+ All Categories
Home > Documents > Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

Date post: 03-Jun-2018
Category:
Upload: amuthan-shanmugum
View: 215 times
Download: 0 times
Share this document with a friend

of 19

Transcript
  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    1/19

    CHAPTER 5

    REFRIGERATION CYCLE

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    2/19

    CHAPTER 5REFRIGERATION CYCLE

    5.1 THERMODYNAMIC APPLICATIONS

    5.2 INTRODUCTION: REFRIGERATION

    5.3 REFRIGERATOR & HEAT PUMP

    5.4 THE REVERSE CARNOT CYCLE

    5.5 IDEAL VAPOR-COMPRESSIONREFRIGERATION CYCLE

    5.6 IDEAL VAPOR-COMPRESSIONREFRIGERATION CYCLE: PROCESS &

    ANALYSIS5.7 ACTUAL VAPOR-COMPRESSION

    REFRIGERATION CYCLE

    5.8 PRESSURE ENTHALPY DIAGRAM

    (P-h Diagram)

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    3/19

    CHAPTER 5REFRIGERATION CYCLE

    5.9 INNOVATIVE VAPOR-COMPRESSION

    REFRIGERATION SYSTEM

    5.10 ABSORPTION REFRIGERATION SYSTEMS

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    4/19

    THERMODYNAMIC APPLICATIONS

    THERMODYNAMICCYCLE

    POWERGENERATION

    REFRIGERATION

    POWER PLANT ENGINE REFRIGERATOR AIRCONDITIONING

    CH 3: GAS CH 2CH 5 CH 6

    CH 4: VAPOR

    5.1 THERMODYNAMIC APPLICATIONS

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    5/19

    A majorapplications of

    thermodynamics

    HOTAREA

    Transfer heat

    RCOLDAREA

    Device

    REFRIGERATOR

    Refrigerationcycles

    Vapor-compression cycle:Phases change

    Gas refrigeration cycle:Remain gaseous phase

    5.2 INTRODUCTION: REFRIGERATION

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    6/19

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    7/19

    CARNOT HEAT PUMPCARNOTREFRIGERATOR

    Not Practical forrefrigeration cycle

    Process (1-2):Compressionliquid-vapor

    mixtureCompressorhandle 2 phases

    Process (3-4):Expansionof high

    moisturecontent

    Solution

    Ideal Vapor-CompressionRefrigeration Cycle

    5.4 THE REVERSE CARNOT CYCLE

    CompressorTurbine

    CondenserTH

    EvaporatorTL

    4

    3

    Cold medium at TL

    Warm medium at TH

    1

    2

    T

    s

    4

    QH

    QL 1

    23

    REVERSE CARNOTCYCLE

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    8/19

    T 2

    3

    4 QL

    QH

    Win

    1

    4s

    Saturatedliquid

    Saturatedvapor

    s

    Solve impractically in Carnot Refrigeration cycle

    100%vaporized

    beforecompression

    Turbine

    Throttling device:Expansion valveCapilary tube

    T

    s

    4

    QH

    QL

    1

    23CompressorTurbine

    CondenserTH

    EvaporatorT

    L

    4

    3

    Cold medium at TL

    Warm medium at TH

    1

    2

    QH

    QL

    Compressor

    Expansionvalve

    Condenser

    Evaporator

    4

    3

    Cold refrigerated space

    Warm environment

    1

    2 Win

    Evaporator coilCapillary tube

    Condensercoil

    Compressor

    QHQL

    Isentropicturbine

    5.5 IDEAL VAPOR-COMPRESSION REFRIGERATION CYCLE

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    9/19

    QH

    QL

    Compressor

    Expansionvalve

    Condenser

    Evaporator

    4

    3

    Cold refrigerated space

    Warm environment

    1

    2 Win

    T

    s

    2

    3

    4 QL

    QH

    Win

    1

    4s

    Saturatedliquid

    Saturatedvapor

    P

    h

    23

    4QL

    QH

    Win

    1

    REFRIGERATION CYCLE

    IsentropicCompression

    (1-2)

    ConstantPressure

    Heat

    Rejection(2-3)

    Throttlingin

    Expansion

    Device(3-4)

    ConstantPressure Heat

    Absorption

    (4-1)

    PERFORMANCE

    Refrigerator:

    Heat pump:

    Analysis

    Steady flow deviceSteady flow energyequation

    5.6 IDEAL VAPOR-COMPRESSION REFRIGERATIONCYCLE: PROCESS & ANALYSIS

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    10/19

    EXAMPLE 5.1A refrigerator uses refrigerant-134a as the

    working fluid and operates on an ideal vapor-compression refrigeration cycle between 0.14and 0.8 MPa. If the mass flow rate of the

    refrigerant is 0.05 kg/s, determine:

    a) The rate of heat removal from therefrigerated space and the power input to thecompressor.

    b) The rate of heat rejection to the environmentc) The COP of the refrigerator.

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    11/19

    IRREVERSIBILITIES:Connecting line, DevicesHeat transfer

    Fluid friction: Pressure drop

    T

    s

    2

    3

    4 QL

    QH

    Win

    1

    4s

    EVAPORATORCOMPRESSOR

    CONDENSER

    Superheating:refrigerant completelyvaporizedHeat gain: Connecting linePressure drop: evaporator

    Specific volume :Work input , power input

    Compression process:Inlet: superheated vaporFriction effect: Entropy Heat tranfer:

    Entropy : (1-2)Entropy : (1-2)

    Heatdirection

    Pressure drop:in condenserin connecting lineOutlet:hard to maintain saturatedliquid

    Sub-cooled: beforethrottling device

    QH

    QL

    Compressor

    Expansionvalve

    Condenser

    Evaporator

    4 3

    Cold refrigerated space

    Warm environment

    1

    2 Win

    5

    7

    6

    8

    T

    s

    23

    4

    1

    5

    6 7 8

    2

    5.7 ACTUAL VAPOR-COMPRESSION REFRIGERATIONCYCLE

    IDEAL VAPOR-COMPRESSIONREFRIGERATION

    CYCLE

    ACTUAL CYCLE

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    12/19

    EXAMPLE 5.2

    Refrigerant-134a enters the compressor of a

    refrigerator as superheated vapor at 0.14 Mpa and -10C at a rate of 0.06 kg/s and leaves at 0.8 MPa and50C. The refrigerant is cooled in the condenser to 26C and 0.72 MPa and is throttled to 0.15 MPa.

    Disregarding any heat transfer and pressure drops inthe connecting line between the components,determine:

    a) The rate of heat removal from the refrigeratedspace and the power input to the compressor

    b) The isentropic efficiency of the compressor.

    c) The coefficient of performance of the refrigerator

    5 8 PRESSURE ENTHALPY DIAGRAM

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    13/19

    P

    h

    x

    s

    T

    P

    h

    23

    4 1

    T, P =constant s =constant

    h =constant

    T, P =constant

    qL= h1-h4 win= h2-h1

    qH= h2-h3

    h3=h4

    Sub-cooling

    5.8 PRESSURE ENTHALPY DIAGRAM(P-h Diagram)

    5 9 INNOVATIVE VAPOR COMPRESSION REFRIGERATION

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    14/19

    SolutionIndustrial ApplicationLarge pressure rangeLarge temperaturerangeModerate lowtemperature

    Poor performance ofreciprocating compressor

    Refrigeration process in stages

    2 @ more refrigeration cycle in series

    Cascade Refrigeration System (2 stages)

    Ratio of mass flow rate:

    QH

    Compressor

    Expansionvalve

    Condenser

    4

    3

    Warm environment

    5

    6

    A

    Expansionvalve

    1

    2

    B

    Evaporator

    QL

    Cold refrigerated space

    Compressor

    Heat

    exchanger

    Evaporator

    Condenser

    8

    7

    Heat

    T

    s

    2

    3

    4 QL

    QH

    1

    A

    B

    Increase inrefrigeration

    capacity

    Decrease incompressor work

    5

    6

    7

    8COPR:

    5.9 INNOVATIVE VAPOR-COMPRESSION REFRIGERATIONSYSTEM

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    15/19

    EXAMPLE 5.3

    Consider a two-stage cascade refrigeration system operating

    between the pressure limits of 0.8 and 0.14 MPa. Each stageoperates on an ideal vapor-compression refrigeration cycle withrefrigerant-134a as the working fluid. Heat rejection from thelower cycle to the upper cycle takes place in an adiabatic counter

    flow heat exchanger where both streams enter at about 0.32MPa. (In practice, the working fluid of the lower cycle is at ahigher pressure and temperature in the heat exchanger foreffective heat transfer. If the mass flow rate of the refrigerantthrough the upper cycle is 0.05 kg/s, determine:

    a) The mass flow rate of the refrigerant through the lowercycle,

    b) The rate of heat removal from the refrigerated space and thepower input to the compressor, and

    c) The coefficient of performance of this cascade refrigerator

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    16/19

    Solution 5.3

    T

    s

    2

    3

    4

    1

    A

    B

    5

    6

    7

    8

    mB?.

    QL?

    .

    Win?

    .

    COPR?

    h1=239.16

    h2=255.93

    h3=55.16

    h7=95.47

    h4=55.16

    h5=251.88

    h6=270.92

    h8=95.47

    0.8 MPa

    0.32 MPa

    0.14 MPa

    5 10 ABSORPTION REFRIGERATION SYSTEMS

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    17/19

    QH

    QL

    Expansionvalve

    Condenser

    Evaporator

    Cold refrigerated space

    Warm environment

    Wpump

    Rectifier

    Expansionvalve

    Pump

    Regenerator

    QgenGenerator

    Qcool

    Cooling water

    Absorber

    PureNH3

    PureNH3

    H2O

    NH3+H2O

    NH3+H2O

    Q

    Solarenergy

    Economical factor:inexpensive thermal energy (100-200C)geothermal, solar, waste heat,Heat transfer from external source heat-driven systemAbsorption of refrigerant by a transport medium NH3(ref.) + H2O (trans. med.)Similar with VCRC except: complex absorption mechanismLarge commercial and industrial installation

    Cycles of operation

    Absorption

    systemNH3pressure

    Condensercooled &condensedheat rejection

    Expansion

    valveThrottling

    EvaporatorAbsorbheat

    5.10 ABSORPTION REFRIGERATION SYSTEMS

    5 10 ABSORPTION REFRIGERATION SYSTEMS

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    18/19

    QH

    QL

    Expansionvalve

    Condenser

    Evaporator

    Cold refrigerated space

    Warm environment

    Wpump

    Rectifier

    Expansion

    valve

    Pump

    Regenerator

    QgenGenerator

    Qcool

    Cooling water

    Absorber

    PureNH3

    Pure

    NH3

    H2O

    NH3+H2O

    NH3+H2O

    Q

    Solarenergy

    Absorber:NH3(vapor) dissolvesand react with H2ONH3. H2O (Exotermic)

    amount of NH3dissolves in H2Odepend on temperatureControl temperature:Lower as possiblemax. NH3dissolved

    Pump:NH3(rich) + H2O

    solution pump togenerator

    Generator:Heat transfer to NH3+H2O solution from asource: vaporized the

    solution.

    Rectifier:The vapor (rich inNH3) pass throughthe rectifier

    Separate H2O andreturn it to thegeneratorThe high pressurepure NH3 (vapor)pass through the restof the cycle.

    Regenerator:The hot NH3+H2Osolution (weak inNH3 ) pass through aregenerator.Transfer heat to therich solution leaving

    the pump.

    Absorption Refrigeration VSVapor-Compression Refrigeration

    Small work inputA liquid is compressed instead of a vaporSteady-flow work specific volume

    More complex, occupy more space.More difficult to service: Less common

    Absorption Refrigeration SystemConsideration

    Cost of thermal energy < electricity

    5.10 ABSORPTION REFRIGERATION SYSTEMS

  • 8/12/2019 Pp Chapter 5 Refrigeration Cycle Sem 2 2011-2012

    19/19

    END OF CHAPTER 5

    REFRIGERATION CYCLE


Recommended