+ All Categories
Home > Documents > Precision atom interferometry for fundamental physics · 2018. 7. 25. · MAGIS-100 detector at...

Precision atom interferometry for fundamental physics · 2018. 7. 25. · MAGIS-100 detector at...

Date post: 28-Jan-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
31
Jason Hogan July 24, 2018 Undergraduate Summer Research Seminar Precision atom interferometry for fundamental physics
Transcript
  • Jason HoganJuly 24, 2018

    Undergraduate Summer Research

    Seminar

    Precision atom interferometry for

    fundamental physics

  • Atom interference

    Light interferometer

    Atom interferometer

    Atom

    http://scienceblogs.com/principles/2013/10/22/quantum-erasure/

    http://www.cobolt.se/interferometry.html

    Light fringes

    Beam

    splitte

    r

    Beam

    splitte

    r

    Mirro

    r

    Atom fringes

    Light

  • Atom optics using light

    ħkv = ħk/m

    ħk

    (1) Light absorption:

    (2) Stimulated emission:

  • Atom optics using light

    ħkv = ħk/m

    ħk

    (1) Light absorption:

    (2) Stimulated emission:

    Rabi oscillations

    Time

    In practice, typically 2-photon Raman or Bragg transitions

  • Atom

    Beam

    splitte

    r

    Beam

    splitte

    r

    Mirro

    r

    Light Pulse Atom Interferometry

    p/2 pulse “beamsplitter”

    p pulse “mirror”

    “beamsplitter”p/2 pulse

    •Interior view |p+k>

    |p >

    Time

    Posi

    tion

  • Light Pulse Atom Interferometry

    • Long duration

    • Large wavepacket separation

  • 10 meter scale atomic fountain

  • Interference at long interrogation time

    Wavepacket separation at apex (this data 50 nK)

    Dickerson, et al., PRL 111, 083001 (2013).

    Interference (3 nK cloud)

    Port 1

    Port 2

    2T = 2.3 seconds

    1.4 cm wavepacket separation

  • 54 cm

    Large space-time area atom interferometry

    Long duration (2 seconds), large separation (>0.5 meter) matter wave interferometer

    Kovachy et al., Nature 2015

    90 photons worth of momentum

    max wavepacketseparation

    World record wavepacket separation due to multiple laser pulses of momentum

  • Large space-time area atom interferometry

    2 ħk

    90 ħk

    Robust interference observed at macroscopic time and length scales

    Kovachy et al., Nature 2015

  • Phase shift from spacetime curvature

    Spacetime curvature across a single particle's wavefunction

    General relativity: gravity = curvature (tidal forces)

    Curvature-induced phase shifts have been described as first true manifestation of gravitation in a quantum system

  • Gravity Gradiometer

    Gradiometer interference fringes

    10 ћk 30 ћk

    Gradiometer baseline defined by atom recoil:

    (Insensitive to initial source position)

    P. Asenbaum et al., PRL 2017.

  • Phase shift from tidal force

    Gradiometer response to 84 kg lead test mass

    Asenbaum et al., PRL 118, 183602 (2017)

    Upper interferometer

    Lower interferometer

  • Equivalence Principle

    Bodies fall at the same rate, independent of composition

    Why test the EP?

    ▪ Foundation of General Relativity

    ▪ Quantum theory of gravity (?)

    ▪ Search for new forces, dark matter

    C. Will, Living Reviews

    mg = ma

  • EP Bounds from Classical Experiments

    𝜂 𝑀, 𝐸 = −1.0 ± 1.4 × 10−13

    Williams et al, PRL 2004

    ©news.cnrs.fr

    Lunar laser ranging:

    Torsion pendula: 𝜂 𝐵𝑒, 𝑇𝑖 = 0.3 ± 1.8 × 10−13

    Schlamminger et al, PRL 2008

    ©npl.Washington.edu

    MICROSCOPE satellite: 𝜂 𝑇𝑖, 𝑃𝑡 = −0.1 ± 1.3 × 10−14

    Touboul et al, PRL 2017

    ©CNES, D. Ducros

  • Phase shear readout

    Measure phase + contrast in one shot

    (Sugarbaker et al, PRL 2013)

    Suppresses time varying effects (mirror motion, laser phase, etc.)

    Bragg Interferometer

    • Common Bragg laser beams

    • Common velocity selection

    • AC stark shift compensation

    Simultaneous dual species interferometers

  • 10ħk Dual Species Run

    Rb-85

    Rb-87

    Rb-85 and Rb-87

    are in phase

    2T = 1.8 s

  • Megaparsecs…

    Gravitational waves science:

    • New carrier for astronomy: Generated by moving mass instead of electric charge

    • Tests of gravity: Extreme systems (e.g., black hole binaries) test general relativity

    • Cosmology: Can see to the earliest times in the universe

    L (1 + h sin(ωt ))

    strain

    frequency

    Gravitational Wave Detection

  • Laser Interferometer Detectors

    Gound-based detectors: LIGO, VIRGO, GEO (> 10 Hz)

    Space-based detector concept: LISA

    (1 mHz – 100 mHz)

  • Gravitational wave frequency bands

    Mid-band

    There is a gap between the LIGO and LISA detectors (0.1 Hz – 10 Hz).

    Moore et al., CQG 32, 015014 (2014)

  • Mid-band Science

    Mid-band discovery potential

    Historically every new band/modality has led to discovery

    Observe LIGO sources when they are younger

    Optimal for sky localization

    Predict when and where events will occur (before they reach LIGO band)

    Observe run-up to coalescence using electromagnetic telescopes

    Astrophysics and Cosmology

    Black hole, neutron star, and white dwarf binaries

    Ultralight scalar dark matter discovery potential

    Early universe stochastic sources? (cosmic GW background)

  • Sky position determination

    λ

    Sky localization precision:

    Mid-band advantages

    - Small wavelength λ

    - Long source lifetime (~months) maximizes effective R

    Images: R. Hurt/Caltech-JPL; 2007 Thomson Higher Education

    R

  • Measurement Concept

    Essential Features

    1. Light propagates across the baseline at a constant speed

    2. Atoms are good clocks

    Atom

    Clock

    Atom

    Clock

    L (1 + h sin(ωt ))

  • Simple Example: Two Atomic Clocks

    Time

    Phase evolved by atom after time T

    Atom clock

    Atom clock

  • Simple Example: Two Atomic Clocks

    GW changes light travel time

    Time

    Atom clock

    Atom clock

  • Gradiometer sensor design

    • Compare two (or more) atom ensembles separated by a large baseline

    • Science signal is differential phasebetween interferometers

    • Differential measurement suppresses many sources of common noise and systematic errorsM

    easu

    rem

    ent

    Base

    line g

    Science signal strength is proportional to baseline length (DM, GWs).

  • Clock Gradiometer

    atoms

    atoms

  • Projected gravitational wave sensitivity

    Dots indicate remaining lifetimes of 10 years, 1 year, 0.1 years, and 0.01 years

  • MAGIS-100 detector at Fermilab

    • MINOS, MINERνA, NOνA experiments use NuMI beam

    • 100 meter access shaft – 100 meter atom interferometer

    • Search for dark matter coupling in the Hz range

    • Intermediate step to full-scale detector for GWs

    Source 1

    Source 2

    50 m

    ete

    rs50 m

    ete

    rs

    100 m

    ete

    rs

    Source 3

    Matter wave Atomic Gradiometer Interferometric Sensor

  • Stanford MAGIS prototype

    Atom optics laser

    (M Squared SolsTiS)

    Trapped Sr atom cloud

    (Blue MOT)

    Sr gradiometer CAD

    (atom source detail)

    Two assembled Sr atom sources

  • Collaborators

    Rb Atom InterferometryMark Kasevich

    Tim Kovachy

    Chris Overstreet

    Peter Asenbaum

    Remy Notermans

    Theory:Peter Graham

    Savas Dimopoulos

    Surjeet Rajendran

    Asimina Arvanitaki

    Ken Van Tilburg

    MAGIS-100:

    Joseph Lykken (Fermilab)

    Robert Plunkett (Fermilab)

    Swapan Chattopadhyay (Fermilab/NIU)

    Jeremiah Mitchell (Fermilab)

    Roni Harnik (Fermilab)

    Phil Adamson (Fermilab)

    Steve Geer (Fermilab)

    Jonathon Coleman (Liverpool)

    Sr Atom InterferometryTJ Wilkason

    Hunter Swan

    Jan Rudolph

    Yijun Jiang

    Ben Garber

    Benjamin Spar

    Connor Holland


Recommended