+ All Categories
Home > Documents > PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA · 2019. 9. 6. · erythrocytes. A viability test,...

PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA · 2019. 9. 6. · erythrocytes. A viability test,...

Date post: 22-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
125
PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA ÁREA DE CIÊNCIAS TECNOLÓGICAS Programa de Pós-Graduação em Nanociências LEONARDO QUINTANA SOARES LOPES NANOCÁPSULAS CONTENDO MONOLAURATO DE GLICEROL: ATIVIDADE ANTIMICROBIANA, ANTIBIOFILME E ASPECTOS TOXICOLÓGICOS Santa Maria, RS 2019
Transcript
  • 1

    PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA

    ÁREA DE CIÊNCIAS TECNOLÓGICAS

    Programa de Pós-Graduação em Nanociências

    LEONARDO QUINTANA SOARES LOPES

    NANOCÁPSULAS CONTENDO MONOLAURATO DE GLICEROL:

    ATIVIDADE ANTIMICROBIANA, ANTIBIOFILME E ASPECTOS

    TOXICOLÓGICOS

    Santa Maria, RS

    2019

  • 2

    LEONARDO QUINTANA SOARES LOPES

    NANOCÁPSULAS CONTENDO MONOLAURATO DE GLICEROL:

    ATIVIDADE ANTIMICROBIANA, ANTIBIOFILME E ASPECTOS

    TOXICOLÓGICOS

    Tese de Doutorado apresentada ao

    Programa de Pós-Graduação em

    Nanociências da Universidade Franciscana

    de Santa Maria, como parte das exigências

    para obtenção do título de Doutor em

    Nanociências, na área de concentração

    Biociências e Nanomateriais.

    Orientador(a): Prof. Dr. ROBERTO CHRIST VIANNA SANTOS

    Santa Maria, RS

    2019

  • Elaborada pela Bibliotecária Eunice de Olivera CRB 10/1491

    L864n Lopes, Leonardo Quintana Soares

    Nanocápsulas contendo monolaurato de glicerol:

    atividade antimicrobiana, antibiofilme e aspectos

    toxicológicos / Leonardo Quintana Soares Lopes ;

    orientação Roberto Christ Vianna Santos – Santa Maria :

    Universidade Franciscana - UFN, 2019.

    124 f. : il.

    Tese (Doutorado em Nanociências) Programa de Pós-

    Graduação em Nanociências – Universidade Franciscana –

    UFN

    1. Biofilmes 2. Nanotecnologia 3. Citotoxicidade

    4. Rhamdia quelen I. Santos, Roberto Christ Vianna

    II. Título

    CDU 62

  • 4

    RESUMO

    Os biofilmes são aglomerados microbianos envoltos por uma matriz de polissacarídeos

    extracelular. No século 21 ficou comprovado que a capacidade de os microrganismos

    formarem biofilme aumentou significativamente a resistência aos fármacos, dificultando

    o tratamento. Nestes casos, as opções terapêuticas são a remoção do tecido ou implante

    infectado ou combinar e até aumentar a dose de fármaco administrada. Em ambos os

    casos pode haver consequências negativas relacionadas ao aumento do tempo e dos

    custos de hospitalização, bem como a uma sobrecarga renal provocada por altas doses

    de fármacos e aumento da morbi-mortalidade. Por isso, a busca por novas estratégias e

    tecnologias para o combate destas infecções tem sido alvo importante na pesquisa. O

    monolaurato de glicerol é usado na indústria farmacêutica e de alimentos como agente

    emulsificante. Apresenta ação antimicrobiana, porém, sua baixa solubilidade em água

    dificulta seu uso como alternativa terapêutica em decorrência da baixa biodistribuição.

    Neste contexto, a nanotecnologia têm mostrado resultados promissores aumentando a

    solubilidade e biodisponibilidade do agente e, assim, alcançando os sítios mais difíceis

    da infecção como no caso dos biofilmes. Assim, esse trabalho teve como objetivo

    utilizar nanocápsulas contendo monolaurato de glicerol para o tratamento de biofilmes

    de bactérias e leveduras, além de verificar aspectos de toxicidade relacionados a esta

    terapia. Foram utilizadas nanocápsulas produzidas pelo método de deposição interfacial

    do polímero pré-formado. As nanopartículas foram caracterizadas quanto ao diâmetro

    médio, índice de polidispersão, potencial zeta, pH e morfologia por microscopia

    eletrônica de transmissão que mostraram valores aceitáveis para predizer estabilidade do

    sistema. Para os testes microbiológicos foram utilizadas as cepas Pseudomonas

    aeruginosa PAO1 e Candida albicans (ATCC 14053). Inicialmente foi feita a

    determinação da concentração inibitória e bactericida/fungicida mínima. Foram

    realizados ensaios de quantificação do biofilme, curva de crescimento além de

    microscopia de fluorescência e de força atômica. Para os testes de toxicidade, foram

    usadas linhagens celulares como células VERO, mononucleares de sangue periférico e

    eritrócitos. Foram realizados teste de viabilidade, dosagem da enzima Lactato

    desidrogenase, teste das substâncias reativas ao ácido tiobarbitúrico (TBARS),

    percentual de hemólise e ensaio cometa. Além dos ensaios in vitro foi realizado um

    ensaio in vivo de toxicidade com peixes Rhamdia quelen. Os testes iniciais mostraram

    que as nanopartículas foram capazes de inibir o crescimento microbiano em uma

    concentração menor quando comparado com o monolaurato de glicerol livre. Os ensaios

    antibiofilme mostraram redução de aproximadamente 50% do biofilme tratado com as

    nanopartículas contendo monolaurato de glicerol. Além disso, o tratamento com as

    nanopartículas eliminou quase totalmente o biofilme em 48 horas enquanto o

    monolaurato na forma livre não causou efeito. Os ensaios de viabilidade demonstraram

    que o monolaurato de glicerol livre possui um importante efeito citotóxico, enquanto as

    nanocápsulas mostraram efeito protetor. O monolaurato nanoestruturado demonstrou

    redução nos danos celulares em ensaios como liberação de Lactato desidrogenase,

    pesquisa de TBARS e porcentagem de hemólise. O ensaio in vivo realizado com peixes

    mostrou alta mortalidade causada pela substância na forma livre enquanto as

    nanocápsulas demonstraram redução significativa na mortalidade dos animais.

    Palavras chave: Biofilmes, nanotecnologia, citotoxicidade, Rhamdia quelen

  • 5

    ABSTRACT

    Biofilms are microbial clusters surrounded by a matrix of extracellular polysaccharides.

    In the 21st century it has been proven that the ability of microorganisms to form biofilm

    significantly increased drug resistance, making treatment difficult. In these cases, the

    therapeutic options are the removal of the infected tissue or implant or to combine and

    even increase the dose of drug administered. In both cases, there may be negative

    consequences related to increased hospitalization time and costs, as well as renal

    overload caused by high doses of drugs and increased morbidity and mortality.

    Therefore, the search for new strategies and technologies to combat these infections has

    been an important target in the research. Glycerol monolaurate is used in the

    pharmaceutical and food industry as an emulsifying agent. It presents antimicrobial

    action, however, its low solubility in water makes difficult its use as a therapeutic

    alternative due to low biodistribution. In this context, nanotechnology has shown

    promising results increasing the solubility and bioavailability of the agent and thus

    reaching the most difficult sites of infection as in the case of biofilms. Thus, the

    objective of this work was to use nanocapsules containing glycerol monolaurate for the

    treatment of biofilms of bacteria and yeasts, as well as to verify aspects of toxicity

    related to this therapy. Nanocapsules produced by the interfacial deposition method of

    the preformed polymer were used. The nanoparticles were characterized in terms of the

    mean diameter, polydispersity index, zeta potential, pH and transmission electron

    microscopy morphology, which showed acceptable values to predict system stability.

    Pseudomonas aeruginosa strains PAO1 and Candida albicans (ATCC 14053) were

    used for the microbiological tests. Initially the minimum inhibitory and bactericidal /

    fungicidal concentration determination was made. Biofilm quantification, growth curve,

    and fluorescence and atomic force microscopy tests were performed. For toxicity tests,

    cell lines were used as VERO cells, peripheral blood mononuclear cells, and

    erythrocytes. A viability test, lactate dehydrogenase enzyme test, thiobarbituric acid

    reactive substance test (TBARS), the percentage of hemolysis and comet assay was

    performed. In addition to the in vitro assays, an in vivo toxicity test with Rhamdia

    quelen fish was performed. Initial tests showed that the nanoparticles were able to

    inhibit microbial growth in a lower concentration when compared to the free glycerol

    monolaurate. The antibiofilm assays showed approximately 50% reduction of the

    biofilm treated with the nanoparticles containing glycerol monolaurate. In addition,

    treatment with the nanoparticles almost completely eliminated the biofilm in 48 hours

    while the monolaurate in the free form had no effect. The viability assays demonstrated

    that the free glycerol monolaurate has an important cytotoxic effect, while the

    nanocapsules showed a protective effect. Nanostructured monolaurate demonstrated a

    reduction in cell damage in assays such as lactate dehydrogenase release, TBARS

    detection, and hemolysis percentage. The in vivo assay performed with fish showed

    high mortality caused by the substance in the free form while the nanocapsules

    demonstrated a significant reduction in the mortality of the animals.

    Keywords: Biofilms, nanotechnology, cytotoxicity, Rhamdia quelen

  • 6

    Sumário

    1 INTRODUÇÃO ............................................................................................ 7

    1.1 JUSTIFICATIVA ................................................................................... 8

    1.2 OBJETIVOS ........................................................................................... 9

    1.3 INTERDISCIPLINARIDADE ............................................................... 9

    1.4 ORGANIZAÇÃO DA TESE ................................................................ 10

    2 REVISÃO BIBLIOGRÁFICA .................................................................. 12

    2.1 BIOFILMES ......................................................................................... 12

    2.2 MONOLAURATO DE GLICEROL .................................................... 15

    2.3 NANOTECNOLOGIA ......................................................................... 17

    3 RESULTADOS ........................................................................................... 19

    3.1 CAPÍTULO I: NANOCÁPSULAS CONTENDO MLG: EFEITO EM

    BIOFILMES. ...................................................................................................... 20

    3.1.1 ARTIGO 1: Nanocapsules with glycerol monolaurate: effects on

    Candida albicans biofilm ................................................................................... 20

    3.1.2 ARTIGO 2: Characterisation and anti-biofilm activity of glycerol

    monolaurate nanocapsules against Pseudomonas aeruginosa ........................... 45

    3.2 CAPÍTULO II: TOXICIDADE IN VITRO E IN VIVO DAS

    NANOCÁPSULAS DE MLG. ........................................................................... 78

    3.2.1 ARTIGO 3: Biocompatibility of glycerol monolaurate nanocapsules:

    in vitro cytotoxic studies ..................................................................................... 78

    3.2.2 ARTIGO 4:Ecotoxicology of Glycerol Monolaurate nanocapsules 106

    4 DISCUSSÃO ............................................................................................. 114

    5 CONCLUSÕES ........................................................................................ 115

    REFERÊNCIAS .............................................................................................. 117

  • 7

    1 INTRODUÇÃO

    Aproximadamente 70% dos agentes infecciosos de origem hospitalar no Brasil

    são resistentes a pelo menos um agente antimicrobiano. Além disso, estima-se que 80%

    de todas as infecções em humanos, estejam relacionadas com a formação de biofilmes

    (RICHARDS; REED; MELANDER, 2008). O termo biofilme descreve a adesão

    irreversível de comunidades mono ou polimicrobianas (bactérias, fungos, protozoários,

    algas e vírus) em superfícies biológicas ou sintéticas como implantes, tecidos vivos,

    válvulas, ossos, dentes e vários dispositivos médicos (DE LA FUENTE-NÚÑEZ et al.,

    2013; GAO et al., 2011; MARTIN et al., 2013).

    Estes aglomerados microbianos rapidamente produzem uma matriz polimérica

    extracelular que dificulta a penetração de agentes microbianos aumentando a resistência

    a estes fármacos. Além disso, os biofilmes geralmente se encontram em sítios de difícil

    acesso, tornando raramente efetivos os tratamentos atuais. Hoje eles são responsáveis

    pela maioria das infecções microbianas e a melhor opção de combate, além da

    prevenção, é a remoção do implante ou tecido colonizado, gerando custos hospitalares e

    diminuindo a qualidade de vida do paciente (CHEN et al., 2014; FORIER et al., 2014;

    TAMILVANAN; VENKATESHAN; LUDWIG, 2008).

    O monolaurato de glicerol (MLG) é uma substância amplamente utilizada como

    emulsificante na indústria alimentícia e cosmética. Possui atividade antimicrobiana

    contra diversos cocos Gram positivos, incluindo Bacillus anthracis, Staphylococcus

    aureus, Streptococcus sp. (SCHLIEVERT et al., 1992; VETTER; SCHLIEVERT,

    2005) e algumas bactérias Gram negativas (CARPO; VERALLO-ROWELL;

    KABARA, 2008). Em forma de gel, o MLG inibiu o crescimento vaginal de Candida

    albicans e microrganismos causadores de vaginose bacteriana (Gardnerella vaginalis),

  • 8

    sem inibir as bactérias benéficas para a microbiota vaginal (STRANDBERG et al.,

    2010). Seu uso como antimicrobiano sistêmico é pouco explorado devido a

    características físico-químicas do MLG, como a baixa solubilidade em água e o alto

    ponto de fusão (LOPES et al., 2016a).

    A nanotecnologia pode melhorar aspectos de solubilidade de substâncias,

    potencializar a atividade antimicrobiana e diminuir os efeitos adversos devido à redução

    da dose (BHAWANA et al., 2011). A nanotecnologia é uma das ferramentas mais

    promissoras para contribuir com o tratamento das infecções microbianas (CAVALIERI

    et al., 2014; ZHU et al., 2014). Dentre as áreas, destaca-se a produção de nanopartículas

    (NP’s) para o potencial anti-biofilme que mostrou resultados importantes para a

    indústria farmacêutica (KROLL et al., 2009; MARKOWSKA; GRUDNIAK;

    WOLSKA, 2013; MU et al., 2016; QAYYUM; KHAN, 2016; SAHARAN et al., 2013).

    1.1 JUSTIFICATIVA

    Os biofilmes contribuem para as infecções associadas ao uso de cateter, que nos

    Estados Unidos causam aproximadamente 10.000 mortes e mais de 11 bilhões de

    dólares em custos hospitalares por ano. Estima-se que dos 5 milhões de cateteres

    urinários inseridos em pacientes por ano, em aproximadamente 20% ocorre a formação

    de biofilmes (ANDERSON et al., 2003; SCHACHTER, 2003) e pacientes em

    hemodiálise são comumente afetados pela formação do biofilme. Além disto, as

    infecções crônicas como endocardite, otite média, pneumonia, fibrose cística e

    infecções associadas à biomateriais implantados, frequentemente estão relacionados

    com infecções associadas a biofilme (COSTERTON; STEWART; GREENBERG,

    1999). Portanto, a busca por novas opções terapêuticas tem sido foco frequente nas

    pesquisas: não somente o desenvolvimento de novos fármacos, mas também novos

  • 9

    materiais contendo nanoestruturas estão apresentando resultados promissores na

    atividade antibiofilme. Neste contexto, o MLG apresenta grande potencial terapêutico

    para problemas decorrentes a biofilme e é de grande interesse a avaliação da atividade

    antimicrobiana desta substância na forma nanoestruturada.

    1.2 OBJETIVOS

    1.2.1 Objetivo geral

    Avaliar o potencial antibiofilme e os efeitos tóxicos de Nanocápsulas contendo

    MLG (NMLG).

    1.2.2 Objetivos específicos

    - Avaliar in vitro a atividade antibiofilme das NMLG e comparar com o MLG na

    forma livre;

    - Avaliar in vitro a atividade citotóxica das NMLG contra diferentes linhagens

    celulares como: células VERO, células mononucleares de sangue periférico e

    eritrócitos;

    - Determinar in vivo a atividade tóxica do MLG e NMLG frente a peixes

    (Rhamdia quelen);

    1.3 INTERDISCIPLINARIDADE

    A nanotecnologia tem como objetivo a produção, caracterização e aplicação de

    novas estruturas, materiais e sistemas, com forma e tamanho, em uma escala

    nanométrica. Esta área, diferente das demais que utilizam disciplinas específicas, é

    considerada interdisciplinar devido a sua abrangência (KIM; RUTKA; CHAN, 2010).

    Para chegar a este objetivo, é necessária a união de áreas como biologia, química, física,

    matemática entre outras. Conhecimentos da física são necessários para entender o

  • 10

    comportamento e propriedades das nanopartículas em determinados ambientes e

    situações, além da compreensão do princípio envolvido nos equipamentos para

    caracterização dos nanomateriais. A química se faz necessária para esclarecer as

    diversas interações químicas das formulações e os aspectos de solubilidade dos

    produtos.

    A utilização de ferramentas estatísticas requer conhecimento da área matemática e

    informática para melhor demonstrar os resultados obtidos. Para este estudo,

    conhecimentos de biologia e veterinária, se mostram importantes principalmente nos

    ensaios realizados com peixes, uma vez que deve ser mantido um ambiente adequado

    para que os ensaios in vivo sejam confiáveis. Para os ensaios microbiológicos e

    citotóxicos são necessários conhecimentos na área biológica/biomédica. Deste modo, o

    caráter interdisciplinar do Programa de Pós-Graduação em Nanociências, tornou e torna

    possível a realização do presente trabalho.

    1.4 ORGANIZAÇÃO DA TESE

    Nesta tese as metodologias e os resultados produzidos estão organizados em dois

    capítulos. O primeiro capítulo trata da atividade antimicrobiana (composto por dois

    artigos) e o segundo capítulo trata dos estudos de toxicidade (composto por dois

    artigos).

    O primeiro capítulo apresentado é NANOCÁPSULAS CONTENDO MLG:

    EFEITO EM BIOFILMES. Este capítulo contem o artigo 1: NANOCAPSULES WITH

    GLYCEROL MONOLAURATE: EFFECTS ON CANDIDA ALBICANS BIOFILMS

    publicado no periódico científico Microbial Pathogenesis (Qualis CAPES

    Interdisciplinar B1, fator de impacto 2,332). Onde foi avaliado o potencial antibiofilme

    das nanopartículas em biofilmes formados in vitro pelo fungo Candida albicans.

  • 11

    No mesmo capítulo também está apresentado o artigo 2:

    CHARACTERISATION AND ANTI-BIOFILM ACTIVITY OF GLYCEROL

    MONOLAURATE NANOCAPSULES AGAINST PSEUDOMONAS AERUGINOSA

    publicado no periódico científico Microbial Pathogenesis (Qualis CAPES

    Interdisciplinar B1, fator de impacto 2,332). No artigo 2 estão apresentados resultados

    da nanocápsula contendo MLG sobre biofilmes e a influência sobre fatores de virulência

    da bactéria P. aeruginosa.

    No segundo capítulo intitulado TOXICIDADE IN VITRO E IN VIVO DAS

    NANOCÁPSULAS CONTENDO MLG estão resultados de dois artigos. O artigo 3

    intitulado GLYCEROL MONOLAURATE NANOCAPSULES FOR BIOMEDICAL

    APPLICATIONS: IN VITRO TOXICOLOGICAL STUDIES foi aceito no periódico

    Naunyn-Schmiedeberg's Archives of Pharmacology (Qualis CAPES Interdisciplinar A2,

    fator de impacto 2,238). O artigo mostra resultados dos efeitos das nanocápsulas e do

    MLG livre frente às culturas celulares.

    No capítulo 2 também está apresentado o resultado referente ao ensaio de

    toxicidade das nanopartículas e da substância na forma livre frente a peixes da espécie

    Rhamdia quelen que juntamente com outros resultados paralelos foi publicado no

    periódico Ecotoxicology and Environmental Safety (Qualis CAPES Interdisciplinar A1,

    fator de impacto: 3,974).

  • 12

    2 REVISÃO BIBLIOGRÁFICA

    2.1 BIOFILMES

    Os microrganismos são estruturas presentes em diversos habitats, porém são

    capazes de desenvolver complexos e variados comportamentos (COSTERTON;

    STEWART; GREENBERG, 1999). Na forma livre (planctônica), os microrganismos

    encontram-se em suspensão e vivem isoladamente, enquanto que, na forma séssil, se

    encontram aderidos a superfícies sob a forma de biofilmes (STOODLEY et al., 2002).

    O biofilme pode ser definido como uma comunidade complexa de microrganismos

    aderida a uma superfície biótica ou abiótica envolvida por uma matriz polimérica,

    produzida por eles mesmos como uma forma de proteção às defesas do hospedeiro e aos

    agentes terapêuticos (DUNNE, 2002). Há várias vantagens para os microrganismos

    quando estão na forma de biofilme se comparados aos seus homólogos de vida livre.

    Essas vantagens ocorrem devido ao fato dos agregados de microrganismos apresentarem

    maior disponibilidade de nutrientes, interferindo nas taxas de crescimento, cooperação

    metabólica e proteção aos fatores externos (BEHLAU; GILMORE, 2008).

    Os biofilmes podem ser constituídos por uma única espécie, ou por comunidades

    derivadas, formadas por várias espécies bacterianas, fungos, leveduras, algas e outros

    organismos celulares (polimicrobiano) (SAUER; RICKARD; DAVIES, 2007). Quando

    ocorre o crescimento de biofilme polimicrobiano, uma espécie pode ser favorecida pela

    presença da outra em uma interação chamada de comensalismo, melhorando a

    degradação de compostos orgânicos em comparação com as monoculturas

    (NIKOLAEV; PLAKUNOV, 2007). No entanto, os microrganismos representam menos

    de 10% do biofilme (SATPATHY et al., 2016). Os biofilmes são compostos também

    pelas substâncias poliméricas extracelulares (EPS) ou matriz exopolissacarídica e por

  • 13

    quaisquer outros resíduos do ambiente colonizado, além de proteínas, lipídeos, DNA,

    RNA, íons e água, formando uma estrutura porosa e altamente hidratada (BEHLAU;

    GILMORE, 2008).

    Os exopolissacarídeos constituídos por diferentes biopolímeros são os principais

    componentes que determinam a estrutura e a integridade funcional do biofilme (KIVES;

    ORGAZ; SANJOSÉ, 2006). São responsáveis por até 90% da massa do biofilme e

    oferecem um ambiente protetor às células microbianas, dificultando a penetração de

    agentes antimicrobianos. Assim, agem como uma barreira de filtragem, e ocasionam

    uma penetração lenta ou reduzida de agentes antimicrobianos em geral. A matriz

    também protege os microrganismos contra a dessecação, oxidação, radiação ultravioleta

    e defesa imunológica do hospedeiro (FLEMMING; WINGENDER, 2010).

    O biofilme inicia com a aderência microbiana à superfície, e este processo é

    condicionado à interferência de fatores biológicos (como o crescimento das células

    microbianas e sua divisão, produção e excreção de EPS) e fatores não biológicos. Entre

    os fatores não biológicos são reconhecidas as interações químicas como as forças de

    Van der Walls, interações hidrofóbicas, eletrostáticas e ligações de hidrogênio que

    ocorrem entre as macromoléculas. Este estágio inicial de adesão, em que há

    envolvimento de interações físico-químicas entre as superfícies, designa-se adesão

    primária (WATNICK; KOLTER, 2000). Em um segundo estágio, os microrganismos

    são levemente aderidos a superfície, induzindo distintas fases de crescimento e intensa

    divisão celular (FLEMMING et al., 2000). O processo de adesão é concretizado com a

    produção de exopolissacarídeos, formando complexos com os materiais da superfície na

    qual aderem e/ou através de receptores específicos localizados na superfície das paredes

    celulares (caracterizando a adesão secundária) (SUTHERLAND, 1997). Em seguida

    inicia o processo de maturação do biofilme, formado por microrganismos que são

  • 14

    interceptados por canais de água que permitem a entrada dos nutrientes. Ao final deste

    processo, o biofilme atinge uma massa crítica, sendo estabelecido um equilíbrio

    dinâmico no qual o crescimento de células é compensado pela liberação de células

    planctônicas disponíveis para a colonização de outras superfícies formando novos

    biofilmes (Figura 1) (COSTERTON; MONTANARO; ARCIOLA, 2005; DUNNE,

    2002).

    Figura 1: Processo de formação do biofilme. Adesão do microrganismo à superfície (1),

    produção de exopolissacarídeo (2), maturação (3,4) e alcance de massa crítica liberando células

    bacterianas para se aderirem em outros locais e formarem novos biofilmes (5).

    (Adaptado de MONROE, 2007).

    Uma vez instalado o biofilme como uma estratégia de sobrevivência para os

    microrganismos, este então fornece vantagens importantes como menor exposição a

    carências nutricionais, radicais de oxigênio e antimicrobianos; mudanças de pH; abrigos

    de predação; manutenção das atividades de enzimas extracelulares, além de ocorrer uma

    resistência aumentada à fagocitose (FUCHS et al., 2010; FUX et al., 2005; KEREN et

    al., 2004; O’GARA, 2007).

  • 15

    2.2 MONOLAURATO DE GLICEROL

    O Monolaurato de Glicerol (MLG) é uma substância que apresenta atividade

    frente a bactérias, fungos e vírus, encontrado em baixas concentrações no óleo de coco e

    no leite materno (ANANG et al., 2007; HORNUNG; AMTMANN; SAUER, 1994). É

    reconhecido pela Food and Drug Administration (FDA) como sendo seguro para uso

    oral e frequentemente utilizado na indústria alimentícia como emulsificante

    (considerado não tóxico mesmo em concentrações elevadas). Atua como um

    conservante, impedindo a contaminação e deterioração de alimentos e cosméticos por

    microrganismos (BAUTISTA et al., 1993; RAZAVI-ROHAN; GRIFFITHS, 1994).

    A estrutura do MLG é composta por um monoéster de glicerol e um ácido graxo

    chamado ácido láurico como pode ser visto na Figura 2. O monolaurato é a estrutura

    mais estudada entre os monoésteres de ácido graxo com propriedades antimicrobianas.

    Entretanto as propriedades físico-químicas do MLG incluem alto ponto de fusão e baixa

    solubilidade em água, glicerol e outros solventes tornando difícil a sua utilização como

    agente antimicrobiano.

    Figura 2: Estrutura Química do Monolaurato de Glicerol

    Fonte: Elaborado pelo autor.

    Já se conhece o potencial antibacteriano do MLG frente a bactérias Gram

    positivas (PROJAN et al., 1994; SCHLIEVERT et al., 1992), porém apresentam pouca

    atividade em Lactobacillus sp. (protetores da mucosa vaginal). O uso de MLG como gel

    intravaginal para o combate de C. albicans e Gardnerella vaginalis (agentes etiológicos

    da candidíase e vaginose bacteriana) também já foi descrito (STRANDBERG et al.,

  • 16

    2010). Algumas bactérias Gram negativas, Enterobactérias não são suscetíveis ao MLG

    (SCHLIEVERT et al., 1992). Além disso, nosso grupo de estudos mostrou a atividade

    do monolaurato de glicerol frente ao Paenibacillus larvae agente causador da American

    Foulbrood Disease que acomete abelhas (LOPES et al., 2016a).

    Em um estudo realizado por Carpo e colaboradores (2008) os autores buscaram

    verificar a suscetibilidade de diferentes microrganismos frente ao MLG e comparar seus

    efeitos com antimicrobianos comumente usados na prática clínica. Os resultados

    mostraram uma significativa sensibilidade in vitro de patógenos isolados de infecção de

    pele como Staphylococcus sp., Streptococcus sp. e Klebsiella sp. Todos os

    microrganismos apresentaram resistência a fármacos como penicilina, eritromicina e

    ácido fusídico, porém, nenhum apresentou resistência ao MLG.

    O MLG diferentemente da maioria dos antimicrobianos, que atingem um único

    alvo, atua em vários sistemas de sinalização bacteriana. Atua inicialmente interagindo

    com a membrana plasmática, (SCHLIEVERT et al., 1992; VETTER; SCHLIEVERT,

    2005) afetando a transdução do sinal e a captação de aminoácidos (KABARA;

    MARSHALL, 2005). Também atua impedindo a produção de enzimas e fatores de

    virulência como proteína A, α-hemolisina e β-lactamases (RUZIN; NOVICK, 1998).

    Em partículas virais o MLG atua contra vírus envelopados, incluindo vírus Influenza e

    Herpes vírus, interferindo na fusão do vírus com as células, além de prevenir o processo

    inflamatório (necessário para a penetração na superfície da mucosa) (THORMAR et al.,

    1987). Além disto, o MLG demonstrou capacidade de inibição da produção da síndrome

    do choque tóxico causada por toxinas produzidas por Staphylococcus aureus. Essa

    síndrome é caracterizada por febre alta, pressão baixa, erupção cutânea e descamação da

    pele (CHESNEY, 1989; DAVIS et al., 1980).

  • 17

    2.3 NANOTECNOLOGIA

    Em 1959, no Instituto de Tecnologia da Califórnia, o pesquisador Richard

    Feynman realizou uma palestra no encontro American Physical Society falando sobre a

    construção de nanoestruturas, molécula por molécula, átomo por átomo. Surgia a

    nanotecnologia e a manipulação de materiais em escala atômica modificando as

    propriedades físicas e químicas e facilitando a penetração em barreiras e membranas

    celulares (MANSOORI; FAUZI SOELAIMAN, 2005; YANG; PETERS; WILLIAMS,

    2008).

    A nanotecnologia abrange diversas áreas como Física, Química, Medicina,

    Biologia, Informática entre outras, e isso a torna um campo interdisciplinar. Usando a

    nanotecnologia, é possível determinar propriedades e o modo de liberação de fármacos

    conjugados a nanoestruturas. Dentre as nanoestruturas mais utilizadas para este fim

    estão as nanopartículas (poliméricas ou lipídicas), os nanotubos, pontos quânticos,

    dendrímeros e os lipossomas (PUTHETI; OKIGBO; SAI, 2008; VAUTHIER et al.,

    2003).

    Os compostos bioativos nanoencapsulados representam uma alternativa para

    aumentar a estabilidade da substância ativa, isso porque protege o fármaco de interações

    indesejáveis. Para agentes antimicrobianos, a nanoencapsulação pode aumentar a

    concentração do fármaco na região onde os microrganismos se localizam (WEISS et al.,

    2009). Substâncias como o MLG, que possui atividade antimicrobiana, mas devido aos

    problemas de solubilidade, permanece inviável o uso terapêutico (KABARA;

    MARSHALL, 2005). Por esse motivo, a nanoestruturação desta substância, pode vir a

    ser uma alternativa viável para os problemas usuais e vir a se tornar um aliado no

    combate a infecções.

  • 18

    Para reduzir a carga do tratamento, desenvolver uma formulação com uma

    liberação controlada do fármaco, seria benéfico já que a liberação gradual faz com que o

    fármaco permaneça mais tempo no organismo mesmo utilizando uma concentração

    baixa. Estudos com lipossomas de ciprofloxacina mostram que a formulação age

    somente no local de ação tornando-se um ótimo tratamento para infecções respiratórias.

    Essa melhor biodistribuição proporciona uma maior concentração do fármaco

    exclusivamente no local de ação, reduzindo assim efeitos tóxicos e adversos além de

    contornar o problema da resistência bacteriana (BAKKER-WOUDENBERG et al.,

    2001; GUBERNATOR et al., 2007).

  • 19

    3 RESULTADOS

    Esta investigação alcançou resultados significativos frente às ações e objetivos

    assumidos na Introdução e explicados no Item 3 - Metodologia. Esses resultados podem

    ser visualizados em artigos publicados.

  • 20

    2.1 CAPÍTULO I: NANOCÁPSULAS CONTENDO MLG: EFEITO EM

    BIOFILMES.

    3.1.1 ARTIGO 1: NANOCAPSULES WITH GLYCEROL MONOLAURATE:

    EFFECTS ON CANDIDA ALBICANS BIOFILM

    O primeiro resultado apresentado foi referente à atividade das nanocápsulas

    contendo MLG frente a biofilmes de Candida albicans. Neste trabalho foram tratados:

    Produção e caracterização das nanocápsulas contendo MLG;

    Determinação da concentração inibitória mínima da formulação e da substância

    na forma livre frente ao fungo Candida albicans pela técnica de microdiluição;

    Curva de crescimento;

    Avaliação da atividade contra o biofilme formado pelas técnicas de cristal

    violeta e Calcofluor White;

    Curva de atividade anti-biofilme;

    Avaliação do potencial para prevenir a formação de biofilme;

  • 21

    Nanocapsules with glycerol monolaurate: effects on Candida albicans biofilms

    Leonardo Quintana Soares Lopes 1,2 *

    , Cayane Genro Santos 2, Rodrigo de Almeida

    Vaucher1,2

    , Renata Platcheck Raffin2, Roberto Christ Vianna Santos

    1,2,3

    1 Laboratory of Microbiology Research, Centro Universitário Franciscano, Santa Maria,

    Brazil

    2 Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa

    Maria, Brazil

    3 Microbiology and Parasitology Department, Health Sciences Center, Universidade

    Federal de Santa Maria, Santa Maria, Brazil

    *Correspondent author e-mail address: [email protected]

    Permanent address: Centro Universitário Franciscano, Laboratory of Microbiology

    Reserach

    Rua dos Andradas 1614, Santa Maria-RS, Zip Code 97010-032, Brazil

    Abstract

    Candida albicans does not only occur in the free living planktonic form but also grows

    in surface-attached biofilm communities. Moreover, these biofilms appear to be the

    most common lifestyle and are involved in the majority of human Candida infections.

    Nanoparticles can be used as an alternative to conventional antimicrobial agents and can

    also act as carriers for antibiotics and other drugs. In view of this, the aim of the study

    was develop, characterize and verify the anti-biofilm potential of GML Nanocapsules

    against C. albicans. The GML Nanocapsules showed mean diameter of 193.2 nm,

    mailto:[email protected]

  • 22

    polydispersion index of 0.044, zeta potential of -23.3 mV and pH 6.32. The

    microdilution assay showed MIC of 15.5 µg mL-1

    to GML Nanocapsules and 31.25 µg

    mL-1

    to GML. The anti-biofilm assay showed the significantly reduction of biomass of

    C. albicans biofilm treated with GML Nanocapsules while the GML does not exhibit

    effect. The kinetic assay demonstrated that at 48 hours, the GML Nanocapsules reduce

    94% of formed biofilm. The positive results suggest the promisor alternative for this

    public health problem that is biofilm infections.

    Keywords: Glycerol monolaurate; Nanocapsules; anti-biofilm; kinetic; Candida

    albicans.

    1. Introduction

    Biofilms are compact bacterial clusters that can adhere to many surfaces. They rapidly

    produce an extracellular polymeric matrix that is hard to penetrate, thus increasing the

    resistance of therapeutic drugs. Moreover, they are usually localized at sites difficult to

    reach, so current treatments are rarely successful. Currently, they are responsible for

    most microbial infections and the best option, besides prevention, is to remove the

    colonized tissue or implant [1–3].

    The biofilm infections in hospital environment are a serious problem of public health

    and many methods has been used to try minimize or eliminate them. The great difficult

    lies in the fact of that many of these methods have important disadvantages, because

    lead to clinical complications and develop strains multi resistant [4]

    Nanotechnology is one of the most prominent areas with the potential to tackle almost

    every aspect of microbial infections [2,5,6]. One of the main areas in focus is the

    development of therapeutic nanoparticles (NPs) for anti-biofilm applications. NPs can

    be synthesized through many different methods and approaches [7]. The reason why

  • 23

    these molecules are so well studied and tested in the therapeutics of infections lies in

    their properties. Recently, this theme has been reviewed focusing on liposome and

    polymeric nanoparticles [1]

    The glycerol monolaurate (GML) is a natural compound recognized as safe by The

    Food and Drug Administration (FDA). The antimicrobial potential of GML against

    many Gram Positive coccus in addition to Bacillus anthracis is known [8]. A previous

    study performed by Schlievert and Peterson, showed the ability of GML to inhibit the

    biofilm formation of three strains of Staphylococcus aureus including Methicillin

    resistant Staphylococcus aureus (MRSA) [9]. The present work is the first study that

    associates GML nanoparticles and biofilm, that despite promising, the use of GML is

    not expanded due the low solubility in water, leading to low bioavailability. The aim of

    present study was for the first time develop and characterize GML nanoparticles aiming

    the application on Candida albicans biofilms.

    2. Materials and methods

    2.1 Materials

    The GML was purchased by Seebio Biotech, Inc®

    , Xangai, China. Sorbitan monooleate

    (Spam 80®

    ), polysorbate 80 (Tween 80®

    ) and acetone was purchased from Labsynth®

    (São Paulo, Brazil); capryc/caprylic triglyceride mixture was acquired from Brasquim

    (Porto Alegre, Brazil); the polymeric blende PMMA/PEG was supplied by Laboratory

    of Nanotechnology of Centro Universitário Franciscano (Santa Maria, Brazil).

    2.2 Glycerol monolaurate nanocapsules

    The GML Nanocapsules were produced according to the method described previously

    [10] with modifications. The aqueous phase was prepared with polysorbate 80 (0.194 g)

  • 24

    and purified water (134 mL) at 40°C under moderated stirring. In the organic phase, the

    GML (0.25 g) was solubilized with sorbitan monooleate (0.194 g), capryc/caprylic

    triglyceride (0.8 g), and polymeric blende PMMA-PEG (0.25 g) in acetone (67 mL) at

    40°C under moderated magnetic stirring. After solubilized, the organic phase was

    poured into de aqueous phase under magnetic stirring, being maintained for 10 minutes.

    The organic solvent and the water were evaporated in rotatory evaporator (Fisatom®

    Brazil) to adjust concentration to 1 mg/mL getting 25 mL of formulation. A blank

    formulation (Blank Nanocapsules) was developed in the same way as GML

    Nanocapsules (but without GML).

    2.3 Characterization of GML Nanocapsules

    After preparation, the formulations were characterized as size and polydispersity index

    (PDI) by dynamic light scattering (DLS), zeta potential by electrophoresis in a Zetasizer

    Nano-ZS (Malvern Instruments, United Kingdom) and the pH was evaluated using

    potentiometer (Digimed®

    ). Each parameter was evaluated in triplicated (n=3) and

    results were expressed by average ± standard deviation (SD). The morphology of the

    nanocapsules were analyzed by transmission electron microscopy operating at 80 kV

    (TEM; Jeol, JEM 1200 Exll, Japan). Diluted suspensions (1:10 v/v in water) were

    deposited on specimen grid (Formvar-Carbon support films), negatively stained with

    uranyl acetate solution (2% w/v) and observed at different magnifications.

    2.4 Microorganism

    The strain Candida albicans (ATCC 14053) was obtained by American Type Culture

    Collection. This microorganism was maintained on culture medium with glycerol and

    cooled at -80 °C. The sample was unfrozen, inoculated on Brain Heart Infusion broth

  • 25

    (BHI) and incubated for 24 hours. After, it were seeded on Sabouraud agar and

    incubated for 24 hours at 37 °C.

    2.5 Minimal Inhibitory Concentration (MIC) and Minimal bactericidal

    concentration (MBC)

    The MIC was performed by microdilution method on 96-well plate [11]. Different

    concentrations GML and GML Nanocapsules were add on wells containing Mueller

    Hinton broth (MHB). The positive control was considered the well with inoculum in

    MHB and negative control only MHB with saline. The assay was performed in

    triplicate. After the process, the plate was incubated to 24 hours at 37 °C. After

    incubation, the assay was revealed with 2,3,5 triphenyl tetrazolium chloride. To

    determine the MBC, an aliquot of 1µl was taken of each well, seeded on Sabouraud agar

    plate and incubated to 24 hours. After, the colonies were identified and the lowest

    concentration which does not demonstrated microbial growth was considered the MBC.

    2.6 Effect of GML and GML Nanocapsules on microbial growth

    Microbial growth curve was observed by inoculating the 96 well-plate with Mueller

    Hinton broth containing 1.5 x 108 CFU/mL of C. albicans and loaded with different

    concentrations of GML and GML nanocapsules (3.9 – 62.5 µg/mL). The plate was

    incubated at 37 °C for 30 hours and the absorbance was reader at 600 nm [12].

    2.7 Biofilm formation

    The biofilm was formed according to the conditions previously optimized and described

    [13,14] with modifications. Fresh, exponentially grown culture of C. albicans was

    diluted to be 106 CFU/mL and 50 µL was added to flat-bottomed 24-well plates

  • 26

    (Nunclon™ D surface, Nunc, Roskilde, Denmark), containing 500 µL of BHI broth and

    the plate was incubated in 37 °C, for 24 hours.

    2.8 Efficiency of GML and GML Nanocapsules against biofilm developed

    After formation of biofilm, it was performed the treatment and incubated for 24 hours in

    condition of 37 °C according to Manner et al. [15]. The treatment was performed with

    500 µL of a suspension containing 1 mg/mL of GML or GML Nanocapsules. A positive

    control was performed containing only BHI broth and the C. albicans strain while the

    negative control was just BHI broth.

    2.9 Quantification of biofilm biomass

    After the treatment, the supernatant was removed and washed four times with PBS and

    them, it was performed the quantifications. The result of biofilm treatment was

    measured fixing with 95% of methanol and staining with 500 µL of 0.1% of crystal

    violet or 1% of safranin for 10 min at room temperature (RT). After incubation, the

    well-plates were washed with PBS and photos (Fig 4) were taken. Ethanol 95% was

    added to dissolve the coloring and after, transferred into other plate to measure

    spectrophotometrically at 570 nm to crystal violet and 492 to safranin in

    spectrophotometer (TP-Reader; ThermoPlate, Goiás, Brazil). The biofilm formation was

    determined by the difference between the mean OD readings obtained in the positive

    control (BHI broth and C. albicans strain) and the treatment with GML and GML

    nanocapsules.

    2.10 Efficiency against biofilm formation

    The GML and GML nanocapsules were tested to verify the ability in prevent the

    biofilm formation of C. albicans. The assay was performed in three replicates on 96

  • 27

    well-plates. It were used three sub inhibitory concentrations (0.5 x MIC, 0.25 x MIC

    and 0.125 x MIC) which were added together with microorganism. The experiment was

    performed in BHI broth for 24 hours. After incubation, the biofilm was revealed such

    item above. Only BHI broth with C. albicans was considered control and the percentage

    of inhibition was calculated by OD Test / OD Control x 100.

    2.11 Kinetics of anti-biofilm activity on developed biofilm

    Efficacy of GML and GML Nanocapsules were evaluated against C. albicans biofilm

    by the time-dependent killing assay. Biofilms of C. albicans were formed in microtube

    and treated with 1× MBC of compound or formulation. Over a series of time intervals

    of 0, 3, 6, 12, 24 and 48 hours, the anti-biofilm activity was measured with the safranin

    stain assay and the absorbance was reader in spectrophotometer (TP-Reader;

    ThermoPlate, Goiás, Brazil) at 492 nm. After coloration, the microtubes were washed 3

    times with PBS, and was used ethanol to dissolve the safranin adhered in microtube.

    After discoloration, 300 µL were transferred to microplate for reading. The assay was

    performed in 3 replicates.

    2.12 Biofilm treatment on glass slide and stained with Calcofluor White

    A glass slide was inserted into petri dish, containing 10 mL of BHI broth. After, 50 µL

    of suspension containing C. albicans was added into the plate. The plate was incubated

    at 37 °C for 48 hours. After biofilm formation, was performed the treatment with 1x

    MBC of GML (62.5 µg/mL) and GML Nanocapsules (31.25 µg/mL). A dish without

    treatment was considered the Positive Control (only BHI + C. albicans suspension).

    After incubation, the glass slide was removing from dish, washed with PBS and dried at

    RT. Three drops of KOH (10%) and 3 drops of Calcofluor White Stain were dispersed

  • 28

    in glass slide. After 1 minute at RT, the glass slide was analyzed in Fluorescence

    Microscopy to observe the biofilm.

    2.13 Statistical analysis

    The results of microbiological assays were submitted to One-way analyses of variance

    (ANOVA) following by Tukey test with 95% of significance. The experiments were

    performed in 3 replicates (n=3) except the biofilm assay which was carried in 2

    replicates.

    3. Results

    3.1 Characterization of GML Nanocapsules

    After preparation, the formulation was evaluated as physical-chemical characteristic.

    The measurements showed values of pH, mean diameter, polydispersion index and zeta

    potential. The values were 6.32 ± 0.31 to pH, mean diameter about 193.2 ± 4 nm,

    polydispersion index of 0.044 ± 0.028 and zeta potential of -23.3 ± 3 mV.

    The image of nanoparticle obtained by transmission electron microscopy was shown in

    Figure 1.

    3.2 MIC and MBC

    The MIC and MBC can be visualized in Table 1. The Blank Nanocapsules was tested in

    the same way with GML Nanocapsules but without antimicrobial activity (data not

    shown)

  • 29

    3.3 Growth curve

    The growth curve of C. albicans showed a difference of inhibition in relation to dose

    after 30h of exposition. The result is according to MIC and MBC assays and is

    described in Figure 3.

    3.4 Biofilm quantification by crystal violet and safranin

    After stain procedure, the biofilm was quantified measuring the absorbance and

    comparing with positive control (C. albicans + broth). The result was described in

    Figure 2. The Blank formulation was tested and do not demonstrate antibiofilm activity

    (data not shown)

    3.5 Efficiency against formation of biofilm

    After absorbance reading, it’s possible observes that GML Nanocapsules inhibit the

    formation of biofilm at 0.5 x MIC concentration while the GML does not inhibit the

    biofilm formation. The results are described in Figure 5. There was no inhibition of

    biofilms treated with Blank Nanocapsules (data not shown)

    3.6 Kinetics of inhibition of formed biofilm

    After 48 hours, the GML Nanocapsules demonstrated capacity to eliminate virtually all

    biofilm (94%), while GML showed a lower effect. The result is described in Figure 5.

    3.7 Biofilm treatment on glass slide and stained with Calcofluor White

    After staining, the glass slide was observed in Fluorescence microscopy and then took

    snapshots. The biofilm was observed in 400 x. The images are demonstrated in Figure

    6.

  • 30

    4. Discussion

    The synthesis of polymeric nanoparticles has been proposed to combat biofilm

    infections [16]. The polymeric nanoparticles would function as drug carriers that deliver

    the therapeutic molecule into the infected tissue, especially those that are water-

    insoluble, improving the effect on the biofilm [16]. The studies of nanoparticles against

    biofilm have demonstrated a promissory therapeutic alternative. Some kinds of drug

    nanoparticles are able to penetrate the barrier and eliminate biofilm. For example, only

    one dose of ciprofloxacin-PLGA nanoparticles reduced the Pseudomonas aeruginosa

    biofilm mass, size and live cell density by more than 80%, and repeated administrations

    prevented new formations [17]. A study with Melaleuca alternifolia oil nanoparticles

    showed anti-biofilm activity of Pseudomonas aeruginosa, also decreased the adhesion

    on epithelial cells and impaired the motility of microorganism, while the free oil do not

    showed effect [18]. Moreover, the nanoencapsulation of antibiotics resulted in better in

    vitro anti-biofilm activity compared to the free antibiotic [19,20].

    In the present study, the formulations showed a milky bluish opalescent aspect (Tyndall

    effect) demonstrating success on the development [21]. After analysis in transmission

    electron microscope, images were produced and it was possible to verify the spherical

    shape and nanometric size proving the success of the development of the nanocapsule

    (Figure 1).

    Negative values to zeta potential are expected when used polymers containing grouping

    ester in structure, such as PMMA [22]. High values, in modulus of zeta potential,

    indicate that the nanoparticles have charges which allows the repulsion between other

    particles preventing the aggregation also predicting the formulation stability [23,24].

    The obtained results of characterization in the present study corroborates with works

  • 31

    related in literature which use polymeric blende in development of nanoparticles such

    carries and suggest homogeneity on size distribution [25–27].

    A recent study of our group with GML Nanocapsules showed the antimicrobial activity

    against bee pathogen [28].This is the first report which shows GML nanoparticles

    against biofilms. The assay with crystal violet demonstrated the high potential of GML

    Nanocapsules, against biofilm of C. albicans (Figure 4C), while the GML don’t showed

    significant effect being equal to the positive control (Figure 4B and 4A). Studies

    performed by Schlievert et al. [9] demonstrated the capacity of GML on inhibit

    Staphylococcus aureus biofilms. The GML Nanocapsules demonstrated the ability to

    prevent biofilm formation (Figure 5).

    In the kinetics assay, the GML Nanocapsules reduced approximately 94% of formed

    biofilm on 48 hours while the GML reduced 46% in the same time. In the Calcofluor

    stain assay, the GML on concentration of 62.5 µg/mL it was not effective against C.

    albicans biofilm. The GML Nanocapsules on concentration of 32.25 µg/mL was able to

    significantly reduce the biofilm (Figure 7).

    Previous studies with development of nanoparticles with mean size of 220 nm and

    260nm were internalized by fungal cells due their reduced size have showed that due

    their reduced size, the nanocapsules could be internalized by fungal cells [29,30].

    Moreover, the slow release of the GML could have had an important role in anti-biofilm

    activity throughout the time of the assay. In addition, a long time of release could help

    the dispersion of GML increasing the cellular penetration [31].

    5. Conclusion

    In conclusion, the study demonstrated the success of development of GML

    nanocapsules with acceptable values to predict a stable system. Moreover, the potential

    of nanocapsule against C. albicans was higher comparing the free GML. Furthermore,

  • 32

    the anti-biofilm activity of GML Nanocapsules showed a therapeutic alternative to

    combat biofilms, considering that usual drugs do not penetrate into biofilm matrix and

    thus not being effective. Therefore, more studies must be performed to clarify the real

    mechanism of action of GML Nanocapsules and the role of nanostructuration on cell

    wall.

    Conflict of interest statement

    We declare that we have no conflict of interest.

    Acknowledgment

    This work received financial support of PPGPE/Centro Universitário Franciscano-

    Probic, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico),

    CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and

    FAPERGS (Fundação de Amparo a Pesquisa do Rio Grande do Sul).

    References

    [1] K. Forier, K. Raemdonck, S.C. De Smedt, J. Demeester, T. Coenye, K.

    Braeckmans, Lipid and polymer nanoparticles for drug delivery to bacterial

    biofilms, J. Control. Release. 190 (2014) 607–623.

    doi:10.1016/j.jconrel.2014.03.055.

    [2] F. Cavalieri, M. Tortora, A. Stringaro, M. Colone, L. Baldassarri, Nanomedicines

    for antimicrobial interventions, J. Hosp. Infect. 88 (2014) 183–190.

    doi:10.1016/j.jhin.2014.09.009.

    [3] C.W. Chen, C.Y. Hsu, S.M. Lai, W.J. Syu, T.Y. Wang, P.S. Lai, Metal

    nanobullets for multidrug resistant bacteria and biofilms, Adv. Drug Deliv. Rev.

    78 (2014) 88–104. doi:10.1016/j.addr.2014.08.004.

    [4] H.H. Zadegan, B. Delfan, Evaluation of antibiofilm activity of dentol, Acta Med.

    Iran. 47 (2009) 35–40.

    [5] C.S. Alves, M.N. Melo, H.G. Franquelim, R. Ferre, M. Planas, L. Feliu, et al.,

    Escherichia coli cell surface perturbation and disruption induced by antimicrobial

    peptides BP100 and pepR, J. Biol. Chem. 285 (2010) 27536–27544.

    doi:10.1074/jbc.M110.130955.

    [6] X. Zhu, A.F. Radovic-Moreno, J. Wu, R. Langer, J. Shi, Nanomedicine in the

  • 33

    management of microbial infection - Overview and perspectives, Nano Today. 9

    (2014) 479–498. doi:10.1016/j.nantod.2014.06.003.

    [7] N. Tran, P.A. Tran, Nanomaterial-based treatments for medical device-associated

    infections, ChemPhysChem. 13 (2012) 2481–2494.

    doi:10.1002/cphc.201200091.

    [8] S.M. Vetter, P.M. Schlievert, Glycerol monolaurate inhibits virulence factor

    production in Bacillus anthracis, Antimicrob Agents Chemother. 49 (2005)

    1302–1305.

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&do

    pt=Citation&list_uids=15793101.

    [9] P.M. Schlievert, M.L. Peterson, Glycerol monolaurate antibacterial activity in

    broth and biofilm cultures, PLoS One. 7 (2012).

    doi:10.1371/journal.pone.0040350.

    [10] H. Fessi, F. Puisieux, J.P. Devissaguet, N. Ammoury, S. Benita, Nanocapsule

    formation by interfacial polymer deposition following solvent displacement, Int.

    J. Pharm. 55 (1989) R1–R4. doi:10.1016/0378-5173(89)90281-0.

    [11] CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That

    Grow Aerobically, 2012.

    [12] I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: A case

    study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci.

    275 (2004) 177–182. doi:10.1016/j.jcis.2004.02.012.

    [13] M.E. Sandberg, D. Schellmann, G. Brunhofer, T. Erker, I. Busygin, R. Leino, et

    al., Pros and cons of using resazurin staining for quantification of viable

    Staphylococcus aureus biofilms in a screening assay, J. Microbiol. Methods. 78

    (2009) 104–106. doi:10.1016/j.mimet.2009.04.014.

    [14] M. Sandberg, A. Määttänen, J. Peltonen, P.M. Vuorela, A. Fallarero, Automating

    a 96-well microtitre plate model for Staphylococcus aureus biofilms: an approach

    to screening of natural antimicrobial compounds, Int. J. Antimicrob. Agents. 32

    (2008) 233–240. doi:10.1016/j.ijantimicag.2008.04.022.

    [15] S. Manner, M. Skogman, D. Goeres, P. Vuorela, A. Fallarero, Systematic

    exploration of natural and synthetic flavonoids for the inhibition of

    Staphylococcus aureus biofilms, Int. J. Mol. Sci. 14 (2013) 19434–19451.

    doi:10.3390/ijms141019434.

    [16] E. Turos, J.Y. Shim, Y. Wang, K. Greenhalgh, G.S.K. Reddy, S. Dickey, et al.,

    Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for

    development of anti-MRSA agents, Bioorganic Med. Chem. Lett. 17 (2007) 53–

    56. doi:10.1016/j.bmcl.2006.09.098.

  • 34

    [17] A. Baelo, R. Levato, E. Julián, A. Crespo, J. Astola, J. Gavaldà, et al.,

    Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to

    enhance antibiotic delivery in biofilm infections, J. Control. Release. 209 (2015)

    150–158. doi:10.1016/j.jconrel.2015.04.028.

    [18] V.M. Comin, L.Q.S. Lopes, P.M. Quatrin, M.E. de Souza, P.C. Bonez, F.G.

    Pintos, et al., Influence of Melaleuca alternifolia oil nanoparticles on aspects of

    Pseudomonas aeruginosa biofilm, Microb. Pathog. 93 (2016) 120–125.

    doi:10.1016/j.micpath.2016.01.019.

    [19] N. Moghadas-Sharif, B.S. Fazly Bazzaz, B. Khameneh, B. Malaekeh-Nikouei,

    The effect of nanoliposomal formulations on Staphylococcus epidermidis

    biofilm., Drug Dev. Ind. Pharm. 9045 (2014) 1–6.

    doi:10.3109/03639045.2013.877483.

    [20] B. Khameneh, M. Iranshahy, M. Ghandadi, D. Ghoochi Atashbeyk, B.S. Fazly

    Bazzaz, M. Iranshahi, Investigation of the antibacterial activity and efflux pump

    inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in

    methicillin-resistant Staphylococcus aureus., Drug Dev. Ind. Pharm. 9045 (2014)

    1–6. doi:10.3109/03639045.2014.920025.

    [21] R.P. Raffin, E.S. Obach, G. Mezzalira, A.R. Pohlmann, S.S. Guterres,

    Nanocápsulas poliméricas secas contendo indometacina: Estudo de formulação e

    de tolerância gastrintestinal em ratos, Acta Farm. Bonaer. 22 (2003) 163–172.

    [22] C.E. Mora-Huertas, H. Fessi, A. Elaissari, Polymer-based nanocapsules for drug

    delivery, Int. J. Pharm. 385 (2010) 113–142. doi:10.1016/j.ijpharm.2009.10.018.

    [23] S.R. Schaffazick, S.S. Guterres, L. De Lucca Freitas, A.R. Pohlmann,

    Caracterização e estabilidade físico-química de sistemas poliméricos

    nanoparticulados para administração de fármacos, Quim. Nova. 26 (2003) 726–

    737. doi:10.1590/S0100-40422003000500017.

    [24] M. Instruments, Zeta potential: An Introduction in 30 minutes, Zetasizer Nano

    Serles Tech. Note. MRK654-01. 2 (2011) 1–6.

    http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Zeta+Potential

    +An+Introduction+in+30+Minutes#0.

    [25] R.P. Raffin, L.M. Colomé, S.E. Haas, D.S. Jornada, A.R. Pohlmann, S.S.

    Guterres, Development of HPMC and Eudragit S100® blended microparticles

    containing sodium pantoprazole, Pharmazie. 62 (2007) 361–364.

    doi:10.1691/ph.2007.5.6077.

    [26] K.P. Seremeta, D.A. Chiappetta, A. Sosnik, Poly(e{open}-caprolactone),

    Eudragit?? RS 100 and poly(e{open}-caprolactone)/Eudragit?? RS 100 blend

    submicron particles for the sustained release of the antiretroviral efavirenz,

  • 35

    Colloids Surfaces B Biointerfaces. 102 (2013) 441–449.

    doi:10.1016/j.colsurfb.2012.06.038.

    [27] A. De Arce Velasquez, L.M. Ferreira, M.F.L. Stangarlin, C.D.B. Da Silva,

    C.M.B. Rolim, L. Cruz, Novel Pullulan-Eudragit?? S100 blend microparticles for

    oral delivery of risedronate: Formulation, in vitro evaluation and tableting of

    blend microparticles, Mater. Sci. Eng. C. 38 (2014) 212–217.

    doi:10.1016/j.msec.2014.02.003.

    [28] L.Q.S. Lopes, C.G. Santos, R.D.A. Vaucher, R.P. Raffin, R.C. V Santos,

    Evaluation of antimicrobial activity of glycerol monolaurate nanocapsules

    against american foulbrood disease agent and toxicity on bees, Microb. Pathog.

    (2016). doi:10.1016/j.micpath.2016.05.014.

    [29] F. Esmaeili, M. Hosseini-Nasr, M. Rad-Malekshahi, N. Samadi, F. Atyabi, R.

    Dinarvand, Preparation and antibacterial activity evaluation of rifampicin-loaded

    poly lactide-co-glycolide nanoparticles, Nanomedicine Nanotechnology, Biol.

    Med. 3 (2007) 161–167. doi:10.1016/j.nano.2007.03.003.

    [30] H. sheng Peng, X. jun Liu, G. xiang Lv, B. Sun, Q. fei Kong, D. xu Zhai, et al.,

    Voriconazole into PLGA nanoparticles: Improving agglomeration and antifungal

    efficacy, Int. J. Pharm. 352 (2008) 29–35. doi:10.1016/j.ijpharm.2007.10.009.

    [31] V.C.F. Mosqueira, P. Legrand, A. Gulik, O. Bourdon, R. Gref, D. Labarre, et al.,

    Relationship between complement activation, cellular uptake and surface

    physicochemical aspects of novel PEG-modified nanocapsules, Biomaterials. 22

    (2001) 2967–2979. doi:10.1016/S0142-9612(01)00043-6.

  • 36

    Legends

    Table 1. MIC and MBC of GML and GML nanocapsules against C. albicans.

    Fig. 1. GML nanocapsule in TEM

    Fig. 2. Growth curve dependent of dose of GML and GML nanocapsules against C.

    albicans.

    Fig. 3. Biofilm quantification by Crystal violet (A) and safranin (B) stain after exposure GML

    or GML Nanocapsules. Was used analysis of variance (ANOVA) followed by Tukey test

    considering values p < 0.05 statistically significant comparing with Positive Control. Data

    expressed on Average ± Standard derivation. Absorbance at 570 nm.

    Fig. 4. Well-plate semi-quantification of biofilm by crystal violet (A to C) and safranin (D to F).

    Positive control (A,D), GML (B,E) and GML nanocapsules (C,F).

    Fig. 5. Efficiency of biofilm inhibition of GML and GML Nanocapsules on many

    concetrations.

    Fig. 6. Kinetics of inhibition of formed C. albicans biofilm with GML and GML

    Nanocapsules.

    Fig. 7. Biofilm stained with Calcofluor White. Positive Control (a), GML (b) and GML

    nanocapsules (c).

  • 37

    Fig. 1. GML nanocapsule in TEM

  • 38

    Fig. 2. Growth curve dependent of dose of GML and GML nanocapsules against C.

    albicans.

    0.0 31.2 62.40.0

    0.1

    0.2

    0.3

    0.4

    0.5Positive Control

    GML

    GML nanocapsules

    7.8 15.6

    Concentration (g/mL)

    Ab

    orb

    an

    ce (

    OD

    60

    0)

  • 39

    Fig. 3. Biofilm quantification by Crystal violet (A) and safranin (B) stain after exposure

    GML or GML Nanocapsules. Was used analysis of variance (ANOVA) followed by

    Tukey test considering values p < 0.05 statistically significant comparing with Positive

    Control. Data expressed on Average ± Standard deviation and absorbance reader with

    wavelength at 570 nm.

  • 40

    Fig. 4. Well-plate semi-quantification of biofilm by crystal violet (A to C) and safranin

    (D to F). Positive control (A,D), GML (B,E) and GML nanocapsules (C,F).

  • 41

    Fig. 5. Efficiency of biofilm inhibition of GML and GML Nanocapsules on many

    concetrations. Was used analysis of variance (ANOVA) followed by Tukey test

    considering values p < 0.001 (***) statistically significant comparing with Control.

  • 42

    Fig. 6. Kinetics of inhibition of formed C. albicans biofilm with GML and GML

    Nanocapsules.

    0 24 480

    500

    1000

    1500 Positive Control

    GML Nanocapsules

    GML

    3 6 12

    Time (h)

    Ab

    so

    rban

    ce (

    OD

    54

    0)

  • 43

    Fig. 7. Biofilm stained with Calcofluor White. Positive Control (A), GML (B) and

    GML Nanocapsules (C).

  • 44

    Table 1. MIC and MBC of GML and GML nanocapsules against C. albicans.

    MIC (µg/mL) MBC (µg/mL)

    Microorganism GML GML

    nanocapsules

    GML GML

    nanocapsules

    C. albicans ATCC 14053 31.25 15.5 62.5 31.25

  • 45

    3.1.2 ARTIGO 2: CHARACTERISATION AND ANTI-BIOFILM ACTIVITY

    OF GLYCEROL MONOLAURATE NANOCAPSULES AGAINST

    PSEUDOMONAS AERUGINOSA

    O segundo trabalho teve como objetivo avaliar o potencial antibiofilme das

    nanocápsulas contra o bacilo Gram negativo Pseudomonas aeruginosa. O artigo conta

    com:

    Produção e caracterização da formulação contendo as nanocápsulas;

    Determinação da concentração inibitória e bactericida mínima;

    Realização da curva de crescimento microbiano;

    Atividade antibiofilme pela quantificação da biomassa, proteínas e

    polissacarídeos;

    Capacidade de inibir a formação do biofilme pelo MLG e as nanocápsulas;

    Microscopia de Força Atômica dos biofilmes formados em poliestireno;

  • 46

    Characterisation and anti-biofilm activity of glycerol monolaurate nanocapsules

    against Pseudomonas aeruginosa

    Leonardo Quintana Soares Lopesa,b*

    , Rodrigo de Almeida Vaucher c

    , Janice Luehring

    Giongo d , André Gündel

    e, Roberto Christ Vianna Santos

    a,b

    a Post Graduate Program in Nanosciences, Universidade Franciscana, Santa Maria,

    Brazil

    b Microbiology and Parasitology Department, Health Sciences Center, Universidade

    Federal de Santa Maria, Santa Maria, Brazil

    c Laboratory of Research in Biochemistry and Molecular Biology of Microorganisms,

    Post graduate Program in Biochemistry and Bioprospecting, Universidade Federal de

    Pelotas, Capão do Leão, Brazil

    d Pharmacy Department, Faculdade Anhanguera, Pelotas, Brazil

    e Universidade Federal do Pampa, Bagé, Brazil

    #Correspondent author e-mail address: [email protected]

    Permanent address: Universidade Franciscana, Laboratory of Microbiology Reserach

    Rua dos Andradas 1614, Santa Maria-RS, Zip Code 97010-032, Brazil

    mailto:[email protected]

  • 47

    Abstract

    Pseudomonas aeruginosa is a ubiquitous microorganism that commonly causes

    hospital-acquired infections, including pneumonia, bloodstream and urinary tract

    infections and it is well known for chronically colonising the respiratory tract of patients

    with cystic fibrosis, causing severe intermittent exacerbation of the condition. P.

    aeruginosa may appear in the free form cell but also grows in biofilm communities

    adhered to a surface. An alternative to conventional antimicrobial agents are

    nanoparticles that can act as carriers for antibiotics and other drugs. In this context, the

    study aimed to characterise and verify the anti-biofilm potential of GML Nanocapsules

    against P. aeruginosa. The nanocapsules showed a mean diameter of 190.7 nm,

    polydispersion index of 0.069, the zeta potential of -23.3 mV. The microdilution test

    showed a MIC of 62.5 µg/mL to GML and 15.62 µg/mL to GML Nanocapsules. The

    anti-biofilm experiments demonstrated the significant reduction of biomass, proteins,

    polysaccharide and viable P. aeruginosa in biofilm treated with GML Nanocapsules

    while the free GML did not cause an effect. The AFM images showed a decrease in a

    biofilm which received GML. The positive results suggest an alternative for the public

    health trouble related to infections associated with biofilm.

    Keywords: Biofilm; P. aeruginosa; Nanocapsules; Glycerol monolaurate, Atomic

    Force Microscopy;

  • 48

    1. Introduction

    Pseudomonas aeruginosa is a pathogen that is commonly responsible for acute and

    chronic respiratory infections, associated with a high mortality [1]. The emergence of

    pan-resistant strains such as P. aeruginosa and the ability of many pathogens to form

    multidrug-resistant biofilms during infection increases the threat of bacterial diseases

    that are untreatable with current antibiotics [2]. A biofilm is a matrix-enclosed bacterial

    population in which bacteria adhere both to surfaces or interfaces [3,4]. The matrix

    where microorganisms are found usually is composed of an extracellular polymeric

    substance containing proteins, polysaccharides, lipids and extracellular DNA [5,6].

    Biofilms are typically resistant to therapeutic concentrations of antibiotics that are based

    in part on the MICs of planktonic cells [7–9].

    Glycerol monolaurate (GML) is a mild surfactant formed by glycerol and lauric acid. It

    is used in the cosmetic and food industry as a preservative and emulsifier also is

    generally recognised as safe (GRAS) for oral use by the FDA [10]. GML has

    antimicrobial activity against enveloped viruses [11] and a variety of bacteria, including

    some Gram-negative bacteria such as Gardnerella vaginalis [12] and some Gram-

    positive bacteria such as Streptococcus spp. [13] and Staphylococcus aureus [14,15].

    However, the use of GML is not expanded due to its low solubility in water, leading to a

    low bioavailability [16].

    In view of the grave healthcare concern associated with bacterial biofilms, new

    approaches to biofilm growth inhibition, biofilm disruption or biofilm eradication have

    been studied [17–19]. It is essential to improve the penetrative capabilities of existing

    antimicrobial agents in order to overcome biofilm barriers and to achieve total

    elimination of biofilms [20]. The utility of nanomaterials for efficient delivery of

  • 49

    antibacterial and development of anti-biofilm agents is well documented [21–25]. In

    this context, drug delivery by polymeric nanoparticles is considered a promising

    strategy to overcome the resistance of biofilms of P. aeruginosa [26,27] due to the fact

    that the nanoencapsulation of some compounds represents an increase of solubility,

    potential antimicrobial and consequently a decrease of toxicity [28]. In view of this, the

    aims of the study are to produce and characterise GML nanocapsules and evaluate the

    effectiveness to combat the Pseudomonas aeruginosa biofilms.

    2. Materials and methods

    2.1.Development of GML nanocapsules

    The nanocapsules (GML Nanocapsules) were prepared according to the method

    described previously [29] with modifications. The aqueous phase was prepared with

    polysorbate 80 (0.194 g) and purified water (134 mL) at 40°C under moderated stirring

    (1000 rpm). In the organic phase, the GML (0.25 g) was solubilised with sorbitan

    monooleate (0.194 g), capric/caprylic triglyceride (0.8 g), and polymeric blende

    PMMA-PEG (0.25 g) in acetone (67 mL) at 40°C under moderated magnetic stirring

    (1000 rpm). After solubilisation, the organic phase was poured into the aqueous phase

    under magnetic stirring which was maintained for 10 min. The organic solvent and the

    water were evaporated in a rotary evaporator at 40°C to adjust the concentration to 1

    mg/mL getting 25 mL of formulation. A blank formulation (Blank Nanocapsules) was

    developed in the same way as GML Nanocapsules (but without GML).

    2.2.Nanocapsule characterisation

    The formulations were characterised as diameter distribution and polydispersion index

    (PDI) by dynamic light scattering (DLS), diluting (500×) the nanocapsules in Milli-Q®

  • 50

    water. The zeta potential was evaluated by electrophoresis in a Zetasizer Nano-ZS

    (Malvern Instruments, United Kingdom), diluting (500×) the formulation in 1 mM

    NaCl. The pH was evaluated using a potentiometer (Digimed®). Each parameter was

    evaluated in triplicate (n=3) and results were expressed by the mean ± standard

    deviation (SD).

    2.3.Microorganism

    The strain Pseudomonas aeruginosa PAO1 was obtained by the American Type Culture

    Collection. This microorganism was maintained on the culture medium with glycerol

    and cooled at -80°C. The sample was unfrozen, inoculated on Brain Heart Infusion

    broth (BHI) and incubated for 24 hours. After, it was seeded on Nutrient agar and

    incubated for 24 hours at 37°C.

    2.4.Minimal Inhibitory Concentration (MIC) and Minimal bactericidal

    concentration (MBC)

    The MIC was performed by microdilution method on 96-well plate [30]. Different

    concentrations GML and GML Nanocapsules were add-on wells containing Mueller

    Hinton broth (MHB). The positive control was considered the well with inoculum in

    MHB and negative control only MHB with saline. The assay was performed in five

    replicates. After the process, the plate was incubated for 24 hours at 37°C. After

    incubation, it was added to 100 µL of 0.2% 2,3,5 triphenyl tetrazolium chloride (TTC).

    The lower concentration that did not show visible microbial growth (reddish colour due

    to the presence of TTC) was considered the minimum inhibitory concentration. To

    determine the MBC, an aliquot of 1 µL was taken of each well, seeded on Nutrient agar

  • 51

    plate and incubated to 24 hours. After the colonies were identified and the lowest

    concentration which does not demonstrate microbial growth was considered the MBC.

    2.5.Biofilm formation and treatment

    The biofilm was formed according to the conditions previously optimised and described

    [31,32] with modifications. The fresh, exponentially grown culture of P. aeruginosa

    was diluted to be 106 CFU/mL and 15 µL was added to flat-bottomed 96-well plates

    (Nunclon™ D surface, Nunc, Roskilde, Denmark), containing 100 µL of BHI broth and

    the plate was incubated in 37°C, for 24 hours. After the formation of biofilm, it was

    added 100 µL of GML or GML nanocapsules solution. The GML in the concentration

    of 62.5 and 125 µg/mL while the GML nanocapsules in the concentration of 15.62 and

    62.5 µg/mL corresponding to MIC and MBC. After the addition, the treatment plate was

    incubated for 24 hours in the condition of 37°C according to Manner et al. [33]. The

    positive control was performed containing only BHI broth and the P. aeruginosa strain

    while the negative control was only BHI broth.

    2.6.Quantification of biofilm biomass

    After the treatment, the supernatant was removed and washed three times with distilled

    water and then, the quantifications were performed. The treated biofilm was fixed with

    95% of methanol and stained with 150 µL of 0.1% of crystal violet 15 min at room

    temperature (RT). After incubation, the well-plates were washed with distilled water.

    Ethanol 95% was added to dissolve the colouring and after, 100 µL transferred to

    another plate to measure spectrophotometrically at 540 nm in a spectrophotometer (TP-

    Reader; ThermoPlate, Goiás, Brazil). The biofilm formation was determined by the

  • 52

    difference between the mean OD readings obtained in the positive control (BHI broth

    and P. aeruginosa strain) and the treatment with GML and GML nanocapsules.

    2.7.Quantification of Biofilm Cultivable Cells

    The number of cultivable biofilm cells was determined by counting colony forming

    units (CFUs) following biofilm cells suspension. Briefly, biofilms were first washed

    twice in PBS to remove loosely attached cells and the biofilm was then suspended in

    PBS by repeated pipetting. Complete removal of the biofilm was confirmed by

    subsequent crystal violet staining and spectrophotometric reading for inspection of the

    wells. The suspended biofilm (100 µL in PBS) was vigorously vortexed for 5 min to

    disrupt the biofilm matrix and serial decimal dilutions (in PBS) were plated onto

    Nutrient. Agar plates were incubated for 24 h at 37°C and the colony-forming units per

    millilitre (CFU/mL) were counted [34]. Experiments were repeated in three independent

    experiments in five replicates.

    2.8.Determination of biofilm polysaccharide levels

    Polysaccharides into the biofilm were measured by the Phenol-sulfuric acid method

    [35]. After the biofilm formation and treatment, the well-plates were rinsed with PBS to

    remove medium and non-adherent cells. It was added to 40 µL of deionised water, 40

    µL of 5% phenol solution and 200 µL of 95-97% sulfuric acid. The plate was incubated

    for 30 minutes at room temperature. The absorbance was read at 490 nm with a

    microplate reader. Different concentrations of glucose were used as standard values for

    the conversion of absorbance to polysaccharide concentrations.

  • 53

    2.9.Determination of biofilm protein levels

    Protein was measured by the Bradford method of protein determination in biological

    samples [36]. Briefly, a culture media with non-adherent cells was removed from wells

    and the plate was washed with PBS. NaOH 0.2N was added to each well and the plate

    was sonicated for 3 s. The Bradford reagent was added to each well and the plate was

    incubated for 5 minutes. The absorbance was read at 595 nm with a microplate reader.

    Different concentrations of bovine serum albumin were used as standard values for the

    conversion of optical density to protein concentrations.

    2.10. Effect against biofilm formation

    The GML and GML nanocapsules were tested to verify the ability to prevent the

    biofilm formation of P. aeruginosa. The inoculum containing the microorganism was

    added into the well-plate with BHI broth and sub inhibitory concentrations (0.5xMIC or

    0.25xMIC) of GML and GML nanocapsules. The plate was incubated at 37°C for 24

    hours. The biofilm was fixed with 95% of methanol and stained with 150 µL of 0.1% of

    crystal violet 15 min at RT. The well-plates were washed with distilled water and

    Ethanol 95% was added to dissolve the colouring. After this, 100 µL was transferred to

    another plate to measure in a spectrophotometer (TP-Reader; ThermoPlate, Goiás,

    Brazil) at 540 nm. Only BHI broth with P. aeruginosa was considered a positive control

    and the percentage of inhibition was calculated by OD Test/OD Control × 100.

    2.11. Growth curve analysis

    The antimicrobial activity of GML and GML nanocapsules was evaluated by growth

    curve analysis. Overnight culture of PAO1 (1%; 0.4 OD at 600 nm) was inoculated in a

    96-well plate with 100 µL of Mueller Hinton broth supplemented with GML (MBC –

  • 54

    125 µg/mL) or GML Nanocapsules (MBC – 62.5 µg/mL). The plate was incubated at

    37°C and the cell density was measured by microplate reader at intervals of 0, 6, 12, 24

    and 48 h.

    2.12. Atomic Force Microscopy (AFM)

    After the treatment (GML and GML Nano), the well plate was cut and fixed with

    absolute methanol for 1 minute (the well without treatment was considered as Control).

    The images were obtained using Agilent Technologies 5500 microscopy. The images

    (10 μm × 10 μm) were collected in a non-contact mode using PPP-NCL tips

    (Nanosensors, force constant = 48 N/m). The images were analysed using PicoView

    software.

    2.13. Statistical analysis

    The results of the microbiological assays were submitted to One-way analysis of

    variance (ANOVA) following by Tukey test with 95-99% of significance. The

    experiments were performed in five replicates and three independent experiments.

    3. Results

    Nanocapsules characterization

    The formulation was evaluated as physicochemical parameters. The measurements of

    GML nanocapsules showed a mean diameter of 190.7 ± 2, polydispersion index of

    0.069 ± 0.013, zeta potential of -23.3 ± 3 and pH of 6.11 ± 0.18. The blank

    nanocapsules demonstrate a mean diameter of 176.5 ± 4, polydispersion index of 0.042

    ± 0.025, zeta potential of -12.8 ± 6 and pH of 6.22 ± 0.11. The graph of the light

    scattering measurements showing the size distribution is demonstrated in Figure 1.

  • 55

    Minimal Inhibitory Concentration (MIC) and Minimal bactericidal concentration

    (MBC)

    The MIC and MBC can be visualised in Table 1. The Blank Nanocapsules was tested in

    the same way with GML Nanocapsules but without antimicrobial activity (data not

    shown). The MIC and MBC of GML Nanocapsules were 25 and 50% less compared to

    free GML.

    Quantification of biofilm biomass

    After colouring, the absorbance was read. The results showed a decrease in 78%

    approximately of biofilm biomass treated with GML Nano, while the GML reduced by

    57% (Figure 2).

    Quantification of Biofilm Cultivable Cells

    The biofilm was suspended in NaCl and seeded into Nutrient agar. The plate was

    incubated and the colonies were counted. The experiment was performed in five

    replicates in two independents experiments. The result of counting was shown in Figure

    3.

    Determination of biofilm polysaccharide levels

    The polysaccharides of biofilms treated with GML and GML Nano were quantified.

    The assay demonstrated the reduction of polysaccharides in 58 and 61% treated with

    GML and GML Nano respectively. The results are shown in Figure 4.

    Determination of biofilm protein levels

  • 56

    After the protein measurement, the experiment showed an increase of proteins levels on

    biofilm treated with free GML, while the GML Nano caused a reduction of 59% in

    proteins (Figure 5).

    Inhibition of biofilm

    The assay demonstrated that the GML did not significantly inhibit biofilm formation

    while the GML Nano inhibited by about 37% in a sub-inhibitory concentration. The

    results are shown in Figure 6.

    Growth curve analysis

    The concentration used in this test was 125 µg/mL for GML and 62.5 µg/mL of GML

    nanocapsules. After the absorbance reader, the result was showed in Figure 7. The assay

    demonstrates that the treatment with free GML has no effect on the number of

    microorganisms. The treatment with GML Nanocapsules showed a significant decrease

    in comparison with the Control and free GML.

    Atomic Force Microscopy

    Figure 8 shows the AFM results of the polystyrene not treated (Control) and treated

    with free GML and GML Nanocapsules for P. aeruginosa PAO1 strain. The images

    show high peaks in the control (6 µm) indicating the formation of a biofilm. In the

    sample treated with the free GML a slight decrease (4 µm) in the biofilm while the

    sample treated with GML Nanocapsules demonstrated a great effectiveness in the action

    against formed biofilm with peaks up to 0.8 µm.

  • 57

    4. Discussion

    The importance of these results lies in the fact that these microorganisms isolated from

    the hospital environment can colonise and adhere to surfaces of medical instruments and

    implants. In addition, because they are already resistant to multiple drugs, the adhesion

    capability can effectively reduce the antimicrobial options and further aggravate the

    infectious condition.

    The results of the characterisation of nanoparticles indicates an adequate homogeneity,

    all formulations must be monodisperse (PDI < 0.25) and a diameter smaller than 300

    nm. Moreover, negative values to zeta potential are expected when used polymers

    containing a grouping ester in structure, such as PMMA [37]. When the nanostructure

    shows an elevated charge in modulus, the system stability tends to be superior with a

    lower probability for particle aggregation [38,39]. The obtained results of

    characterisation in the present study corroborate with works related in the literature

    which use a polymeric blend in the development of nanoparticles such carries and

    suggest homogeneity on size distribution [40–42].

    The ability of P. aeruginosa PAO1 to form biofilm is one of the causes that make an

    important pathogen. The resistance to antibiotic therapy and the morbidly associated

    with this bacteria are attributed factors to your transition in host tissues (mainly lung,

    skin and bladder) of planktonic forms to biofilm style [43,44]. The appearance of multi-

    resistant strains is worrying, being necessary for the appearance of new therapeutic

    approaches [45].

    In our work used the gram-negative P. aeruginosa PAO1, which have an EPS

    composed mainly of polysaccharides, protein, nucleic acids, lipids and humic

  • 58

    substances. The gram-negative bacteria have a negative charge on your surface,

    originated from lipopolysaccharides and proteins of the outside membrane.

    A recent study of our group with GML Nanocapsules showed the antimicrobial activity

    against bee pathogens [16]. This is the first report which shows GML nanoparticles

    against Pseudomonas aeruginosa biofilms. The assay with crystal violet demonstrated

    the high antibiofilm activity of GML Nanocapsules, while the GML doesn’t show

    significant effect being equal to the positive control (Figure 2). Studies performed by

    Schlievert et al. [13] demonstrated the capacity of GML to inhibiting Staphylococcus

    aureus biofilms. In the present study the GML Nanocapsules demonstrated the ability to

    prevent biofilm formation (Fig. 6).

    Moreover, the slow release of the GML could have had an important role in anti-biofilm

    activity throughout the time of the assay. In addition, a long-time of release could help

    the dispersion of GML increasing cellular penetration [46].

    After the antimicrobial tests, it was possible to observe that the GML in free form did

    not decrease the microbial population in 48h, while the GML Nanocapsules almost

    completely reduced the microorganisms. The positive control (containing the only

    microorganism) did not present a fall in the number of bacteria. The experiment showed

    the controlled release of the compound, the characteristic of the nanostructured system

    [47,48].

    The structure of biofil


Recommended