+ All Categories
Home > Documents > Predator-Prey Analogs for Saturn’s Non-Linear Ring...

Predator-Prey Analogs for Saturn’s Non-Linear Ring...

Date post: 28-Feb-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
27
Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics LW Esposito, S Madhusudhanan, M Rehnberg, Z Brown, N Albers LASP - University of Colorado JE Colwell University of Central Florida Final Cassini Symposium Boulder August 2018
Transcript
Page 1: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Predator-PreyAnalogsfor

Saturn’sNon-LinearRingDynamicsLWEsposito,SMadhusudhanan,MRehnberg,ZBrown,NAlbers

LASP- UniversityofColoradoJEColwell

UniversityofCentralFlorida

FinalCassiniSymposiumBoulderAugust2018

Page 2: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Transientringstructuresappearwheretheringsareperturbedstrongly

• EquinoxobjectsattheMimas2:1resonance• Strawbetweendensitywavecrests• Excessvarianceincreasesbetweenwavecrests• Gapedgeswhenamoonpassesby• SolitarywaveswheretheJanusresonancefallsonEpimetheusdensitywaveevery8years

Page 3: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

AggregatesformatouterBringedge

Page 4: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

‘Straw’seenbetweendensitywavecrestsmustforminlessthan10hours

SaturnOrbitInsertion2004

StrawfromCassiniGrandFinale

Page 5: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Janus2:1DW

Particle statistics show larger structures between density wave crests

Page 6: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Gap % Coverage TrendsTrend: gaps cover more linear area in troughs for Janus 4:3, Mimas 5:3(t significances: 1e-6,8e-12)

Trend: gaps cover more linear area in troughs for Janus 5:4 and 6:5(t significances: 5e-16,1e-15)Trend: gaps coverage is

greater in troughs for Prometheus 28:27(t significance: 5e-13)

Page 7: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

DaphnisEdgeWakeshowsdownstreameffect

ClumpsForm

RingEdgeShearsandSeparates

Page 8: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics
Page 9: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Anothernon-linearphenomenon:AsolitonexcitedbyJanus-Epimetheus swap,every8years

Page 10: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Solitary wave propagating through A ring, seen every 8 years

Page 11: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Howtoexplainthisdynamicstructure?

• Solitarywavesandthelargeamplitude,rapidlygrowingtransientstructuresindicatenon-linearphenomena

• N-bodysimulationsaretooslow,anddon’tincludeallthephysics• Useasimplermodelwithanecologicalanalogy:Predator–Prey• Trackthemassandvelocitydispersion:Relativevelocityisstirredupbyclumps,velocitydisruptsclumps

• Forcethesystembythemoon’sgravitydrivingthesurfacemassdensityandthevelocitydispersion

• Allowfordiskinstability,usingToomre’sdispersionformula• Usenumericalsimulationresultsforoutcomesofstochasticcollisions(Hyodo&Ohtsuki;Leinhardt&Stewart)

Page 12: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Predator-PreyEquationsforRingClumping(Espositoetal 2012)

M=∫n(m)m2dm/<M>;Vrel2=∫n(m)Vrel2 dm/N

dM/dt=M/Tacc – Vrel2/vth2 M/Tcoll[accretion][fragmentation/erosion]

dVrel2/dt=-(1-ε2)Vrel2/Tcoll +(M/M0)2 Vesc2/Tstir[dissipation] [gravitationalstirring]

- A0 cos(ωt)[forcingbystreamline crowding]

Theaggregatemass,Misthe‘prey’;ThedispersionVrel2 isthe‘predator’:Itfeedsoffofthemassbygravstirring;Thepredatorreducesthepreybyerosion

Page 13: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

PredatorPreyModelwithLogisticGrowth

20 0

2

2

2 2 22

' 1

:

2 '

0 0

( )(1 )' '

s sL

orbS

S

rel

S DI S th

DI

rel rel escB B

S S S S

Basic equationTT

VdM M S M M Sdt T R T T R VM whenT

dV V V Mdt T T

MM

πτ

ρ ρρ ρ

ω

τ τε

τ

τ τ

τ

=

⎡ ⎤= + −⎢ ⎥⎣ ⎦

= ≥

⎡ ⎤= − − + +⎢ ⎥

⎣ ⎦

⎛ ⎞= −⎜ ⎟

⎝ ⎠

Motivation:WhentheirMass reaches alimitingvalue,theaggregatescannotgrowfurtherbyringparticle sweepup,sincewehaveonlyafinitenumberofringparticles tosticktothegrowingaggregates.This ismodelled byaddingalogisticgrowthtermlimiting theopticaldepthofsmalleraggregates.

Thus,theclosertheaggregatemassMtoM_limit,theslowerthegrowthrate.

Note:Afterthe limitingmass isreached,theaggregateschange inmassonlyduetostochasticcollisions whichyieldaccretionsanddisruptions.

Page 14: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

4%variation

( )( )01 , 0.97

1 sin syn

mm tω

Σ = Σ =+

Strengthregimesurfacemassdensityforcingphaseplots

2 2 2 2

2

2

0sG k v kω κ π

ω

= − Σ +

<

Diskinstabilitywhen:

Page 15: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Equilibriumdistributionofaggregatesfromstochasticcollisionsisapowerlaw

PowerLawindexforradiusdistribution: -1.0158

Page 16: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Conclusions• Ringstructureshowstransientclumpinginperturbedregions:Weconcludethatforcingbythemoontriggersaggregation.Thisalsoincreasestherelativevelocity,liberatingsmallparticles

• Thestructureformsrapidly,onorbitaltimescales,outofphasewiththemoon… anddownstreamofthemoon’swakeinitiation

• Wefindthatgrowthbysweep-upistooslowtoexplaintheexcessstructureobserved inbetweendensitywavecrests

• Gravitationaldiskinstability canactonorbitaltimescales;WeuseToomre’s stabilityparameterQtoestimatethegrowthrateforclumps

• Weachieverapidgrowthbymodulatingthesurfacemassdensity,decreasingthevelocitydispersionorbydecreasingtheshear

• Aggregatesfromstochasticcollisionshaveapower-lawsizedistribution

Takeawaymessage:Moonforcingdrivesaccretion,triggersdiskinstability,producingtransientclumpsdownstream:AcontinuingprocessofCosmicRecycling

Page 17: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Back-Up

Page 18: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

M=0.97Vrel=0for0.01torb

WecanforcethePredator-Preymodelbysurfacemassdensityorbyvelocityvariations,whichgivesimilaroutcomes.

Page 19: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

ClumpmassM,fromVrel=0for>0.3Torb

Massvariationsaroundthefixedpoints:0.7torb=64.4%0.6torb=60%0.5torb=51%0.4torb=48%0.3torb=31%

Page 20: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

UsingNumericalsimulationsresults

• Whathappenswhenequalsizedobjectcolliderandomly?• CanNumericalsimulationsbeusedtobasethestatisticsofrandomevents?

Page 21: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

UsingtheresultsofHyodoandOhtsuki:• Theoutcomesofthestochastic eventsarebasedontheratioofImpact/Escapevelocityandthedirectionofcollision.

• Thedirectionofcollision canberadial,azimuthal andvertical.Direction ischosenwithequalprobability.

Radial

Azimuthal

Vertical

Page 22: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Radial

Azimuthal

Vertical

Accretion

Disruption

RandomEventOutcomes:• Accretion:Greenregion:Thiseventdoublesthecurrent

mass.• Hitandrun:Blueregion:Thiseventdoesnotchangethe

mass.• disruption:Redregion:Thiseventhalvesthemass.

Note:Thissimulationconsiderspresenceofstrongtidalwaves.(DistancefromSaturn:140kkm)

HitandRun

HyodoandOhtsuki:140Kkmcasesimulation

Page 23: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Limitingmasscalculation:computedbasedoncellsize

40

4 6 2

12 9

60

3 30 0

500 10

5 10 10 100 /

5 10 5 10

1.0472 10

4.7746 10 M ~ 5 10

L

L

L

L

M m mM cm cm g cmM g or kgM kgM M

= × ×Σ

= × × ×

= × ×

= ×

= × ×

Page 24: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Inputparameters:tauS =1tauB =0.1;tauS/tauB=10.epsilon=0.1Coefficientofrestitutionrho0=0.25g/cm3.Uncompresseddensityofringparticleaggregates.m0=1.05x109 g,massofR0=10mspherewithrho0=0.25g/cm3.Referencemass.S=300cm,smallparticleradius,frommassdensityrho0=0.25g/cm3,andopticaldepthtauS=0.1.Vthresh(M0)=1cm/sec

Page 25: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

EquilibriumdistributionofMassofaggregates:

ThePowerLawforindexradiusdistributionwasfoundtobe:-0.3386

Page 26: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

FinalPlots(DistancefromSaturn140Kkm,presenceoftidalenvironment)

PowerLawIndex:-1.0158PowerLawIndex:-0.3386

Page 27: Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamicslasp.colorado.edu/home/wp-content/uploads/2018/08/Cassin...Predator-Prey Analogs for Saturn’s Non-Linear Ring Dynamics

Conclusion:• ThePredatorPreymodelcanincludetheoutcomesofrandomcollisions inthepresenceoftidalenvironmentbyusingtheresultsofnumericalsimulations.

• Thepower lawindexofmassdistributionwasfoundtobe:-0.3386• Thepower lawindexofradiusofaggregatesdistributionwasfoundtobe:-1.0158

• Thepower lawindexofthemassdistributionobtained fromthesimulationmatchwellwithresultsobtainedfromobservations. (moreexplanationmightbeneededforthispoint)

• TheMassdistribution canbecomputed fordifferentsettingsoftidalenvironment.• TheLongtermbehavioroftheringscanbestatisticallypredictedusingtheequilibriummassdistributionsusingPredatorPreymodel,whichcouldotherwisebeverytimeconsuming.

• Thoughthereisastrongpresenceoftidalenvironment(140kkm,thereisstillapossibilityoffindingaggregateswithhighmasses,thiscouldexplainthepresenceofStrawsinFring?(Notverysureaboutthispoint)


Recommended