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FERMILAB-Pub-82/24-THY BROWN-HHT-471
 PREON MODELS WITH DYNAMICAL SYMMETRY BREAKING
 A. N. Schellekens Fermi National Accelerator Laboratory
 P.O. Box 500, Batavia, IL 60510 and
 Kyungsik Kang' Department of Physics
 Brown University Providence, RI 02912
 and
 In-Gyu Koh2 Department of Physics
 Sogang University C.P.O. Box 1142, Seoul, Korea
 and
 Fermi National Accelerator Laboratory P.O. Box 500, Batavia, IL 60510
 ABSTRACT
 We have investigated all composite models based on complex, anomaly-
 free and asymptotically free representations of the gauge groups SU(3) to
 SU(8), S0(4N+2) and E6, with not more than two different preens. We dis-
 cuss in detail the role of Fermi-statistics in the determination of the
 (meta) flavor representations of the composites. Under certain assumptions
 about the possible ground states, the solutions to 't Hooft's anomaly equa-
 tions are presented for the complete flavor group and all non-Abelian sub-
 groups,'to which the flavor group can break. We find several models which
 satisfy anomaly-matching when the flavor group is broken by the simplest
 condensaae.
 1 Supported in part by the U. S. Department of Energy under Contract DE-AC02-76ER03130.AO09 - Task A.
 2 Senior Fulbright Fellow.
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 I. Introduction.
 Although there is no direct experimental indication that quarks and
 leptons are composites, this idea has attracted much attention recently. l-4
 The motivation is that, although relatively simple models exist to describe
 the interactions of quarks and leptons, these models leave at least three
 questions unanswered; why does spontaneous symmetry breaking occur at a
 scale of % 100 GeV, why are there three generations of quarks and leptons
 instead of one, and why do they have a rather remarkable mass-spectrum.
 The answer to these questions may be that a hidden substructure exists, and
 that quarks and leptons are not fundamental.
 Clearly a rather unusual kind of dynamics is necessary to understand
 compositeness of quarks and leptons, since their masses are known to be much
 smaller than their inverse size. The only known way to explain that is to
 assume that they are kept massless by a chiral symmetry which is not spon-
 taneously broken. 3 They can then be given a mass by introducing a small
 explicit breaking of that symmetry. A very restrictive constraint on models
 with unbroken chiral symmetries was formulated by ‘t Hooft.' He pointed out
 that the anomalies of the fundamental fermions -- hereafter referred to as
 "preens" -- have to be reproduced by bound states.
 Many mechanisms have been suggested which might provide answers to the
 questions mentioned above. The most attractive feature of composite models is
 that they might have a calculable and realistic mass spectrum. The fermion
 masses will be proportional to some power of the parameter which breaks the
 chiral symmetry, and that power may be different for different generations.
 Examples of this principle have been given in several papers 5J6 (not necessarily
 in the context of composite models). A prerequisite of such a mechanism is
 an understanding of the existence of generations. An interesting aspect of
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 the anomaly equations is the fact that they allow bound state representa-
 tions to appear only with definite multiplicites. Therefore, the anomaly
 equations might determine the number of generations. However, that alone
 can not be considered to be a solution to the generation problem. One should
 also be able to show that the bound states can actually be constructed with
 the required multiplicity. Since radial or orbital excitations are generally
 considered to be unacceptable as massless bound states this is a non-trivial
 problem. In this paper we will look for solutions to the anomaly equations
 with an acceptable set of composites. In models of this type, the appearance
 of generations does not seem to be the most natural thing to happen, but never-
 theless several ideas have been proposed which do not require unacceptable
 bound states.5'7
 In many cases the anomaly equations can not be satisfied by a reasonable
 set of bound states. In such cases the confining symmetry -- hereafter referred
 to as "metacolor" -- is inconsistent with the chiral symmetry, and at least one
 of the two symmetries has to break. When one assumes that the confining symmetry
 breaks one obtains a tumbling gauge theory. 8 We will assume, supported by argu-
 ments given in Ref. 9, that this is not what will happen, but that the chiral
 symmetry will break. In models with a (pseudo) real 10 metacolor representation
 it is then most likely that the chiral symmetry breaks down to a real symmetry. 11,12
 This is what happens in QCD. In such models there are no anomalies left after
 symmetry breaking, and therefore the existence of massless bound states is not
 required. If the metacolor representation is complex, the bilinear condensate
 which breaks the symmetry for real models does not exist, but it is possible
 that multi-fermion condensates are formed. These condensates may break the
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 chiral symmetry group to a complex subgroup, the anomalies of which can be
 matched by a set of massless composites. In a model of this kind the
 original anomaly conditions are satisfied by a combination of composite
 fermions and composite Goldstone bosons. 3,13 (I n some models, solutions
 with unbroken symmetry group exist; 4,14,15 a solution with broken symmetry
 has been studied in Ref. 16.) The anomaly equations can be used to deter-
 mine which complex subgroups are allowed as the result of symmetry breaking.
 The advantage of this kind of models is, that the symmetry breaking pattern
 is not arbitrary, but is restricted to a finite and usually small set of
 possibilities. Of course, even if the anomaly-matching restrictions can
 force certain symmetries to break, they do certainly not exclude the possibility
 that more symmetries are broken. On the other hand, a model in which only
 those symmetries break that are forced to break would be very attractive.
 In this paper we will examine the restrictions, which the anomaly
 equations impose on the unbroken subgroups for the simplest models with com-
 plex metacolor representations, and a few models with real representations.
 The anomaly equations -- without the additional requirements of Ref. 3 -- are
 only restrictive when they are used in combination with some assumptions re-
 garding the allowed bound states. We will discuss these assumptions in Section
 II. In Section III we describe the procedure to construct the (meta) flavor
 representations of the composites, allowed by Fermi-statistics, and present
 the results of this construction. We then consider anomaly-matching for all
 non-Abelian subgroups of the flavor group (the prefix "meta" will be omitted
 in the following), using a method described in Section IV. The results of
 this search are presented in Section V. Clearly the description of a model
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 of this type is only complete when the condensates, which break the un-
 wanted symmetries, are given. We discuss this problem in Section VI, and
 give a few interesting examples of models for which the simplest condensate
 one can form provides sufficient symmetry breaking.
 II. Dynamical Assumptions.
 In addition to the anomaly equations 't Hooft uses two other conditions
 on the massless bound state spectrum. One of these, the decoupling condition,
 can not be formulated for models with a complex metacolor representation since
 the metacolor symmetry does not allow any mass terms for preens. For real re-
 presentations the condition has been criticized in Ref. 17. We will also re-
 lax the condition which requires the bound state dynamics to be independent of
 the flavor group ("N-independence"). There are at least two sources of N-depend-
 ence of the dynamics: Fermi-statistics, which forbids certain composites --
 either fermions or Goldstone bosons -- for small N, and asymptotic freedom, a
 property which one would expect to be important for the spectrum of a model and
 which is lost if N becomes too large. (N is the multiplicity of a metacolor re-
 presentation.) Whether N-independence is a reasonable condition for some inter-
 mediate range of N-values is an open question, but we do not impose this require-
 ment, nor do we find any solutions satisfying it. We will however require a
 mild form of flavor independence for the solutions with broken symmetry. This
 will be discussed in Section IV.
 To look for solutions to the anomaly equations one has to make some
 assumptions about the bound state spectrum. We will assume that the massless
 bound state spectrum does not contain states which are radial or orbital excita-
 tions, states which contain valence metagluons, 18 and exotic states. (A valence
 gluon is defined as a gluon without which it is impossible to construct a meta-
 color singlet state with certain flavor-spin quantum numbers and a ground state
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 spatial wave function; an exotic state is a composite which contains sub-
 sets of preens which can form metacolor singlets.) Furthermore we will limit
 the number of valence preens in a composite tone, if the metacolor group
 is SU(nc). States with more preens will always contain subsets with vanish-
 ing nc-ality and are therefore in most cases -- but not always -- exotic.
 These assumptions are inspired by the groundstates of QCD, but since we con-
 sider different confining groups, complex fermion representations and un-
 broken chiral symmetries it is not completely obvious that they are valid.
 A better understanding of the dynamics is necessary to justify them. Similar
 assumptions have been made in several papers. 5,15,16,19
 Since by assumption the spatial wave functions we consider are com-
 pletely symmetric in all particles, the flavor representation of the bound
 state is determined by imposing Fermi-statistics for identical preens. The
 maximum multiplicity of each bound state representation is in general one,
 unless more than one metacolor-spin wave function exists for the same flavor
 representation. The indices, as defined by 't Hooft 3 can not be negative
 and have to be smaller than the maximum multiplicity of the representation.
 III. Construction of the Bound States.
 As explained in the previous section, the massless bound states which
 we allow have a metacolor-flavor-spin wave function which is totally anti-
 symmetric in the identical preens. Moreover the composites have to be meta-
 color singlets and left-handed spin-l/Z particles (of course for every left-
 handed state, a right-handed one with complex conjugate representation can be
 constructed). Before we discuss the determination of the flavor representa-
 tion we will first introduce some notations.
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 In a model with p preens (i.e., p different irreducible representa-
 tions of the metacolor group GM) the complete symmetry group of the preens
 in the presence of metacolor forces but in the absence of any other inter-
 actions is
 GM @ SU(n1) 8. . ..f3 SU(np) 64 [U(l)Ip-l C4 Z (3.1)
 th where ni is the multiplicity of the i irreducible metacolor representation.
 The p - 1 U(l)-factors are chosen in such a way that they are anomaly-free
 with respect to GM The discrete group Z is the subgroup of the U(1) corre-
 sponding to axial preen number, which is left unbroken by Gil-instantons. 21
 We will denote SU(n) representations by Young diagrams, which we
 specify by a sequence of integers indicating the length of their rows. For
 eM"Fle, 0 is the trivial representation, 1 the fundamental one, 2 the sym
 metric tensor of rank 2, 11 (sometimes written as 12) the antisymmetric second
 rank tensor. The complex conjugate of a representation r is denoted as ?;
 rT is the representation obtained by interchanging rows and columns of the
 Young-diagram of r.
 The ith preen transforms according to the representation
 C=#, "',O,l,O,"',O, Q+Q+) (3.2)
 of the symmetry group (3.1), in an obvious notation. In the following we will
 use the quantities di, the dimension of the representation ri of GM, and
 th Ni = 2 x di x ni, the number of components of the i Freon field.
 To construct totally antisymmetric metacolor-flavor-spin wave functions
 we use the antisymmetric representations of the group SU(Ni) for each Freon in
 the bound state. This group is not a symmetry group, but all we use are the
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permutation properties of the representations. To obtain the metacolor,
 flavor and spin representations separately we have to calculate the branching of
 SU(Ni)-repreSentatiOnS to representations of the subgroup G ,bP
 SU(ni)QSlJ(2)
 (the SU(2) is the left-handed or right-handed factor of the Lorentz group,
 for particles and antiparticles respectively). This branching consists of
 three steps:
 SU(Ni) ', SU(di) 8 SU(2ni)
 t i2
 G su (ni) ~3 su(2) (3.3) M
 Branchings 1 and 2 are special cases of SU(NM)+ SU(N) 61 SU(bl), for which
 sufficiently extensive tables are available. 22 Because we are only consider-
 ing completely antisymmetric representations of SU(Ni), a general rule can
 be given for branching 1:
 lrn = ; u,,k' Y;,k) (3.4)
 where m is the number of preen i in the bound state, and Ym k is any' 3
 m-box Young-diagram. The sum is over all possible Young-diagrams.
 Branching 3 is of a different kind. From the point of view of Lie
 groups it corresponds to the embedding of a representation r with dimension
 d of a group G in the fundamental representation of SU(d); from the point of
 view of the permutation groq+it COrreSpOndS to tensor products of r with
 definite symmetry properties. The branching rules we need can be obtained by
 calculating a suitable tensor product and use the sum rules for the dimension,
 index and anomaly (a derivation of the index and anomaly sum rule is given in
 the appendix) to identify the terms which belong to a certain SU(d) Young-
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 diagram. The interpretation of this branching as a symmetrized tensor product
 allows us to generalize the results to arbitrary rank. For Lie groups of type
 A, for example, all branching rules can be written in terms of Young-diagrams,
 without reference to a particular value of n. This implies that the dimension,
 index and anomaly sum rules can be used for arbitrary n, which makes them much
 more powerful. We explain the details of this procedure in a separate publica-
 tion,23 which will contain tables of tensor products with definite symmetry for
 asymptotic free and complex representations of SU(n), SO(4n + 2) and E6.
 The final step in the calculation of the flavor representation of a
 composite is the multiplication of all metacolor, flavor and spin representa-
 tions obtained for each set of identical preens, and selecting the left-handed
 spin-l/* metacolor singlets.
 We have considered all anomaly-free, asymptotically free and complex
 metacolor representations 24 which are direct sums of not more than two differ-
 ent irreducible representations. We consider all simple Lie groups, but re-
 strict ourselves to rank smaller than 8 for the unitary groups. Beside these,
 only the groups E6 and SO(4nc2) have complex representations. Each anomaly-free
 representation can be repeated N times. The maximum value ofN is determined
 by asymptotic freedom. When this maximum is less than 3 we do not consider
 the model.
 A useful concept for the determination of candidate bound states is the
 congruence class, 25,26 the generalization of the more familiar 'In-ality" for
 SU(n) to any Lie algebra. Most of the possible SU(4), SU(6) and SU(8) models
 can be shown to have only bosons as bound states. The same is true for most
 of the S0(4n+2)-models. The congruence class of a SO(4n+2) irreducible repre-
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 sentation is given by two integers, defined module two and four respectively.
 The congruence class of a tensor product of two representations is given by
 the sum of their congruence numbers. Since the spinor representations belong
 to the congruence classes (1, ! l), one cannot construct a singlet (which has
 congruence numbers (0,O)) out of an odd number of them. It is then clear
 that to construct a spin-l/Z metacolor singlet an additional representation
 with first congruence number 0 is needed. This is not allowed by asymptotic
 freedom for all n except n = 2 (notice that n = 1 gives a metacolor group
 So(6), which is isomorphic to SU(4)).
 The bound state representations of the complex models we have considered
 are listed in Table I. For each model the table gives the complete symmetry
 group (the first factor is always the metacolor group; discrete symmetries are
 omitted) and the asymptotic freedom limit. Then the representations of the
 preens for this group are given. For SU(N)-groups we use Young-diagrams, in
 the notation introduced in the beginning of this section, and for E 6
 and
 S0(4n+2) we use the Dynkin-label. 26,27 Finally the table gives the preon-con-
 tent of the composites, their representation and maximum multiplicity, and a
 label. In a few cases we have not been able to determine the multiplicity be-
 cause our methods were not powerful enough to obtain the branching rule we
 needed. In the table these multiplicities are indicated by a variable n or m.
 The real representations we consider are the 1 + i and 2 + 2 representa-
 tions for SU(3), SU(5) and SU(7). For these two cases the preens are
 I: a = (l,l,O,l) II: a = (2,1,0,1)
 8 = (i,o,l,-1) B = @,0,1,-l) (3.5)
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 where the notation is the same as in Table I. The left-handed composites
 are
 An = an(&k-n Bn = B”(;)k-n (3.6)
 where the metacolor group is SU(u and n is any odd number not larger than k.
 The SU(k)-singlet states are the completely antisymmetric combination
 (lk) of the fundamental representation, and the completely symmetric repre-
 sentation (k) of the symmetric second rank tensor. Fermi-statistics forces
 the flavor-spin representation to be completely symmetric for models of type I
 and completely antisymmetric for type II. This means that the flavor repre-
 sentation has a Young-diagram which is the same and the transposed of the one
 for the spin representation for type I and II respectively. Since the spin
 representation is completely fixed, so is the flavor representation:
 type 1 An= (O,[++, k,$$k)
 Bn = (O,[ y, $$ [$ !$I, -k)
 type II An= (0, ,!!!, gT, [k$ $!j T, k)
 ~~ = (O,[ +, i$j’, [i+, !!$jT, -k)
 !
 (3.7)
 (3.8)
 where the notation is as in Table I, but with Young-diagrams denoted [ri,“‘,rn],
 where ri is the length of the i th row. As before a bar means complex conjugation,
 a ‘T’ indicates the transposed diagram. We will refer to these real models with
 types I and II preen representation of SU(k) metacolor group as k,I and k,I~I
 respectively in Table.11.
 This construction does not work for antisymmetric tensor representations
 since singlets can be formed in many ways. Consequently the number of candidate
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 massless bound state representations becomes very large (16 for k = 5, 98
 for k = 7), which makes a systematic search for solutions extremely cumber-
 some. We have only looked for solutions which do not require symmetry break-
 ing, for k = 5. No such solutions were found. For k = 6, the representation
 11 + ii allows three-preon composites. The flavor representation of the com-
 posites is identical to model 3, II. This SU(6)-model is referred to as 6,111
 in Table II.
 IV. Anomaly Matching for Subgroups.
 When the unrestricted anomaly equations can not be satisfied one may ex-
 pect that the chiral symmetry is forced to break. A model with such a forced
 dynamical symmetry breaking has to meet at least three requirements.
 (1) The reduced anomaly equations must have solutions.
 (2) A set of composite Goldstone bosons must exist which can break
 all the symmetries which violate the anomaly equations.
 (3) These composites must condense and, when the unbroken sub-
 group is not unique, choose the required breaking.
 The last criterion requires a detailed understanding of the dynamics. At pre-
 sent we can only assume that it is satisfied for cases of interest.
 All complex, non-Abelian subgroups which satisfy condition 1 can be
 found in the following way. Consider the anomaly equations for the non-Abelian
 part of the chiral flavor group.
 b 1 R A.(r.k) =
 k=l k 1 1 f Ai(riR) , i = l;..,p
 e=1 (4.1)
 where b is the number of bound states. The k th bound state is a representa-
 tion (rik;",r pk) of the flavor group; Lk is the index for that bound state;
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 Ai is the anomaly of the i th flavor group factor. The multiplicity of ri is im-
 plicitly included in Ai. Now consider an arbitrary embedding of a group G in the
 entire flavor group. As is shown in the Appendix, the anomaly As of that sub-
 group is related in a simple way to those of the original flavor group:
 P As = 2‘ Ci Ai (4.2)
 i=l
 where the coefficients Ci are integers, which are equal to the anomalies of
 the embedding of G in the fundamental representations of the flavor group.
 Because these coefficients are independent of the representation, the anomaly
 matching condition for the subgroup -- assuming all other symmetries are broken
 down to anomaly-free ones -- is:
 P 1 Ci
 i=l Ai(ri')
 I
 = 0 (4.3)
 When the deviations from anomaly-matching for each of the p SU(n)-factors of
 the flavor group -- given a set of indices .f, -- n are combined to form a p-dimen-
 sional vector, then the Ci's form a vector in its orthogonal subspace. Ifp=2
 this determines the ratio of Cl and C 2' and hence the solutions are
 Cl = knl , C2 = 9,n2 , for any integer R, (4.4)
 1 and n2 are the smallest integers satisfying (4.3). Now we know the
 anomalies of the subgroup in each of the groups, and also the maximum dimension
 of its representation in each group. Since the representation in both groups
 has to be non-trivial -- otherwise one of the two SU(n)-factors would itself
 be a solution -- we also know that the rank of the subgroup can not be larger
 than the rank of the smallest of both group. Only a very limited search is
 then required to find all solutions.
 where n
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 When the flavor symmetry breaks, both the preen representations and the
 bound state representations will in general break into several components. We
 have implicitly assumed that these components are either all massless or all
 massive, i.e., we will not find solutions for which the anomaly equations are
 satisfied by only part of a broken multiplet (real components are of course an
 exception). Notice that all these states haveidentical metacolor-spin wave
 functions and that all preens remain massless if the metacolor representations
 is complex. Therefore all these components are dynamically equivalent. This
 seems to justify this restriction, but on the other hand an extension of these
 3 arguments would lead to "N-independence", a condition which we have not
 required in general.
 A possibility which is not included in this search is a complex U(l)-
 symmetry protecting the composites from getting massive. To get an interesting
 model of this type one would like the unbroken group to contain a real or at
 least anomaly-free non-Abelian subgroup G in addition to this U(l)-factor. The
 generator of the complex U(1) group can be a linear combination of generators of
 all (Abelian and non-Abelian) factors of the full flavor group. A relation similar
 to (4.3) can be derived, expressing the two anomaly equations of G @ U(1) in terms
 of all anomaly equations of the unbroken flavor group, but this does not lead to
 any useful restrictions in the general case. For our two-preen models we only
 investigate the special case that the U(l)-factor of the flavor group is not broken,
 whereas the non-Abelian part breaks down to an anomaly-free subgroup.
 Finally the possibility exists, that the flavor group breaks down to a
 subgroup for which the preens are in an anomaly-free representation. The anomaly
 equations do then not require any massless bound states, but one may add any
 anomaly-free bound state representation, if there is one. (The fact that the
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 preens are in an anomaly-free representation of the subgroup does not
 necessarily imply the same for the composites, in non-left-right-symmetric
 models,) To keep these additional, unnecessary composites massless their
 representation must be complex or there must be an unbroken discrete com-
 plex subgroup. In this way one can add massless composites to any minimal
 solution of the anomaly equations.
 v. Results.
 The solutions to the [restricted) anomaly-matching equations for the
 models presented in Section III are shown in Table II. The first two columns
 indicate the model and the integer N which specifies the flavor group. For
 complex models the first column refers to Table I; for real models the dimen-
 sion of the metacolor group and the representation are given in the notation
 of Section IV. Column 3 and 4 contain the subgroup for which a solution was
 obtained and the way it is embedded in the flavor group. The embedding is given
 by two, in general reducible, representations of the subgroup to which the funda-
 mental representations of each of the non-Abelian factors of the flavor group
 branch. The order of the two factors is as in Table I. Reducible representa-
 tions are given by direct sums of Young-diagrams; n * r means that representation
 r occurs with multiplicity n. Column 5 shows the bound states which match the
 anomalies of the preens. The labels refer to Table I and definition (3.5) for
 complex and real models respectively. The last column contains references to
 papers in which the solution was first presented or discussed.
 A few remarks concerning the completeness of the table are'necessary. As
 explained in the previous section, the only U(l)-subgroup we consider is the one
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 which is present in the unbroken flavor group. When U(l)-factors are being
 ignored, the most general continuous subgroup is a product of simple groups.
 Each of these simple groups has to satisfy the anomaly equations, with the
 same set of bound states. When a subgroup H of the full flavor group yields
 a solution, then the same set of massless composites is a solution for any
 subgroup of H. In Table II we have only listed the largest subgroup in each
 subgroup chain. Furthermore we have omitted all subgroups with respect to which
 the preens are in an anomaly-free representation. Therefore, out of each solu-
 tion in the table, other groups can be constructed by considering subgroups,
 and by adding non-Abelian factors which satisfy the anomaly equations in a
 trivial (or non-trivial) way. For example, when a group SU(k) appears in the
 table, which is embedded in one of the chiral symmetry groups as n * 1, one
 can add the rotations of these n fundamental representations to the unbroken
 symmetry group, ohtaining a group SU(k) 61 SO(n).
 For a few less interesting cases we have omitted the complete list of
 embeddings and the list of bound states; for model 13 we have only considered
 the embeddings l;O, O;l, 1;l and l;i because of the huge number of possibilities.
 Furthermore we have not listed sets of bound states differing from those in the
 table only by an additional anomaly-free combination of composites.
 For real (left-right-symmetric) models we have allowed solutions which
 violate the left-right symmetry. This leads of course to parity doubling of
 solutions, and we give only one solution out of each pair. When the embedding
 of the subgroup is left-right symmetric (like the axial-vector SU(N)-subgroup
 of SU(N) @ SU(N)), the multiplicities of Ai- and Bi-composites can be inter-
 changed for each i separately. The table contains only one solution out of
 this class.
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 Finally we have to point out that, although the composites in column 5
 are the only solutions for the subgroup defined in columns 3 and 4, there may
 be additional solutions when smaller subgroups are considered. This can happen
 when this subgroup requires a smaller number of anomaly equations to be
 satisfied.
 VI. Dynamical Symmetry Breaking.
 To construct realistic models out of the solutions in Table II one has
 to find a way to break the symmetries which violate anomaly matching. By
 selecting a sufficiently large set of composite scalars -- if necessary exotics,
 in the sense of Section II -- one can usually satisfy the second of the con-
 ditions formulated in Section IV. This condition is not extremely restrictive,
 since it does not require symmetries to remain unbroken. For example, in
 cases where only the U(l)-factor has to be broken, any charged scalar will
 usually be sufficient 28 (of course one has to make sure that there is no other
 U(1) left unbroken which has a component in the original U(l)-factor). When
 this scalar condenses, it may break part of the non-Abelian group as well, but
 the unbroken group will in any case satisfy anomaly matching,
 A large part of the solutions have an unbroken group SU(3) or SU(4) in
 rather complicated reducible representations. Although we have listed these
 solutions for completeness, it does not seem to be very likely that the sya-
 metry will actually break that way. Moreover the group theory of symmetry
 breaking is not sufficiently developed to allow us to handle such complicated
 breaking patterns in general. In the remainder of this section we will adopt
 the philosophy that the simplest scenarios are most likely to be correct, and
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 give some illustrative examples. In all these examples the symmetries
 can be broken by a scalar in an irreducible representation, When possible,
 we use the results of Ref. 29 to determine the possible breaking patterns.
 In more complicated situations we show that the unbroken subgroup we are
 interested in is a maximal little group of the scalar boson representation. 30
 Model 15 provides two very interesting examples. The simplest com-
 posite scalar one can construct Bn any model which is not left-right sya-
 metric consists of at least four preens. In this model there is only one non-
 exotic four-pi-eon scalar boson, 04. By requiring Fermi-statistics one finds
 that this beson forms a representation (22,0,-S) of the flavor group
 SU(N) x SU(4N) x U(1). If one ignores the U(l)-factor, then this scalar is a
 singlet for N = 2 and a second rank symmetric tensor with respect to the first
 group for N = 3. Therefore, for N = 2 the group SU(2) x SU(8) is left unbroken
 whereas, according to Ref. 29, for N = 3 the group SU(3) x SU(12) breaks down
 either to SU(2) x SU(12) or to SO(3) x SU(12). Now we have to consider the
 U(l)-factor. For N = 2 the U(l)-factor is broken, because the scalar has a
 U(l)-charge. The same is true for N = 3, but when the symmetry breaks down to
 SU(2) x SU(12) there is anew unbroken U(l), generated by a linear combination
 of an SU(S)-generator and the generator of the original U(l)-factor. The
 anomaly matching equations involving this U(1) are linear combinations of all
 five original equations, which are not all satisfied. When the symmetry breaks
 down to SO(3) x SU(12) however, it is impossible to embed an additional U(1) in
 the non-Abelian part of the flavor group, and therefore the U(l)-factor breaks
 completely. According to Table II, both for N = 2 and N = 3 the unbroken
 groups -- SU(2) x SU(8) and SO(3) x SU(12) respectively -- allow the anomaly
 equations to be satisfied.
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 Other examples of simple composite scalars, which can break the sym-
 metries as required can be found in model 10. The simplest non-exotic
 scalar is o?Ep > which is a representation (2,fl, -6) of the flavor group
 SU(N) x SU(2N) x U(1). A maximal little group of the representation is
 SU(N) x SU(2), embedded in the following way
 SU(N) x SU(2N) -+ SU(N) x SU(2)
 (1,Ol + (1,O) (6.1)
 (O,ll + Cl,11
 It is a simple matter to check that the scalar breaks down in the following
 way
 (2,rn = (2 c3 2,9 + (2 t?X,2) (6.2)
 The first term contains a singlet, which means that the subgroup SU(N) x SU(2)
 is a little group for the representation (2,m). To prove that it is a maximal
 little group one has to show that any larger subgroup does not yield singlets
 in the branching of the representation (2,i-ij. When one would enlarge the
 unbroken group by a U(l)-factor, it can only be the one of the original flavor
 group. But the composite scalar has a charge for that U(l), and therefore
 breaks it. Another obvious enlargement of the subgroup is SU(N) x SU(N) x SU(2),
 but this is not a little group either. There are no other enlargements,
 which implies that SU(N) x SU(2) is a maximal little group. According to
 the conjectures, formulated in Ref. 26, it is then a possible unbroken subgroup.
 This subgroup appears in the table for N = 6 (the additional SU(2) is anomaly-
 free and is therefore allowed by the anomaly equations). Of course the same
 scalar condensate provides the necessary symmetry breaking for N = 3, leaving
 a subgroup SU(3) x SU(2) unbroken.
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 Another example is model 18. The massless composites which satisfy
 the anomaly matching equations transform both like the lo-dimensional re-
 presentation of SU(4) and differ only by U(l)-quantum numbers. One of the
 two U(l)'s is broken to a discrete group by instantons, the other has to be
 broken spontaneously. This can be done by a condensate o4 (or ~4). Notice
 that o2 nor B2 cannot form singlets; this is due to the fact that the 16 and
 126 of SO(10) are both complex representations. This is also the reason why
 the 01~8~ -composite is not an exotic state. This model illustrates the kind
 of solution one would like to have to explain generations.
 A search for other models in which the desired symmetry breaking can
 be done by the non-exotic scalar boson with the smallest number of preens
 yields the following result. In model 4 this boson is a38, which has no
 U(l)-charge, and consequently can not break the U(l)-factor. In model 11,
 the boson is a2fi2, which transforms like a (2,-6) representation of the
 flavor group SU(S) x U(1). The only allowed unbroken subgroup with completely
 broken U(l)-factor is SO(S), which is a real group. In model 13 all scalar
 bosons are exotics. All other t.omplex models either have solutions for completely
 unbroken flavor groups, or have no solutions at all..
 To get anomaly matching in other cases than the examples discussed above
 one obviously has to relax some of the rules governing the construction of
 bosonic and fermionic composites. For several solutions in Table II one can
 construct irreducible scalar composites which can break the symmetry, but which
 are exotic states, according to our definition, formulated in Section.11. It
 is not clear whether the binding forces for such states are sufficient to assume
 that they condense; arguments against such condensates are given in Ref. 12.
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 It is conceivable that this is determined by much more subtle properties
 than just exoticness; for example, one may only want to discard exotic con-
 densates, consisting of two or more clusters of preens which can form mass-
 less spin-l/2 composites, or scalars, which are condensates themselves.
 An example of a model with symmetries which are broken by an exotic
 scalar is given in Ref. 16. The model is based on the SU(6) x SU(6) solu-
 tion of six flavor QCD (model 3.1 in Table II). Since the preen representa-
 tion is real, the simplest condensate would cause complete chiral symmetry
 breaking, and one has to assume that this does not happen. The U(l)-symmetry
 corresponding to preen-number, can then be broken by the scalar o6 (or g6).
 These states are exotic, because they consist of two a3-clusters, but d3 does
 not correspond to a massless bound state in this model. The representation
 of a6 for the flavor group SU(6) x SU(6) x U(1) is (6,0,6). The sixth rank
 Symmetric tensor can break SU(6) to SU(5) or SO(6), but only in the latter case
 the U(l)-symmetry is completely broken, for reasons explained in the discus-
 sion of the first example. In Ref. 16 a detailed investigation of the pheno-
 menology of this model is presented.
 VII. Conclusions.
 We have performed a search for preen models similar in spirit to
 Ref. 15, but we have extended the scope of this search in two important ways;
 we have considered bound states of more than three preens and we have included
 the possibility of dynamical symmetry breaking. The first extension has
 yielded only two new solutions (models 4 and 13, both with N = 2), but the
 second allows many new ones, although their number is still surprisingly small
 compared to the number of possibilities we have investigated.
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 The second step in our program, to find a potentially realistic
 dynamical symmetry breaking pattern for our solutions, has also been succes-
 ful in part. We have indeed found some non-trivial models which satisfy
 ‘t Hooft's equations if a simple four-preen condensate breaks part of the
 chiral symmetry.
 The obvious next step is to look for embeddings of the standard model.
 Although we have not done that systematically, we do not consider any of our
 solutions as very satisfactory. In particular, generations do not appear
 in a natural way.
 Further attempts to construct composite models along the lines of Ref. 3
 will have to concentrate on the possibilities which we have not considered.
 There is a large number of complex, anomaly-free and asymptotically free re-
 presentations 24 which we have not investigated because they consist of more
 than two irreducible representations. A systematic search which includes all
 these models is practically impossible.
 The rules for the construction of composites which we have chosen are
 not on a very firm theoretical basis because of insufficient understanding of
 the dynamics, and they may be modified. An interesting possibility, which may
 shed some light on the generation problem isto relax the rule which forbids
 exotics. We have indeed found models which can have a generation-like
 spectrum in that case, with a mechanism similar to the one of Ref. 5, but
 those models are a bit too exotic to be discussed here.
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 Appendix
 In this appendix we formulate and derive a theorem 31 which relates
 the second and third index of the representation of a group to those of a
 subgroup. For a simple Lie algebra, these indices are defined as follows:
 Tr XaXb = C(R) gab (AlI
 Tr IXaAb) AC = A(R) dab= (A21
 where X a are the generators of the Lie algebra in a representation R. The
 normalization of the generators and the symmetric tensor d abc can be chosen
 in such a way that the second index C and the third index, or anomaly, A
 are integers, which are equal to 1 for the smallest representation. 26,3?In
 the following we will assume that this normalization is chosen in any group
 we consider. We denote the representation with indices equal to one as ro.
 Consider a simple subalgebra H of the semisimple Lie algebra
 G = Gl fd G2 a...@ Gm. We denote the generators of H as hia, and those of
 Gi as h:, i z I...*. The embedding of H is defined by the projection of
 the generators of G on those of H
 " A" = 1 1 MiCla A;
 i=l a (A3)
 Using the fact that the groups Gi have no anomalies with respect to each
 other, b and that Tr hi A> = 0 for i # j one can derive the following relations: 3
 ” CH(R) = 1 yi Ci(ri)
 i=l (A4)
 (A5)
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 where CH and % are the indices of the group H and Ci and Ai those of Gi.
 The representation (rl ".rm) of G is assumed to reduce to a representation
 R of H. The coefficients yi and ai are explicitly
 dd~d. abc
 ai= 1 Mi aa MiBb MiYC (d2= 1 (dyBy)') a8Y d' UBY
 Yi = 1 p8 gab
 aB 62 Mi aa MiBb (62 = 1 (6"@)* ) CXB
 (A61
 (A7)
 where d"" and diabC are the symmetric tensor of the groups H and Gi re-
 spectively.
 Obviously the coefficients i* i and Yi are independent of the representa-
 tion. For the third index this is a direct consequence of the fact that the
 symmetric tensor is representation-independent. To calculate the coefficients
 we can use any representation we prefer, and we choose the fundamental repre-
 sentations of G, defined as follows:
 fj= (rl'...,rm' '1 with rij = 6. I‘ 11 0 (A81
 The representation of H contained in fj is R(fj). Substituting this in (A4)
 and (AS) we find:
 Yi = CH(R(fill (A91
 ai = qlMfil) (A101
 This implies that for our normalization of the generators the coefficients
 are integers, which can be interpreted as the indices of the representations
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 of H, embedded in the fundamental representations of G. Relations (A4),(AS)
 and (Ag),(AlO) are the basic result of this Appendix. The extension of this
 result to indices of higher order is non-trivial, because the equivalent of
 (Al) and (AZ) does not exist. Indeed, a straightforward generalization of
 (A4) and (AS) to the fourth index does not hold!3 The results of this appendix
 are valid in exactly the same way if H is a U(l)-factor.
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Table Captions
 Table I List of the models with complex metacolor representations
 we have considered. Listed are the full symmetry group,
 the preen-representations and the candidates for massless
 composites. A more detailed explanation is given in
 Section III.
 Table II List of solutions. A detailed explanation of this table
 is given in Section V. The references are:
 (a) G. 't Hooft, Ref. 3;
 (b) Dimopoulos, Raby and Susskind, Ref. 4;
 (c) Banks, Yankielowicz and Schwimmer, Ref. 14;
 (d) C. Albright, Ref. 15;
 (e) C. Albright, B. Schrempp and F. Schrempp, Ref. 16;
 (f) Dan-Di Wu, Ref. 19.
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 Table I
 Model 1
 Group:
 pi-eons:
 Composites:
 Model 2
 Group:
 Pi-eons:
 Composites:
 Model 3
 Group:
 Preens:
 Composites:
 Model 4
 Group:
 Preens:
 Composites:
 W(3) x SU(N) x SU(7N) x U(1)
 a (2,1,0,7)
 0. ci,o,l,-5)
 a3 (0,21,0,21)
 6~3 (0,0,21,-15)
 cd (0,1,2,-3)
 cd2 (O,l,ll,-3)
 W(4) x N(N) x SU(8N) x U(1)
 a (2,1,0,4)
 B 0,0,1,-3)
 CiP iO,1,2,-2)
 ai+ (0,1,11,-21
 W(5) x SU(N) x SU(9N) x U(1)
 OL i2,1,0,-9)
 % ;r,J,;,7)
 aI+ (0,1,:,5)
 a% 2 (0,1,11,5)
 B5 (O,Q,32,35)
 ci5 (0,221,0,-45)
 SU(5) x W(N) x SU(N) x U(1)
 a (1.1,0,3)
 6 (ii,Q,l,-1) ct5 (0,32,0,15)
 a52 (O,l,Z,S)
 a26 (D,ll,l,5)
 a28 (0,2,1,5)
 85 (‘J,O,32,-5)
 !35 (0,0,221,-S)
 fi5 2x(0,0,311,-5)
 85 (D,O,41,-5)
 B5 (O,O,Zll,-5)
 N52
 N'3
 A
 B
 N<-3
 N<_ 13
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 Model 5
 Group : SU(5) x SU(N) x SU(9N) x U(1)
 Pi-eons: a (2,1,0,-27) % (ii,O,1,7)
 Composites: aB42x(O,l,~,-55)
 aP (0,1,5,-55)
 UP (O,l,iiii-55) a2B3 (0,2,21,75)
 1 55 (O,O,R,35) (R as for Model 4, E - J)
 Model 6
 Group: SU(5) x SU(N) x SU(16N) x U:(l)
 Preons ci (21,1,0,8)
 15 (i,o,i,-ii)
 Composites: mx(0,5,0,40) 85 (0,0,32,-55)
 Model 7
 Group: SU(5) x SU(N) x SU(15N) x U(1)
 Preens: ct (22,1,0,3) % (I,O,l,-7)
 Composites: B5 (0,0,32,-35)
 cd (0,1,4,-25)
 cd4 (O,l,llll,-25)
 cd+ ( 0,1,211,-25)
 ci54 (0,1,31,-25)
 cd+ (0,1,22,-25)
 a3f12 2x(0,3,2,-5)
 a3P (0,3,11,-5)
 a45 m (0,4,1,5) cl5 nx (0,5,0,15)
 N: 1
 A
 B
 C
 D
 E-J
 A
 B
 N<l
 A
 B
 C
 D
 E
 F
 G
 H
 J m'2
 K

Page 30
                        
                        

-29- Table I - cont'd.
 Model 8
 Group: SU(5) x S'J(N) x SU(6N) x U(1)
 Preens: a (211, l,O,l) 5 U,o,1,-4)
 Composites: b5 (0,0,32,-20)
 cd4 (0,1,4,-15) a%4 2x(0,1,31,-15)
 cd34 (0,1,22,-15)
 &2x(0,1,211,-15)
 a2%3 3x(0,2,3,-10)
 ,x2s3 5x(0,2,21,-10) a283 2x(~0,2,111,-10)
 a382 5x(0,3,2,-5)
 a362 6x(0,3,11,-5)
 ~~8 mx(0,4,1,0)
 c45 nx(~O,5,0,5)
 Model 9
 Group: SU(5) x SU(N) x SU(6N) x U(1) Pre0Ils a (211,1,0,3)
 % (ii,O,l,-4) Composites: a82 (O,l,ll,-5)
 at? (‘J,1,2,-5)
 CL5 nx(0,5,0,15)
 %5 (0,‘3,R,-20)
 (R as for Model 4, E-J)
 Model 10
 Group: SU(6) x SU(N) x SU(2N) x U(1) Preens: CL (11,1,0,-1)
 % (i,o,l,a Composites: a62 (0,1,11,3)
 cd2 (0,1,2,3)
 .3 (0,21,0,-3) aB 4 (0,1,=,-g)
 N<l
 A
 B
 C
 D
 E
 F
 G
 H
 J
 K
 L m<5
 M
 A
 B
 C
 D-H
 N.i 11
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 Table 1 - cont'd.
 Model 11
 Group: SU(6) x SU(5N) x SU(N) x U(1)
 Preens: a (11,1,0,21
 5 (Z,D,l,-5) Composites: cl3 (0,21,0,6)
 a45 2x(0,211,1,3)
 a45 2x(0,31,1,3)
 cr45 (0,22,1,3)
 a48 (0,1111,1,3)
 Ns2
 A
 B
 Ns9
 Model 12
 Group: SU(6) x W(N) x SU(lON) x U(1)
 Preens: cc (2,1,0,5)
 % 0, 0,1,-4) Composites: aa2 (O,l,ll,-3)
 d2 (0,1,2,-3)
 Model 13
 Group: SU(7) x SU(N) x SU(3N) x U(1)
 Preens: a (11,1,0,3)
 R (i,o,i,-5) Composites: cd2 (0,1,2,-7)
 cd2 (O,l,ll,-7) a283 (0,2,21,-21)
 5' (0,0,43,-35)
 a48 (0,R1>1,7) 8' (0,R2,0>211
 where
 R1 = 22 + 2x 211 + 1111 + 2x 31
 R2 = 52 + 511 + 43 + 3x 421 + 2x 4111 + 2x 331 + 2 x 322 + 4x 3211 + 2x 31111 + 2x 2221 + 2x 2211 + 211111
 Ns2
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 Table I - cont'd.
 Model 14
 Group: SU(7) x SU(N) x SU(11N)
 Preens: u (2,1,0,-11)
 5 (i,o,I.,g) Composites: ~~82 (0,1,11,7)
 aa2 (0,1,2,7)
 8' (0,0,43,63)
 a7 (0,2221,0,-77)
 Model 15
 Group: SU(8) x SU(N) x SU(4N) x U(1)
 Preens: a (ll,l,O, 2)
 % (i,O,l,-3) Composites: oie2 (0,1,2,-4)
 a.52 (O,l,ll,-4) a3E2 (O,Zl,E,12)
 CCP (O,l,?z,20)
 Model 16
 Group: SU(8) x SU(N) x SU(12N) x U(1)
 Preens: a (2,1,0,6)
 5 (i,o,l,-5) Composites: NB2 (0,1,2,-4)
 Id2 (O,l,ll,-4)
 Model 17
 Group: SO(10) x SU(N1) x SU(N2) x U(1)
 Preens: a (00002,1,0 ,-2N2)
 % (00001,0,1,35N1)
 Composites: crE2 (OOOC9,1,~,-7ONl-ZN,)
 a3i2 nx(OOOOO,l,?,-70Nl-6N2)
 a3i2 mx(OOOOO,l,~,-70Nl-6N2)
 N<3
 Ns4
 A
 B
 N1 = 1; N2 5 4
 A
 B
 C
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 Table I - cont'd.
 Model 18
 Group:
 Preens:
 Composites:
 Model 19
 Group:
 Preen:
 Composite:
 SO(10) x SU(N1) x SU(N2) x U(1)
 a ( OOOZO,l,O,-2N2)
 6 (00001,0,1,35Nl)
 a62 (00000,1,2,70Nl-2N2)
 a62 (00000,1,11,70N1-2N2)
 a3B2 ,,x(00000,1,2,70Nl-6N2)
 a3b2 1ijx(00000,1,11,70Nl-6N~)
 E6 x SU(N)
 c1 (000010,1)
 a3 (000000,21)
 N = 1, N2 <_ 4
 N 5 22
 A
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 Table II
 Model N (Sub) group Embedding Composites Ref.
 1 1
 2 1
 3 1
 4 1
 2
 3
 a
 5
 6
 7
 8
 9
 10
 8
 11
 13
 1
 9 1
 10 1
 3
 4
 6
 SU(7) c3 U(1) trivial
 SU(8) BI U(1) trivial
 SU(9) @ U(1) trivial
 U(1) trivial
 W(2) 63 SU(2) @ U(1) trivial
 SU(3) @ U(1) 0;l
 SU(3) 1;i
 G 63 U(1) real
 SU(4) 1;l
 SU(4) 0;l
 SU(4) SU(5) !a SU(5)
 =J(6)
 1;I
 trivial
 1;i
 SU(3) 1;2*1
 SU(3) 2;i
 SU(C 1;l
 3J(C 1;i
 SU(3) Z*l;Z
 su (9) 1;i
 SU(3) 2;i
 SU(5) 1;2*1 OT 11;2*1
 SU(3) several embeddings
 SU(3) 3*1; 2*i
 SU(4) 3*1; 2
 SU(6) 63 U(1) trivial
 su (6) trivial
 G @ U(1) real
 SU(6) & U(1) trivial
 SU(2) @ U(1) trivial
 SU(3) @ SU(6) trivial
 SU(4) 1;2*I
 =J(6) 1;2*1
 D c
 B c
 B c
 B; D b,d BcH
 C+G
 C+F; C+D+,?G; A+D+F+G;
 A+C+E+F; A+C+D
 C+G
 F+G+J
 D; B+ZG; B+E+F+G+J;
 B+C+F+ZG+J
 D+E; C+D+G; B+C+E+F+G
 C
 C+D+F+J;
 A+B+U+F+ZG+J
 B+C+F+J
 B+D+E+F
 B+J
 A+F+G
 D
 B+C+J
 D+F+J
 B+D
 A+B+C+E+F+J
 D
 K + 3L
 2K + L; 5L
 K
 B
 B
 A
 A+C
 C
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 Model N (Sub) group Embedding Composites Ref.
 8
 9
 10
 11
 11 1
 12 1
 13 1
 2
 3
 4
 5
 6 Su (6)
 7 SU(7) 14 1 SU(11) @ U(1)
 15 1 SU(4) a U(1)
 2 SU(2) @ SU(8)
 3 SU(12)
 16 1 SU(12) @ U(1)
 18 4 SU(4) 19 6 SIJ (6)
 su (6)
 SU(5) SU(3)
 SU(3)
 SU(3) SU(3)
 SU(3)
 SU(3)
 SU(3)
 SU(3)
 SU(4)
 SU(4)
 SU(5) SU(10) ffl U(1)
 SU(3) @ U(1)
 SU(2) k3 SU(6) B U(1)
 SU(3)
 SU(4)
 SU(5)
 1;i
 1;ii
 2;i+Z
 1+2;1+4
 l+Z;Yi
 1+2;2*2
 i+z;i+4
 i+2;2*1+2
 i+z;S*i
 3;l+Z+3
 2;2*i+Z
 2;i+Z
 trivial
 trivial
 trivial
 trivial
 l;o or i;i 0~ 1;i
 l;o OIT i;i 0~ 1;i
 l;o 01 1;l or 1;
 1;i B + E3 + Fll
 1,i B + E3
 trivial A
 trivial A
 trivial B
 0;l A+B+C
 trivial B
 trivial A+C
 trivial A
 B+C
 B+C
 B+C
 C
 A+C
 A+C
 C
 B
 B
 B+C
 B+C
 A
 D;A + E
 A
 A
 B+E 4 many solutions
 many solutions
 many solutions
 c
 b
 c
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 Model N (Sub) group
 Left-right symmetric
 -35-
 Embedding Composites Ref.
 Models
 3,1 2
 3
 4
 6
 10
 12
 13
 14
 16
 3,11 3
 5,1 2
 3
 10
 6,111. 5 6
 7,I 2
 3
 7,11 3
 W(2) !.a SU(2) @ U(1)
 W(3) B SU(3)
 SU(4)
 SU(6) @ SU(6)
 SU(3)
 SU(3)
 SU(6)
 SU(5)
 SU(3)
 SU(3)
 SU(7)
 SU(5)
 SU(3)
 SU(3)
 SU(4)
 SU(4)
 SU(3)
 SU(3) SU(2) Q SU(2) @ U(1)
 Gtd U(1)
 SU(3)
 SU(5)
 SU(3) SU(2) a SU(2) a ';(l)
 SU(3)
 SU(3)
 trivial Ai + B.; 1
 i = 1,3; j = 1,3 a
 trivial Bl 1;l B1 trivial Al + B1 2*1;3*1 B1 2*l;3*i A1 + B3
 2*1;1 B1 + B3 2*1;11 B1 + B3 4 embeddings Bl + B3 or A1 + B3
 2+2*i; 1+2 B1 l;z*i A1 + B3 ll;z*i Al + B3 3*1;1+z Al + B3 4*l;i+Z A1 + B3 4*l;i+Z Al+ B 3 i+2;i A3 + B3 + Bl
 several embeddings 9 solutions
 0;l B1 trivial Ai + Bj; i,j = 1,3,5
 real A; + B1 + A3 + B3
 1+2;3 Bl + A3 + A 5 l;o A1 l;z*i Al + Bl + B3
 trivial Ai + B.; 1
 i,j = 1,3,5,7
 l;o B3 + B5 + A 7 1;l A3
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