+ All Categories
Home > Documents > ppt__802_16d_PHY_SimuLink

ppt__802_16d_PHY_SimuLink

Date post: 08-Apr-2018
Category:
Upload: bestamir
View: 218 times
Download: 0 times
Share this document with a friend
24
8/6/2019 ppt__802_16d_PHY_SimuLink http://slidepdf.com/reader/full/ppt80216dphysimulink 1/24 IEEE802.16d IEEE802.16d Simulator WirelessMAN-OFDM-PHY layer Mohamad Charafeddine Rev-s3 24 Sept 2004
Transcript
Page 1: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 1/24

IEEE802.16dIEEE802.16dSimulator 

WirelessMAN-OFDM-PHY layer 

Mohamad Charafeddine

Rev-s3

24 Sept 2004

Page 2: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 2/24

2

Introduction

� The Matlab¶s Simulink simulation work is for the

broadband wireless standard IEEE802.16d [and

subsequently for the IEEE802.16-2004 once it is

published]

� Currently the mandatory channel coding scheme is used

(Reed-Solomon/ convolutional code), 16-QAM

modulation, RS(64,48,8), CC rate=2/3

�  A state machine can be implemented on top of thecurrent model to take into account adaptive rate

modulation.

Page 3: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 3/24

3

IEEE802.16d, WirelessMAN-OFDM

256-FFT, 16-QAM

Page 4: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 4/24

4

Randomization

�PRBS generator: 1 + x14 + x15

�On DL: the scrambler is re-initialized at

start of each frame with the vector:

100101010000000

Page 5: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 5/24

5

Concatenated Reed-Solomon /

convolutional code (RS-CC)

Page 6: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 6/24

6

Reed-Solomon coding

� Tail byte appended at end of the scrambled data

� For the 16-QAM mode selected, RS(64,48,8) is used, with:

� A primitive GF polynomial of: p(x) = x8 + x4 + x3 + x2 + 1

� And a code generator polynomial of: g(x)=(x+0 ) (x+1 ) (x+2 ).. (x+2T-1 ), =02 Hex

Page 7: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 7/24

7

Convolutional Coding &

Puncturing

� Convolutional coding with a native rate of ½

� Constraint length of 7

� Generated with the following 2 generator polynomials:

G1=171oct=1111001 For X 

G2=133oct=1011011 For Y 

� Puncturing of 4/3: X1Y1Y2; thus overall CC rate of ½*4/3 = 2/3

Page 8: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 8/24

8

2-steps Interleaver (I)

Define:

� N cpc the number of coded bits per carrier (i.e. 2,4,6 for QPSK,

16QAM, 64QAM respectively)

� s =  N cpc/2

�k: the index of the coded bit before the first implementation

�m: the index after first permutation

� j: the index after the second permutation

----------------------------------------------------------------------------

� 1st permutation [for carriers]

m = (Ncbps/16)*mod(k,16)+floor(k/16);

� 2nd permutation [for bits constellation mapping on carriers]

 j=s*floor(m/s)+mod((m+Ncbps-floor(16*m/Ncbps)),s);

Page 9: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 9/24

9

2-steps Interleaver (II)

0 100 200 300 400 500 600 700 8000

10 0

20 0

30 0

40 0

50 0

60 0

70 0

80 0illustrating the interlea ving p roce ss

input indexing

   o

   u    t   p   u    t    i   n    d   e   x    i   n   g

after 1st permutation

after 2nd permutation

Page 10: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 10/24

10

16-QAM modulation

� 16-QAM modulation

� Gray mapped

� Normalized constellation average power 

Page 11: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 11/24

11

OFDM Transmitter: Data&Pilots,

Zero Padding, Shaping, Cyclic Prefix (I)

� 192 Data carriers

� 8 Pilot carries

� 0 DC carrier 

� 55 zero carriers added

Page 12: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 12/24

12

OFDM Transmitter: Pilots (II)

� Pilots BPSK modulated

� Uses a PRBS generator of x11 + x9 + 1

� Initialized in DL with the vector: [1 1 1 1 1 1 1 1 1 1 1]

Why can¶t we always transmit all 1s on the pilots

without the need of the PRBS generator?

84 36 60 84: 1 2 ;k  DL c c c c w

! ! ! ! 60 12 12 36: 1 2 k  DL c c c c w

! ! ! !

84 36 12 36 60 84: 1 2 ;

k U c c c c c c

! ! ! ! ! ! 60 12: 1 2 k U c c

! !

Sample of a DL

sequence:

Corresponding sample of 

an UL sequence:

PRBS for pilot modulation

Page 13: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 13/24

13

OFDM Transmitter:

Zero Padding (II)

� 55 zeros carriers are padded.

� They will take the guard bands role.

� Reshaping is done to ensure the spectrum falls

off on both sides when plotted from ±Fs/2 to Fs/2

Freq axis: 0 Fs

Freq axis: -Fs/2 Fs/2

Page 14: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 14/24

14

OFDM Transmitter:

IFFT & Cyclic Prefix (III)

After IFFT

 before CP

After CP

Received

Spectrum

after the

AWGN

channel

� Tg/T b ratio of ¼ used. Thus CP

is 1/fourth the length of data time� Tg/Tb ratios specified by the protocol

are: ¼, 1/8, 1/16, 1/32. Question: it

does not specify when to use them.

Page 15: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 15/24

15

Receiver side

Page 16: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 16/24

16

OFDM receiver 

� Reciprocal work of the OFDM transmitter:1. Remove Cyclic Prefix (assuming synchronization)

2. Perform the FFT

3. Remove the zero padding and reorder 

4. Separate the data carriers from the pilot carriers

Page 17: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 17/24

17

Received signal

� AWGN channel is used

� If a Rayleigh channel is to be used, the receiver side would need a channel equalization

section with the usage of the pilots in the channel estimation (currently pilots are ignored

after being removed from the received OFDM frame).

Page 18: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 18/24

18

QAM demodulation &

2-stepsDe-interleaving

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 00

10 0

20 0

30 0

40 0

50 0

60 0

70 0

80 0

i  

¡ ¢  

£ 

i  

¤  

¥  ¦  

i §  

¨

©

©

     i

    i

ill ¢  

  

£ 

 

  

£ 

i §  

 £ 

  

¥  

D¥  

-i  

£ 

¥  

  l¥   

!  

i §  

  ¡  

" # ¥    

'  

(  1s t 

'  

( 0 1 tat i

2 3 

after  2n d ) 

ermutati2 

n

Page 19: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 19/24

19

Viterbi decoding

� Using a trellis generated from the polynomial of constraint length 7,

and the polynomials G1=171oct, and G2=133oct.

� Traceback depth specified to be equal to 34.

� It can be possible if the future to use soft decisions, LLRs, in decoding.

Page 20: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 20/24

20

Reed Solomon decoding

� Some work is needed to compensate for the delay introduced by the Viterbi decoder.

� Reed Solomon decoding is done, and tail byte removed.

� Num of corrected is also outputted, with a -1 when the errors exceeding the max

allowed bit errors; in this case equals to T =8.

Page 21: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 21/24

21

De-randomization

� Same operation as in the Randomization

� XORing with the same PRBS generator will

retrieve back the data

Page 22: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 22/24

22

Bit Error Rate

� Bit Error Rate is displayed, along with,

� Number of bits in error, and� The total number of bits compared with the

original stream of raw data.

Page 23: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 23/24

23

Generated BER curve for the IEEE 802.16d,

256-FFT, 16QAM, RS(64,48,8) & CC rate of 2/3

0 2 4 6 8 10 12 14 16 1810

4  5

104  4

104  3

104  2

104  1

100

SNR ( 5   B)

    B    E    R

IEEE802.16a BER c6  

rves, 2567 FFT 16

7 QAM , RS(64,48,8), CC rate=2/3

IEEE802.16a 2567 FFT 16

7 QAM , RS(64,48,8), CC rate=2/3

Page 24: ppt__802_16d_PHY_SimuLink

8/6/2019 ppt__802_16d_PHY_SimuLink

http://slidepdf.com/reader/full/ppt80216dphysimulink 24/24

24

BER curves over AWGN channel;

incremental effects of channel coding

0 5 10 15 20 2510

8  5

108  4

108  3

108  2

108  1

100

S NR (9  

B)

    B    E    R

IEEE802.16a BER c@  

rves, 256 A  FFT 16 A  Q AM ,B  

ver AW GN cC  

aD D  

el, iD  

cre m eD  

tal effectsB  

f cC  

aD D  

el cB  

9  i

D E  

Ra D 9  

B  

m izatiB  

D  

A  RS A  CC A  I D   terleavi D E  

RS A  CC A  ID   terleavi D E  

CC A  ID  

terleaviD E  

ID  

terleaviD E  

D  

B  

Ra D 9   z , D  

B  

RS , D  

B  

CC, D  

B  

I D   terlv