+ All Categories
Home > Documents > PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total...

PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total...

Date post: 01-May-2018
Category:
Upload: nguyenkiet
View: 217 times
Download: 4 times
Share this document with a friend
43
Sustainable Energy Science and Engineering Center Hydrogen Storage
Transcript
Page 1: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Hydrogen Storage

Page 2: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

1. Utility/industrial applications including: grid reinforcement, renewables integration and uninterruptible power supply (UPS) Applications

2. Transport / mobile applications including: on-board powerfor vehicles, new drive trains (electric and hybrid electricvehicles) and leisure applications (caravanning)

3. Portable applications including: computing, cell-phonesand cameras (the 3 ‘C’s’).

Main Energy Storage Market Segments

Source: Ian Edwards, ITI Energy, May 24th, 2005

Page 3: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Electrochemical systemsbatteries and flow cells

Mechanical systemsfly-wheels and compressed air energy storage (CAES)

Electrical systemssuper-capacitors and superconducting magnetic energy storage (SMES)

Chemical systemshydrogen cycle (electrolysis -> storage -> power conversion)

Thermal systemssensible heat (storage heaters) and phase change

Generic Storage Systems

Source: Ian Edwards, ITI Energy, May 24th, 2005

Page 4: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Energy Sources Typical Chemical Energy Density

Hydrogen 142.0 MJ/kgEthanol 29.7 MJ/kgAmmonia 17.0 MJ/kgAutomotive Gasoline 45.8 MJ/kgMethane 55.5 MJ/kgMethanol 22.7 MJ/kg

(Source: Chemical Energy, The Physics Hyper text Book)

Potential Fuel

Page 5: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Fuel Typical Stored ChemicalEnergy Density

Hydrogen 7.1 MJ/kg @ 5wt%Ethanol 26.7 MJ/kg @ 90wt%Ammonia 13.6 MJ/kg @ 80wt%Automotive Gasoline 41.2 MJ/kg @ 90wt%Methane 44.5 MJ/kg @ 80wt%Methanol 20.4 MJ/kg @ 90wt%

Energy Density

Source: Ian Edwards, ITI Energy, May 24th, 2005

Page 6: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Fuel Hydrogen weight Ambient state Liquid volumetric Mass energy fraction energy density(MJ/L) density (MJ/kg)

Hydrogen 1 Gas 8.4-10.43 120Methane 0.25 Gas 21(17.8)2 50 (43)2

Ethane 0.2 Gas 23.7 47.5Propane 0.18 Gas (liquid)1 22.8 46.4Ammonia 0.18 Gas (liquid)1 13.1 17.0Gasoline 0.16 Liquid 31.1 44.4Ethanol 0.13 Liquid 21.2 26.8Methanol 0.12 Liquid 15.8 19.9

1 A gas at room temperature, but normally stored as a liquid at moderate pressure.2 The larger values are for pure methane. The values in parentheses are for a “typical” Natural Gas.3 The higher value refers to hydrogen density at the triple point

Energy Densities

Source: Ian Edwards, ITI Energy, May 24th, 2005

Page 7: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Material Volumetric Gravimetric

Diesel 10942 Wh/l 13762Wh/kg

Gasoline 9,700 Wh/l 12,200 Wh/kg

LNG 7,216 Wh/l 12,100 Wh/kg

Propane 6,600 Wh/l 13,900 Wh/kg

Ethanol 6,100 Wh/l 7,850 Wh/kg

Methanol 4,600 Wh/l 6,400 Wh/kg

Liquid H2 2600 Wh/l 39,000 Wh/kg

150 Bar H2 405 Wh/l 39,000 Wh/kg

Lithium 250 Wh/l 350 Wh/kg

Nickel Metal Hydride 100 W·h/L 60Wh/kg

Lead Acid Battery 40 Wh/l 25 Wh/kg

Compressed Air 17 Wh/l 34 Wh/kg

Energy Density in wh/liter

Page 8: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

ObjectiveTo achieve adequate stored energy in an efficient, safe and

cost effective system.

Source: Oak Ridge National Laboratory Hydrogen Storage Work Shop, May 2003

Gravimetric storage density: the gravimetric storage density is the weight of the hydrogen being stored divided by the weight of the storage and delivery system proposed

Page 9: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

1970 1980 1990 2000 2010 2020

Source: Ian Edwards, ITI Energy, May 24th, 2005

Energy Storage

Page 10: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

1970 1980 1990 2000 2010 2020

Hydrogen pellets

Mg(NH3)6Cl2

Hydrogen Storage

Source: Ian Edwards, ITI Energy, May 24th, 2005

Page 11: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Technology Status

Page 12: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Storage Methods

Page 13: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

120

3024 22 21 20 20 19 19 18 16 15 17

0

2024 25 25 26 25 26 25 26

11 5

0

25

50

75

100

125

hydro

genmeth

ane

ethan

epro

pane

butane

pentan

ehex

ane

heptan

e

octane (

gasolin

e)ce

tane (

diesel)

ethan

olmeth

anol

ammonia

Ener

gy D

ensi

ty M

J/kg

carbon

hydrogen

Specific energy of fuels (LHV)

Page 14: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

14 13 13 13 13 12 12 11 12 13 12 129

1113

2018 18 17 16 15

1212 9 8

4

0

10

20

30

40

cetan

e (dies

el)

octane (

gasolin

e)hep

tane

hexan

epen

tane

butane

ethan

epro

pane

ethan

olmeth

ane

methan

olam

monialiq

. hyd

rogen

hydrid

ewate

rEn

ergy

Den

sity

(MJ/

liter

)

carbon

hydrogen

Hydrogen density range

Energy Densities (LHV) in Liquid state

Page 15: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Compressed Gas Storage Density (300 K, LHV)

0

1

2

3

4

5

0 2000 4000 6000 8000 10000

Pressure (psi)

Ener

gy D

ensi

ty (M

J/lit

er)

350 bar 700 bar

Gasoline: 13 MJ/L

Compressed Gas

Page 16: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

• increased pressure (>700 bar)– stronger, lighter composite tanks (cost)– hydrogen permeation– non-ideal gas behavior

• conformable tanks– maximum volume gain ~20% (cylind./rect. volumes)– some increase in weight

• microspheres– multiple shell volumes– close-packed packing density ~60% of volume– hydrogen release/reload mechanism

Compressed Gas

Page 17: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Carbon fiber wrap/polymer liner tanks are lightweight and commercially available.

weight specific energy6 wt.% 7.2 MJ/kg7.5 wt.% 9.0 MJ/kg10 wt.% 12 MJ/kg

Energy density is the issue:

Pressure Gas density System density350 bar 2.7 MJ/L 1.95 MJ/L700 bar 4.7 MJ/L 3.4 MJ/L

Compressed Gas Cylinders

Page 18: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Liquid Hydrogen EOS

0

100

200

300

400

500

600

20 30 40 50 60 70 80 90 100

Temperature K

Pres

sure

bar

High Pressure Cryogenic Tank

• reduces temperature requirements• eliminates liquifaction requirement• essentially eliminates latency issue

S. Aceves, et al 2002

Estimated energy density: 4.9 MJ/L (Berry 1998)

Page 19: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Requires cryogenic systems

• Equilibrium temperature at 1 bar for liquid hydrogen is ~20 K.• Estimated storage densities1

Berry (1998) 4.4 MJ/literDillon (1997) 4.2 MJ/literKlos (1998) 5.6 MJ/liter

• Issues with this approach are:– dormancy.– energy cost of liquifaction.

1 J. Pettersson and O Hjortsberg, KFB-Meddelande 1999:27

Liquid Storage

Page 20: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Gaseous Hydrogen Storage

1970 1980 1990 2000 2010 2020

Higher Heating value of Hydrogen: 142 MJ/kg

Hydride storage of hydrogen may be compared to the compression of

hydrogen

Source: The Future of Hydrogen Economy: Bright or Bleak? Baldur Eliasson and Ulf Bossel, ABB Switzerland Ltd.

Page 21: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Hydrogen Storage - Liquefaction

1970 1980 1990 2000 2010 2020

Total energy requirement for liquefaction of 1 kg of H2

Source: The Future of Hydrogen Economy: Bright or Bleak? Baldur Eliasson and Ulf Bossel, ABB Switzerland Ltd.

Page 22: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Hydrogen Delivery - Pipelines

1970 1980 1990 2000 2010 2020

Source: The Future of Hydrogen Economy: Bright or Bleak? Baldur Eliasson and Ulf Bossel, ABB Switzerland Ltd.

Page 23: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Hydrides

Chemically bond hydrogen in a solid material• This storage approach should have the highest hydrogen packing

density.• However, the storage media must meet certain requirements:

– reversible hydrogen uptake/release– lightweight with high capacity for hydrogen– rapid kinetic properties– equilibrium properties (P,T) consistent with near ambient

conditions.• Two solid state approaches

– hydrogen absorption (bulk hydrogen)– hydrogen adsorption (surface hydrogen)

including cage structures

Page 24: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Hydrides

Page 25: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Alanates

Page 26: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Complex Hydrides

Page 27: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Hydrogen Storage Volume

Page 28: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Hydrogen System Weight

Page 29: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Future

Page 30: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

US DOE Strategy

Page 31: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

US DOE Strategy

Page 32: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Complex Hydrides

Page 33: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Source: Ali T. Raissi, FSEC

Complex Hydrides

Page 34: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Fuel Tank Problem

Page 35: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Current Status

Page 36: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Compressed Gas System Requirements

Page 37: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Storage System Requirements

Page 38: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Improvements

Page 39: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

US DOE Targets

Page 40: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

US DOE Strategy

Page 41: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Comparative Volumes and WeightsComparative Volumes and Weightsof a FCEV Hydrogen Storage Systemof a FCEV Hydrogen Storage System

(Capable of 560 km (350 mi) Range (Capable of 560 km (350 mi) Range –– Compact Sedan)Compact Sedan)

0

100

200

300

400

500

600

700

800

ICE Case (Reference)248 bar H2

Compressed Hydrogen (345 bar)

Liquid H2(< 300 mm dia.)

Liquid H2 (>540 mm dia.)

Metal Hydride (Mg)Sodium Borohydride

Lite

rs

kg

Lite rskg

FCEV Storage System

Page 42: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

LH2 Tank Configuration

filling port

inner vessel

gaseous hydrogen(+20°C up to +80°C)

liquefied hydrogen253°C)

suspension

safety valve

outer vessel

shut off valve

cooling waterheat exchanger

electrical heater

reversing valve(gaseous / liquid)

liquid extractiongas extraction

filling line

level probe

super insulation

Page 43: PowerPoint Presentation - No Slide Title Storage - Liquefaction 1970 1980 1990 2000 2010 2020 Total energy requirement for ... PowerPoint Presentation - No Slide Title Author: Luiz

Sustainable Energy Science and Engineering Center

Storage Systems

CompressedGas (5,000 psi)

Cryogenic Liquid H2

Cryo - LiquidCompressed H2

RechargeableMetal Hydride

Carbon Adsorbtion

Chemical Hydride

SystemWeight

SystemVolume

ExtractionComplexity

SystemCost

FuelCost

Dormancy Safety

Good Acceptable Problem


Recommended