

32/64

Demonstrator Systems 3-ph. VIENNA Rectifier

1-ph. PFC Rectifiers Inductive Charging Power Supply on Chip

Airborne Wind Turbine

Page 33: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

33/64

● Specifications ULL = 3 x 400 V fN = 50 Hz … 60 Hz or 360 Hz … 800 Hz Po = 10 kW Uo = 2 x 400 V

fs = 250 kHz ● Characteristics η = 96.8 % THDi = 1.6 % @ 800 Hz 10 kW/dm3 3.3 kg (≈3 kW/kg)

Dimensions: 195 x 120 x 42.7 mm3

► Demonstrator – VR250 (1)

Page 34: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

34/64

Dimensions: 195 x 120 x 42.7 mm3

► Demonstrator – VR250 (2)

● Specifications ULL = 3 x 400 V fN = 50 Hz … 60 Hz or 360 Hz … 800 Hz Po = 10 kW Uo = 2 x 400 V

fs = 250 kHz ● Characteristics η = 96.8 % THDi = 1.6 % @ 800 Hz 10 kW/dm3 3.3 kg (≈3 kW/kg)

Page 35: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

35/64

10A/Div

200V/Div 0.5ms/Div

PO = 10kW UN = 230V fN = 400Hz UO = 800V THDi = 1.4%

10A/Div

200V/Div 1ms/Div

PO = 10kW UN = 230V fN = 800Hz UO = 800V THDi = 1.6%

► Mains Behavior @ fN = 400Hz / 800Hz

Page 36: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

36/64

■ Generation 1 – 4 of VIENNA Rectifier Systems fs = 50 kHz ρ = 3 kW/dm3

fs = 72 kHz ρ = 4.6 kW/dm3

fs = 250 kHz ρ = 10 kW/dm3

(164 W/in3) Weight = 3.4 kg

fs = 1 MHz ρ = 14.1 kW/dm3

Weight = 1.1 kg

● Switching Frequency of fs = 250 kHz Offers Good Compromise Concerning Power Density / Weight per Unit Power, Efficiency and Input Current Quality THDi

► Experimental Analysis

Page 37: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

37/64

■ Generation 1 – 4 of VIENNA Rectifier Systems fs = 50 kHz ρ = 3 kW/dm3

fs = 72 kHz ρ = 4.6 kW/dm3

fs = 250 kHz ρ = 10 kW/dm3

(164 W/in3) Weight = 3.4 kg

fs = 1 MHz ρ = 14.1 kW/dm3

Weight = 1.1 kg

● Switching Frequency of fs = 250 kHz Offers Good Compromise Concerning Power Density / Weight per Unit Power, Efficiency and Input Current Quality THDi

► Experimental Analysis

Page 38: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

38/64

► Si CoolMOS, 99mΩ/600V ► SiC Diodes, 10A/600V

PO=3.2kW UN=230V±10% UO=365V fP=33kHz ±3kHz Two Interleaved 1.6kW Systems

99.2% @ 1.1kW/dm3

1-Ф Boost-Type PFC Rectifier

Page 39: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

39/64

Ultra-Efficient PFC Rectifier Performance Limits

─ Inductor ─ Output Cap. ─ Heatsink

─ Output Diodes ─ Power MOSFETs ─ Aux. Power

Page 40: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

40/64

Experimental Ultra-Compact 1-Ф PFC Rectifier

PO=3.2kW UN=230V±10% UO=400V fP=450kHz ±50kHz Two Interleaved 1.6kW Systems

5.5kW/dm3

► Si CoolMOS ► SiC Diodes

Page 41: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

41/64

Feasible Performance Space

► Bridgeless PFC Rectifiers @ uN = 230V

Power Density is Based on Net Volumes Scaling by 0.6-0.8 Necessary

Page 42: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

42/64

► Employs NO SiC Power Semiconductors -- Si SJ MOSFETs only

Bidirectional Ultra-Efficient 1-Ф PFC Mains Interface

99.36% @ 1.2kW/dm3

Hardware Testing to be finalized in September 2011

Page 43: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

43/64

No Soft-Switching Soft-Switching with Extended On-Interval of S11

AC-DC Rectifier - Single Boost Cell - Measurements

Vo

ltag

e (

V)

Cu

rren

t (

A)

Vo

ltag

e (

V)

Cu

rre

nt

(A

)

Page 44: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

44/64

Bidirectional Ultra-Efficient 1-Ф PFC Mains Interface

99.36% @ 1.2kW/dm3

► Employs NO SiC Power Semiconductors -- Si SJ MOSFETs only

Hardware Testing to be finalized in September 2011

Page 45: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

45/64

99.36% @ 1.2kW/dm3

► Employs NO SiC Power Semiconductors -- Si SJ MOSFETs only

Result of Final Testing

Results of first testing; System still to be optimized further

Target

Bidirectional Ultra-Efficient 1-Ф PFC Mains Interface

Page 46: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

46/64

Converter Performance Evaluation Based on η-ρ-Pareto Front

Page 47: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

47/64

“Out-of-the-Box” Wind Turbine Concepts Power Kite & Ground-Based EE-Generation

Power Kite & On-Board EE-Generation

Page 48: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

48/64

Revolutionize Wind Power Generation Using Kites / Tethered Airfoils

■ Wing Tips / Highest Speed Regions are the Main Power Generating Parts of a Wind Turbine

[2] M. Loyd, 1980

Page 49: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

49/64

Controlled Power Kites for Capturing Wind Power

■ Wing Tips / Highest Speed Regions are the Main Power Generating Parts of a Wind Turbine

► Replace Blades by Power Kites ► Minimum Base Foundation etc. Required ► Operative Height Adjustable to Wind Conditions [2] M. Loyd, 1980

Page 50: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

50/64

Alternative Concept – Airborne Wind Turbine (AWT)

► Power Kite Equipped with Turbine / Generator / Power Electronics ► Power Transmitted to Ground Electrically

Source:

[2] M. Loyd, 1980

Page 51: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

51/64

AWT Basic Electrical System Structure

► Rated Power 100kW ► Operating Height 800…1000m ► Ambient Temp. 40°C ► Power Flow Motor & Generator

■ El. System Target Weight 100kg ■ Efficiency (incl. Tether) 90% ■ Turbine /Motor 2000/3000rpm

Page 52: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

52/64

Overall AWT System Performance

■ Final Step: System Control Consideration

Page 53: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

53/64

ηα-Pareto Front for Inductive Charging of EVs

* Pout = 0 … 75kW * Uout = 400 … 800V * Air Gap = 100 … 200mm

■ Reduction of Stray Field Results only Possible with Less Efficient Design

Page 54: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

54/64

ηα-Pareto Front of Inductor for Power Supply on Chip

* Uin = 1.6 V * Uout = 0.8 V * Pout = 1.0 W

- PCB - On-Top-of-Chip - On-Chip

Page 55: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

55/64

Observation

► Very Limited Room for Further Performance Improvement !

Page 56: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

56/64

Efficiency Power Density

Observation

► Very Limited Room for Further Performance Improvement !

Page 57: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

57/64

General Trade-Off Analysis Reliability vs. Efficiency

Costs vs. Efficiency

Page 58: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

58/64

Solid-State Transformer

DCM Series Resonant DC/DC Converter

(1) Transformer (2) LV Semiconductors (3) MV Semiconductors (4) DC Link (5) Resonant Capacitors

► Trade-Off Efficiency / Power Density

SN = 630kVA ULV = 400 V UMV = 10kV

Page 59: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

59/64

(5 Cascaded H-Bridges, 1700V IGBTs, No Redundancy, FIT-Rate calculated acc. to Tj, 100FIT Base)

► Trade-Off Mean-Time-to-Failure vs. Efficiency / Power Density

Solid-State Transformer

SN = 630kVA ULV = 400 V UMV = 10kV

Page 60: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

60/64

3-ph. PV Inverter Systems Si vs. SiC

UN = 400 V UPV = 450 … 820V P = 10kW fS = 4…16kHz

► Cost Models Efficiency / Power Density Analysis Extended to Initial Costs & Operating Revenue Calculation

Page 61: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

61/64

Conclusions Outlook

Page 62: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

62/64

► Only the Consideration of the “TECHNOLOGY NODE” – (η,ρ,σ)-Coordinates in the Performance Space Shows the Quality of a Design ! ► Don´t be Impressed by 99% Efficiency ► Don´t be Impressed by 100kW/dm3 Power Density ► Don´t be Impressed by 0.05kW/$ Rel. Costs ► Ask in Addition * Converter Type * Power Range / Operating Range * Type of Cooling * Technologies Used (SiC ?) * etc. ► There is Nothing Magic in Converter Design

►“Good Engineering & Multi-Objective Optimization”

Conclusions

Page 63: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

63/64

Thank You !

Page 64: Power Density vs. Efficiency of Power Electronics · Advanced Cooling Concepts Schedule 09/2004 03/2005 12/2005 12/2006 10kW/l 20kW/l 50kW/l System Aspects Thermal Integration EMI

64/64

Questions ?


Recommended