+ All Categories
Home > Education > Preparation and characterization of pla pbat organoclay composites

Preparation and characterization of pla pbat organoclay composites

Date post: 18-Jul-2015
Category:
Upload: junaedy-keputet
View: 256 times
Download: 1 times
Share this document with a friend
Popular Tags:
86
PREPARATION AND CHARACTERIZATION OF POLY(LACTIC ACID)/POLY(BUTYLENE ADIPATE-CO-THEREPTHTHALATE) NANOCOMPOSITES by Mohd Junaedy Osman (GS21850) Dr Nor Azowa Ibrahim Prof Dato’ Dr Wan Md Zin Wan Yunus Dr Jamaliah Sharif (Nuclear Agency Malaysia)
Transcript

PREPARATION AND CHARACTERIZATION OF

POLY(LACTIC ACID)/POLY(BUTYLENE ADIPATE-CO-THEREPTHTHALATE)

NANOCOMPOSITESby

Mohd Junaedy Osman (GS21850)

Dr Nor Azowa Ibrahim

Prof Dato’ Dr Wan Md Zin Wan Yunus

Dr Jamaliah Sharif (Nuclear Agency Malaysia)

Introduction.

• Environmental problem has been arising ever since the usage

of plastic was introduced. For this reason, there is an urgent

need to study and to develop renewable source-based

biopolymers (able to degrade via a natural composting

process).

• One of the ways to diminish the effect of these problems was

to use biodegradable polymer or also called Green Polymer.

Poly(lactic acid) (PLA) • PLA is a biodegradable, thermoplastic, aliphatic polyester derived

from renewable resources, (corn starch or sugarcanes). • Standard grade PLA has high modulus and strength comparable to

that many petroleum based plastics (brittle).

PLA monomer

Poly(butylene adipate-co-therephtlate) (PBAT)• PBAT (Ecoflex ) is an aliphatic-aromatic copolyester, which is fully

biodegradable. (Jiang et al. 2006). • It is a flexible plastic designed for film extrusion and extrusion

coating.

PBAT monomer.

Objectives.

• To prepare organoclay through ion exchange technique process with various type of alkyl ammonium ion.

• To characterize the organoclay produced.

• To study the effect of adding PBAT on the mechanical and thermal properties of PLA/PBAT nanocomposites.

• To investigate the effect of organoclay on mechanical, thermal and morphology of PLA/PBAT nanocomposites.

•The production of polymer materials has grown rapidly in the past 50 years. The versatility of plastics is not exceeded by any other class of materials, guarantees that polymers will continue to be very important in the future.

•The problem was the creation of phase separated mixture or immiscible blends. The immiscible blends can be easily classified by looking through its morphology and dynamics mechanical analysis.

Literature Review

Method and Result

•Preparation of organoclay

•Preparation of PLA/PBAT blends

•Preparation of PLA/PBAT nanocomposites

•Effect of type of clay

•Effect of clay loading

Methodology

Preparation of organoclay

• 2 types of organoclay prepared.

– ODA-MMT

– DDOA-MMT

• The organoclay were prepared according to the published method with slight modification (Tabtiang et al., 2000; Pospisil et al., 2004; Capkova et al., 2006)

Schematic Diagram

Na-MMT Organofiller(ODA & DDOA)

OrganoclayODA-MMT & DDOA-MMT

Characterization•XRD•FTIR•TGA•Elemental analyzer

Cation Exchange Technique

Characterization

• X-ray Diffraction study

• Fourier Transform Infrared spectroscopy

• Thermogravimetric Analysis

• Elemental Analysis

Preparation of PLA/PBAT blends

• PLA/PBAT blends were prepared by using melt blending technique.

PLA + PBAT

PLA/PBAT compositessheet

Characterization

Melt BlendingPLA/PBAT blends

Hot Pressing

Schematic Diagram

Characterization

• Tensile Properties study

• Fourier Transform Infrared spectroscopy

• Dynamic Mechanical Analysis

• Scanning Electron Microscopy

• Water Absorption Test

• Biodegradable Test

Preparation of PLA/PBAT nanocomposites

• PLA/PBAT nanocomposites were prepared by using melt blending technique.

Preparation of PLA/PBAT blends

PLA + PBAT

PLA/PBAT nanocompositessheet

Characterization

Melt BlendingPLA/PBAT blends

Hot Pressing

Schematic Diagram

Organoclay

Characterization • X-ray Diffraction study • Tensile Properties study • Fourier Transform Infrared spectroscopy • Dynamic Mechanical Analysis • Thermogravimetric Analysis • Scanning Electron Microscopy • Transmission Electron Microscopy • Water Absorption Test • Biodegradable Test

ResultsPreparation of organoclay

Clay galleries of montmorillonite

0

1000

2000

3000

4000

5000

6000

2 3 4 5 6 7 8 9 10

2θ (degree)

Inte

rsit

y a.

u.

XRD curve for (a) Na-MMT, (b) C 20A, (c) ODA-MMT and (d) DDOA-MMT

(a)

(c)

(b)

(d)

Summary

Type of Clay Exchange Cation 2θ Interlayer Spacing (Å) d001

Na-MMT Na+ 7.46 11.85

DDOA-MMT (CH3(CH2)17)2N+(CH3)2 2.66 33.22

ODA-MMT C18H37NH3+ 2.92 30.26

C 20A (CH3)2N+(HT)2 3.40 26.00

100020003000

(d)

(c)

(b)

(a)

Wavenumber cm-1

% T

Asymmetric CH3 stretching

Symmetric CH3

stretching

-CH2-

bending

Free water molecule and water-water

hydrogen bond

Si-O-Si stretching

Al-O bending

Si-O bending

OH bending

FTIR spectra for (a) Na-MMT, (b) ODA-MMT, (c) DDOA-MMT and (d) C 20A

40

50

60

70

80

90

100

110

35 135 235 335 435 535 635 735

Temperature (oC)

Wei

gh

t %

(%

) (a)

(b)

(c)

(d)

TGA thermograms of (a) Na-MMT, (b) ODA-MMT, (c) C20A and (d) DDOA-MMT

Type of Clay Exchange Cation Percent of Surfactant

Intercalated (%)

Quantity of Water (%)

Na-MMT Na+ - 11.99

ODA-MMT C18H37NH3+ 14.57 9.02

DDOA-MMT (CH3(CH2)17)2N+(CH3)2 25.89 3.41

C 20A (CH3)2N+(HT)2 18.64 3.22

Carbon content and the amount of surfactant intercalated into the clay galleries

Type of ClayExchange Cation C (%) Weight of

sample (mg)Percentage Surfactant intercalate

(%)

Na-MMT Na+ 0.513 1.919 -

ODA-MMT C18H37NH3+ 15.913 2.088 19.193

DDOA-MMT (CH3(CH2)17)2N+(CH3)2 20.455 2.060 26.552

C 20A (CH3)2N+(HT)2 19.571 2.031 23.464

CHNS analyzer

ResultsPreparation of PLA/PBAT blends

0

10

20

30

40

50

60

0 5 10 15 20 25 30

PBAT content (%)

Ten

sile

Str

engt

h (

Mp

a)

Determination of tensile strength with various PBAT content.

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

PBAT content (%)

Ten

sile

Mod

ulu

s (M

pa)

Determination of tensile modulus with various PBAT content.

-5

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30

PBAT content (%)

Elo

nga

tion

at

bre

ak (%

)

Elongation at break of PLA/PBAT with various PBAT content

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30

PBAT content (%)

Elo

nga

tion

at

bre

ak (

%)

0

200

400

600

800

1000

1200

1400

Ten

sile

Mod

ulu

s (M

Pa)

Comparison of elongation at break and tensile modulus with various PBAT content

0

100

200

300

1000200030004000

(a)

(b)

(c)

Wavenumber cm-1

% T

2997 cm-1

Alkane stretch C – H 1750 cm-1 C = O

1081 cm-1

C – O1450 cm-1

-CH3

bending

2953 cm-1

2996 cm-1 1749 cm-1

1714 cm-1

1450 cm-1

1450 cm-1

C = C aromatic

1081 cm-1

1090 cm-1

FTIR spectra of (a) PLA, (b) PBAT and (c) 85PLA/15PBAT blends

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80Temperature (°C)

Los

s Mod

ulus

G"

(Pa)

PLA

PBAT

95PLA/5PBAT

85PLA/15PBAT

75PLA/25PBAT

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

-50 -40 -30 -20 -10 0Temperature (°C)

Loss

Mod

ulus

G"

(Pa)

PLA

PBAT

95PLA/5PBAT

85PLA/15PBAT

75PLA/25PBAT

Temperature dependence of G” of PLA/PBAT with various amount of PBAT content

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

4.00E+09

4.50E+09

5.00E+09

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90Temperature (oC)

Stor

age

Mod

ulus

G' (

Pa)

PLA

PBAT

95PLA/5PBAT

85PLA/15PBAT

75PLA/25PBAT

Temperature dependence of G’ of PLA/PBAT with various amount of PBAT

(a) (b)

(c)

PBAT

SEM images of (a) PLA, (b) PBAT and (c) PLA/PBAT blends

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Time (days)

Wat

er a

bso

rpti

on

per

cen

tage

(%

)

PLA PBAT 95PLA5PBAT 85PLA15PBAT 75PLA25PBAT

Water absorption of PLA, PBAT, PLA/PBAT blends with various amount of PBAT

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (weeks)

Wei

ght

loss

per

cen

tage

(%

)

PLA PBAT 95PLA5PBAT 85PLA15PBAT 75PLA25PBAT

Weight loss percentage of PLA, PBAT, PLA/PBAT blends with various amount of PBAT

Results

Preparation of PLA/PBAT nanocomposites

(Effect of surfactant type)

0

50

100

150

200

250

300

350

400

450

2 3 4 5 6 7 8 9 10

2θ (degree)

Inte

nsi

ty a

.u. (a)

(b)

(c)

(d)

XRD curve for (a) PLA/PBAT/Na-MMT, (b) PLA/PBAT/C 20A, (c) PLA/PBAT/ODA-MMT and (d) PLA/PBAT/DDOA-MMT

XRD peak and interlayer spacing of various type of clay

Type of clay2θ (°) Interlayer

spacing (Å)Interlayer spacing without

PLA/PBAT (Å)

Shift extant (Å)

PLA/PBAT/Na-MMT 6.42 13.67 11.85 1.82

PLA/PBAT/ODA-MMT 2.54 34.79 30.26 4.53

PLA/PBAT/DDOA-MMT 2.00 44.18 33.22 10.96

PLA/PBAT/C 20A 2.40 36.82 26.00 10.82

100020003000

(e)

(d)

(c)

(b)

(a)

Wavenumber cm-1

% T

C - O

1081 cm-1

1082 cm-1

1083 cm-1

1083 cm-1

1083 cm-1

FTIR curve for (a) PLA/PBAT, (b) PLA/PBAT Na-MMT, (c) PLA/PBAT/C 20A, (d) PLA/PBAT/ODA-MMT and (e) PLA/PBAT/DDOA-MMT

Hydrogen Bonding

PLA PBATCLAY

OH

Expected hydrogen bonding between the OMMT and PLA/PBAT blends

37.56

39.68

43.58

42.11

40.99

34

36

38

40

42

44

46

Organoclay

Ten

sile

Str

engt

h (M

Pa)

PLA/PBAT + Na-MMT + ODA-MMT + DDOA-MMT + C 20A

Tensile strength of PLA/PBAT/organoclay

1013.32

1020.02

1022.111021.52 1021.00

1008

1010

1012

1014

1016

1018

1020

1022

1024

Organoclay

Ten

sile

Mod

ulus

(MP

a)

PLA/PBAT + Na-MMT + ODA-MMT + DDOA-MMT + C 20A

Tensile modulus of PLA/PBAT/organoclay

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

-50 -30 -10 10 30 50 70 90

Temperature (oC)

Sto

rage

Mod

ulu

s G

' (P

a)

PLA/PBAT

PLA/PBAT/Na-MMT

PLA/PBAT/ODA-MMT

PLA/PBAT/DDOA-MMT

PLA/PBAT/C 20A

The effect of type of clay on storage modulus

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

-50 -30 -10 10 30 50 70 90

Temperature (oC)

Los

s M

odu

lus

G"

(P

a)

PLA/PBAT

PLA/PBAT/Na-MMT

PLA/PBAT/ODA-MMT

PLA/PBAT/DDOA-MMT

PLA/PBAT/C 20A

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

1.60E+08

1.80E+08

2.00E+08

-30 -25 -20 -15 -10 -5 0 5 10

Temperature (oC)

Los

s M

odu

lus

G"

(P

a)

PLA/PBAT

PLA/PBAT/Na-MMT

PLA/PBAT/ODA-MMT

PLA/PBAT/DDOA-MMT

PLA/PBAT/C 20A

The effect of type of clay on loss modulus

Tg for different type of clay

Sample Identification Tg PLA (oC) Tg PBAT (oC)

PLA/PBAT 68.1 -23.0

PLA/PBAT/Na-MMT 64.3 -10.1

PLA/PBAT/ODA-MMT 62.3 -15.5

PLA/PBAT/DDOA-MMT 61.7 -12.2

PLA/PBAT/C 20A 63.4 -12.5

0

20

40

60

80

100

200 250 300 350 400 450 500 550

Temperature (oC)

Wei

gh

t %

(%

)

(a)

(b)

(c)

(d)

(e)

TGA curve for (a) PLA/PBAT, (b) PLA/PBAT/Na-MMT, (c) PLA/PBAT/C 20A (d) PLA/PBAT/DDOA-MMT and (e) PLA/PBAT/ODA-MMT

-22

-17

-12

-7

-2

200 250 300 350 400 450 500 550

Temperature (oC)

Der

ivat

ives

Wei

ght

% (

%/m

)

(a)

(b)

(c)

(d)

(e)

DTG curve for (a) PLA/PBAT, (b) PLA/PBAT/Na-MMT, (c) PLA/PBAT/C 20A, (d) PLA/PBAT/DDOA-MMT and (e) PLA/PBAT/ODA-MMT

The thermal degradation for PLA/PBAT and PLA/PBAT/nanocomposites with various type of clay

Sample Tonset (

oC) T50 (ºC) Tmax (ºC)

PLA/PBAT 275.39 318.78 321.52

PLA/PBAT/Na-MMT 286.71 325.27 329.38

PLA/PBAT/ C 20A 300.36 332.13 334.93

PLA/PBAT/DDOA-MMT 307.52 334.19 335.37

PLA/PBAT/ ODA-MMT 310.36 336.09 336.98

(a) (b)

(c) (d)

SEM images of (a) PLA/PBAT/ODA-MMT, (b) PLA/PBAT/DDOA-MMT, (c) PLA/PBAT/C 20A and (d) PLA/PBAT/Na-MMT

(a) (b)

(c) (d)

200 nm200 nm

200 nm 200 nm

TEM images for (a) PLA/PBAT/Na-MMT, (b) PLA/PBAT/ODA-MMT, (c) PLA/PBAT/DDOA-MMT and (d) PLA/PBAT/C 20A (Magnification 10000x)

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (days)

Wat

er a

bsor

ptio

n pe

rcen

tage

(%)

PLA/PBAT PLA/PBAT/Na-MMT PLA/PBAT/ODA-MMT

PLA/PBAT/DDOA-MMT PLA/PBAT/C 20A

Water absorption percentage of PLA/PBAT incorporation with different type of clay

Percentage water uptake PLA/PBAT incorporation with different type of clay

Time (days)Sample 0 2 4 8 16

PLA/PBAT 0 1.22 1.45 1.45 1.45

PLA/PBAT/Na-MMT 0 1.32 1.51 1.52 1.52

PLA/PBAT/ODA-MMT 0 1.20 1.44 1.44 1.44

PLA/PBAT/DDOA-MMT 0 1.21 1.45 1.45 1.45

PLA/PBAT/C 20A 0 1.21 1.44 1.44 1.44

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12Time (weeks)

Wei

ght

loss

pen

cen

tage

(%

)

PLA/PBAT PLA/PBAT/Na-MMTPLA/PBAT/ODA-MMT PLA/PBAT/DDOA-MMTPLA/PBAT/C 20A

Weight loss percentage of PLA/PBAT incorporation with different type of clay

Percentage weight loss PLA/PBAT incorporation with different type of clay

Time (weeks)Samples 0 3 6 9 12

PLA/PBAT 0.00 2.33 2.52 2.69 2.76

PLA/PBAT/Na-MMT 0.00 2.39 2.62 2.75 2.82

PLA/PBAT/ODA-MMT 0.00 2.23 3.77 5.63 8.41

PLA/PBAT/DDOA-MMT 0.00 2.03 3.56 5.25 7.96

PLA/PBAT/C 20A 0.00 2.00 3.56 4.81 7.62

Results

Preparation of PLA/PBAT nanocomposites

(Effect of clay loading)

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9 10

2θ (degree)

Inte

nsi

ty,

a.u

.

PLA/PBAT/0.1 Na-MMT

PLA/PBAT/0.3 Na-MMT

PLA/PBAT/0.6 Na-MMT

PLA/PBAT/1.0 Na-MMT

PLA/PBAT/3.0 Na-MMT

6.02°

6.42°

XRD patterns of PLA/PBAT/Na-MMT

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7 8 9 10

2θ (degree)

Inte

nsit

y, a

.u.

PLA/PBAT/0.1 ODA-MMT

PLA/PBAT/0.3 ODA-MMT

PLA/PBAT/0.6 ODA-MMT

PLA/PBAT/1.0 ODA-MMT

PLA/PBAT/3.0 ODA-MMT

2.76°

2.54°

XRD pattern of PLA/PBAT/ODA-MMT nanocomposites

Table of interlayer spacing with different type and clay content

Type of nanocomposites Clay content (wt%) 2θ (°) Interlayer spacing (Å)

PLA/PBAT/Na-MMT 0.1 - -

0.3 - -

0.6 - -

1.0 6.02o 14.68Å

3.0 6.42o 13.77Å

PLA/PBAT/ODA-MMT 0.1 - -

0.3 - -

0.6 - -

1.0 2.76o 32.01Å

3.0 2.54o 34.79Å

35

36

37

38

39

40

41

42

43

44

45

0 0.5 1 1.5 2 2.5 3Clay Content (wt%)

Ten

sile

Str

engt

h (M

Pa)

PLA/PBAT+ODA-MMT

PLA/PBAT+Na-MMT

Tensile strength of PLA/PBAT/Organoclay composites

1012

1014

1016

1018

1020

1022

1024

0 0.5 1 1.5 2 2.5 3

Clay Content (wt%)

Ten

sile

Mod

ulu

s (M

Pa)

PLA/PBAT+ODA-MMT

PLA/PBAT+Na-MMT

Tensile modulus of PLA/PBAT/Organoclay composites

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

-50 -30 -10 10 30 50 70 90

Temperature (oC)

Stor

age

Mod

ulus

G' (

Pa)

PLA/PBAT

PLA/PBAT/0.1 Na-MMT

PLA/PBAT/0.3 Na-MMT

PLA/PBAT/0.6 Na-MMT

PLA/PBAT/1.0 Na-MMT

PLA/PBAT/3.0 Na-MMT

The G’ as the function of temperature for PLA/PBAT/Na-MMT

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

-50 -30 -10 10 30 50 70 90

Temperature (oC)

Stor

age

Mod

ulus

G' (

Pa)

PLA/PBATPLA/PBAT/0.1 ODA-MMTPLA/PBAT/0.3 ODA-MMTPLA/PBAT/0.6 ODA-MMTPLA/PBAT/1.0 ODA-MMTPLA/PBAT/3.0 ODA-MMT

The G’ as the function of temperature for PLA/PBAT/ODA-MMT

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

-50 -30 -10 10 30 50 70 90

Temperature (oC)

Los

s M

odul

us G

" (P

a)

PLA/PBAT

PLA/PBAT/0.1 Na-MMT

PLA/PBAT/0.3 Na-MMT

PLA/PBAT/0.6 Na-MMT

PLA/PBAT/1.0 Na-MMT

PLA/PBAT/3.0 Na-MMT

The G” as the function of temperature for PLA/PBAT/Na-MMT

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

-50 -30 -10 10 30 50 70 90

Temperature (oC)

Los

s M

odul

us G

" (P

a)

PLA/PBAT

PLA/PBAT/0.1 ODA-MMT

PLA/PBAT/0.3 ODA-MMT

PLA/PBAT/0.6 ODA-MMT

PLA/PBAT/1.0 ODA-MMT

PLA/PBAT/3.0 ODA-MMT

The G” as the function of temperature for PLA/PBAT/ODA-MMT

Tg at different clay loading

Sample Identification Tg PLA (oC) Tg PBAT (oC)

PLA/PBAT 68.1 -23.0

PLA/PBAT/0.1 Na-MMTPLA/PBAT/0.3 Na-MMTPLA/PBAT/0.6 Na-MMTPLA/PBAT/1.0 Na-MMTPLA/PBAT/3.0 Na-MMT

57.659.359.864.360.8

-14.6-10.7-15.1-10.1-14.2

PLA/PBAT/0.1ODA-MMT PLA/PBAT/0.3ODA-MMT PLA/PBAT/0.6ODA-MMT PLA/PBAT/1.0ODA-MMT PLA/PBAT/3.0ODA-MMT

59.965.463.262.358.3

-15.1-14.6-9.6

-15.5-13.6

0

20

40

60

80

100

200 250 300 350 400 450 500 550

Temperature (oC)

Wei

ght

% (

%)

(a)

(b)

(c)(d)

TGA thermograms of PLA/PBAT/Na-MMT (a) 0.3 wt% (b) 1.0 wt% and (c) 3.0 wt% of Na-MMT

0

20

40

60

80

100

200 250 300 350 400 450 500 550

Temperature (oC)

Wei

ght

% (

%)

(a)

(b) (c)

(d)

TGA thermograms of (a) PLA/PBAT, PLA/PBAT/ODA-MMT (b) 0.3 wt% (c) 1.0 wt% and (d) 3.0 wt% of ODA-MMT

-22

-17

-12

-7

-2

200 250 300 350 400 450 500 550

Temperature (oC)

Der

ivat

ives

Wei

ght

% (%

/m)

(a)

(b)

(c)

(d)

DTG thermograms of (a) PLA/PBAT, PLA/PBAT/Na-MMT (b) 0.3 wt%, (c) 1.0 wt% and (d) 3.0 wt% of Na-MMT

-22

-17

-12

-7

-2

200 250 300 350 400 450 500 550

Temperature (oC)

Der

iva

tiv

es W

eig

ht

% (

%/m

)

(a)

(b)(c)

(d)

DTG thermograms of (a) PLA/PBAT, PLA/PBAT/ODA-MMT (b) 0.3 wt% (c) 1.0 wt% and (d) 3.0 wt% of ODA-MMT

Thermal degradation for PLA/PBAT/Na-MMT and PLA/PBAT/ODA-MMT with various clay content

Type of clay Clay content (wt%)

Tonset (oC) T50 (°C) Tmax (°C)

PLA/PBAT 0.0 275.39 318.78 321.52

Na-MMT 0.3 284.97 319.68 320.43

1.0 286.71 325.27 329.38

3.0 299.71 330.27 332.38

ODA-MMT 0.3 308.57 333.60 334.56

1.0 310.36 336.09 336.93

3.0 315.17 343.22 345.585

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18Time (days)

Wat

er a

bso

rptio

n

perc

enta

ge (

%)

PLA/PBAT PLA/PBAT/0.6 Na-MMT

PLA/PBAT/1.0 Na-MMT PLA/PBAT/3.0 Na-MMT

Water absorption percentage of PLA/PBAT/Na-MMT at various clay loading

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (days)

Wat

er a

bsor

ptio

n pe

rcen

tage

(%

)

PLA/PBAT PLA/PBAT/0.6 ODA-MMT

PLA/PBAT/1.0 ODA-MMT PLA/PBAT/3.0 ODA-MMT

Water absorption percentage of PLA/PBAT/ODA-MMT at various clay loading

Water absorption percentage of all samples at various clay loading

Time (days)Samples 0 2 4 8 16

PLA/PBAT 0 1.20 1.44 1.44 1.44

PLA/PBAT/0.6 Na-MMT 0 1.32 1.51 1.52 1.52

PLA/PBAT/1.0 Na-MMT 0 1.35 1.54 1.54 1.54

PLA/PBAT/3.0 Na-MMT 0 1.38 1.55 1.55 1.55

PLA/PBAT/0.6 ODA-MMT 0 1.22 1.45 1.45 1.45

PLA/PBAT/1.0 ODA-MMT 0 1.26 1.47 1.47 1.47

PLA/PBAT/3.0 ODA-MMT 0 1.29 1.49 1.49 1.49

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12Time (weeks)

Wei

ght l

oss

perc

enta

ge

(%)

PLA/PBAT PLA/PBAT/0.6 Na-MMT

PLA/PBAT/1.0 Na-MMT PLA/PBAT/3.0 Na-MMT

Figure 4.45: Weight loss percentage of PLA/PBAT/Na-MMT at various clay loading

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (weeks)

Wei

ght

loss

per

cen

tage

(%

)

PLA/PBAT PLA/PBAT/0.6 ODA-MMTPLA/PBAT/1.0 ODA-MMT PLA/PBAT/3.0 ODA-MMT

Weight loss percentage of PLA/PBAT/ODA-MMT at various clay loading

Weight loss percentage of all samples at various clay loading

Time (weeks)Samples 0 3 6 9 12

PLA/PBAT 0.00 1.71 3.13 4.51 7.14

PLA/PBAT/0.6 Na-MMT 0.00 2.22 3.42 6.12 10.52

PLA/PBAT/1.0 Na-MMT 0.00 2.61 4.32 9.34 13.53

PLA/PBAT/3.0 Na-MMT 0.00 3.11 5.24 10.61 15.72

PLA/PBAT/0.6 ODA-MMT 0.00 1.89 3.37 4.86 7.49

PLA/PBAT/1.0 ODA-MMT 0.00 2.23 3.77 5.63 8.41

PLA/PBAT/3.0 ODA-MMT 0.00 2.57 4.29 6.11 8.69

•Two types of organoclays (ODA-MMT and DDOA-MMT) were successfully prepared through ion exchange technique from Na-MMT (FTIR, XRD, TGA and elemental analyzer).

•PLA/PBAT blends at different PBAT content were successfully prepared using melt blending technique (Tensile testing, FTIR, DMA, SEM, water absorption and biodegradability).

•PLA/PBAT/composites/nanocomposites at different type of clay were successfully prepared using melt blending technique (XRD, FTIR, tensile testing, DMA, TGA, SEM, TEM, water absorption and biodegradability).

•PLA/PBAT/composites/nanocomposites at different clay content were successfully prepared using melt blending technique (XRD, tensile testing, DMA, TGA, water absorption and biodegradability).

Conclusion

References • Abacha, N., Kubouchi, M., Tsuda, K. and Sakai. T. (2007). Performance of epoxy-nanocomposite under

corrosive environment. Express Polymer Letters 1(6) : 364-369.• Akelah, A., Kelly, P., Qutubuddin, S. and Moet, A. (1994). Synthesis and characterization of epoxyphilic

montmorillonites, Clay Mineral. 29 : 169-178.• Akelah, A. (1995). Nanocomposites of grafted polymer onto layered silicate. In polymer and other

advance material: Emerging technologies and business opportunities. Plenum Press. New York : 625-644.

• Alexandre, M. and Dubois, P. (2000). Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Material Science Engineering Reports, 28(1–2): 1–63.

• Aminabhavi, T.M., Balundgi, R.H. and Cassidi, P.E. (1990). Review on biodegradable plastics. Polymer Plastic Technology and Engineering. 29(3) : 235-262.

• Anderson, K.S. and Hillmyer, M.A. (2004). The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer. 45 : 8809–8823.

• Auras, R., Harte B. and Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience. 4(9) : 835–864.

• Averous, L. (2004). Biodegradable multiphase systems based on plasticized starch: A review. Journal of Macromolecule Science Polymer Review. 44 : 231-274.

•Aziz, S.H. and Ansell, M.P. (2004). The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 – Polyester resin matrix. Composites Science Technology. 64 : 1219-1230.•Bala, P., Samantaray, B.K. and Srivastava, S.K. (2000). Synthesis and characterization of Na-montmorillonite-alkylammonium intercalated compound. Material Research Bulletin. 35 : 1717-1724.•Balek, V., Benes, M., Malek, Z., Matuschek, G., Kettrup, A. and Yariv, S. (2006). Emanation thermal analysis study of Na-montmorillonite and montmorillonite saturated with various cations. Journal of Thermal Analysis and Calorimetry. 83 : 617.•Bergaya, F., Theng, B.K.G. and Lagaly, G. (2006). Handbook of Clay Science, First Edition. Elsevier.•Bhatia, A., Gupta, R.K., Bhattacharya, S.N. and Choi, H. J. (2007). Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application. Korea-Australia Rheology Journal. 19(3) : 125-131.•Becker, O., Cheng, Y.B., Varley, R. J. and Simon, G.P. (2003). Layered silicate nanocomposites based on various high-functionality epoxy resins: the influence of cure temperature on morphology, mechanical properties, and free volume. Macromolecules. 36 : 1616-1625.•Bismarck, A., Aranberri-Askargorta, I., Springer, J., Lampke, T., Wielage, B., Samboulis, A., Shenderovick, I. and Limbach, H. (2002). Surface characterization of flax, hemp, and cellulose fibers; Surface properties and the water uptake behavior. Polymer Composites. 23(5) : 872-894.

•Biswas, M. and Sinha Ray, S. (2001). Recent progress in synthesis and evaluation of polymer–montmorillonite nanocomposites. Advances in Polymer Science. 155 : 167–221.•Blumstein, A. (1961). Etude des polymerizations en couche absorbee 1. Bulletin de la Societe Chimique de France. 899-905.•Bordes, P., Pollet, E. and Averous, L. (2009). Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science. 34 : 125-155.•Bray, H.J. and Redfern, S.A.T. (1999). Kinetics of gehydration of Ca-montmorillonite. Physical Chemical Minerals. 26 : 591.•Bulakh, N., Kulkarni, S.M., Jog, J.P. and Chaudhari R.V. (2003). Preparation and characterization of polyketone/clay nanocomposites. Journal of Macromolecular Science: Part B: Physics. 42 (5) : 963-973.•Calcagno, C.I.W., Mariani, C.M., Teixeira S.R. and Mauler, R.S. (2007). The role of the MMT on the morphology and mechanical properties of the PP/PET blends. Composites Science and Technology. 68(10-11) : 2193-2200.•Capkova, P., Pospisil, M., Valaskova, M., Merinska, D., Trchovad, M., Sedlakovad, Z., Weiss, Z. and Simonik, J. (2006). Structure of montmorillonite cointercalated with stearic acid and octadecylamine: Modeling, diffraction, IR spectroscopy. Journal of Colloid and Interface Science. 300 : 264–269.•Chandra, R. and Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science. 23 : 1273-1335.•Chen, C.C., Chueh, J.Y., Tseng, H., Huang H.M. and Lee, S.Y. (2003). Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials. 24(7) : 1167-1173.•Chow, W.S., Mohd Ishak, Z.A., Karger-Kocsis, J., Aposlotov, A.A. and Ishiaku, U.S. (2003). Compatibilizing effect of maleated polyproplene on the mechanical properties and morphology of injection moulded polyamida 6/polypropylene/organoclay nanocomposites. Polymer. 44 : 7427-7440.

•Correlo, V.M., Pinho, E. D., Pashkuleva, I., Bhattacharya, M., Neves, N.M. and Reis, R. L. (2007). Water absorption and biodegradation characteristics of chitosan-based polyesters and hydroxyapatite composites. Macromolecular Bioscience. 7 : 354-363.•De Paiva, L.B., Morales, A.R. and Valenzuela Díaz, F.R. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science. (42) : 8-24.•Delozier, D.M., Orwoll, R.A., Cahoon, J.F. Johnson, N.J., Smith Jr, J.G. and Conwell, J.W. (2002). Preparation and characterization of polyamide/organoclay nanocomposites. Polymer. 43 : 813-822.•Eubeler J.P., Bernhard M. and Knepper T.P. (2010). Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. Trends in Analytical Chemistry. 29(1) : 84-100.•Errco, M.E. (1999). Polymethylmethacrylate-modified biocompatible polyesters. Current Trends Polymer Science. 4 : 1-26.•Fan, J., Liu, S., Chen, G. and Qi, Z. (2002). SEM study of a polystyrene/clay nanocomposite. Journal of Applied Polymer Science. 83 : 66-69.•Fischer, H. R., Gielgens, L. H. and Koster, T. P. M. (1999). Nanocomposites from polymers and layered minerals. Acta Polymerica. 50(4) : 122–126.•Feijoo, J. L., Cabedo, L., Gim E Nez, E., Lagaron, J. M. and Saura, J. J. (2005). Development of amorphous PLA-montmorillonite nanocomposites. Journal of Materials Science. 40 : 1785-1788.•Fornes, T.D., Yoon, P.J., Keskkula, H. and Poul, D.R. (2001). Nylon 6 nanocomposites: The effect of matrix molecular weight. Polymer. 42 : 9929-9940.

•Fornes, T.D., Yoon, P.J., Hunter, D.L., Keskkula, H. and Paul, D.R. (2002). Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer. 43 : 5915-5933.•Fu, X. and Qutubuddin, S. (2001). Polymer–clay nanocomposites: Exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer. 42(2) : 807-813.•Fukushima, K., Tabuani, D. and Camino, G. (2009). Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Materials Science and Engineering C. 29 : 1433-1441.•Gajria, A.M. Dave, V.Gross, R.A. and McCarthy, S.P. (1996). Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer. 37(3) : 437-444.•Giannelis, E.P., Krishnamoorti, R. and Manias E. (1999). Polymer-Silicate Nanocomposites: Model system for confined polymer and polymer brushes. Advance in Polymer Science. 138 : 108-143.•Gilman, J.W. (1999). Flamibility and thermal stability studies of polymer-layered silicate (clay) nanocomposites. Applied Clay Science. 15 : 31-49.•Gilnian, J. W., Kashivagi, T. C. L., Giannelis, E. P., Manias, E., Lomakin, S. and Lichtenhan, J. D. (1998). Fire retardancy of polymers. Cambridge: Royal Society of Chemistry.•Greene, J. (2007). Biodegradation of compostable plastics in green yard-waste compost environment. Journal of Polymers and the Environment. 15(4) : 269-273.•Grijpma, D. W., Zondervan, G. J. and Pennings, A. (1991). High molecular weight copolymers of L-lactide and c-caprolactone as biodegradable elastomeric implant materials. Polymer Bulletin. 25 : 327-333.•Gu, J.D. Gu, D.T. Eberiel, S.P. McCarthy and R.A. Gross, (1993). Cellulose acetate biodegradability upon exposure to stimulated aerobic composting and anaerobic bioreactor environments. Journal of Environmental Polymer Biodegradation. 1 : 143–153.•Gu, S.Y., Zhang, K., Ren, J. and Zhan, H. (2008). Melt rheology of polylactic acid/ poly(butylene adipate-co-terephthalate) blends. Carbohydrate Polymers. 74: 79-85.

•He, Y., Zhu, B. and Inoue Y. (2004). Hydrogen bonds in polymer blends. Progress in Polymer Science. 29 : 1021-1051.•Herrera, R., Franco, L., Rodriguez-Galan, A. and Puiggali, J. (2002). Characterization and biodegradation behavior of poly(butylene adipate-co-terephtalate)s. Journal of Polymer Science: Part A- Polymer Chemistry. 40 : 4141-4157.•Hiljanen-V.M., Karjalainen, T. and Seppala, J. V. (1996). Biodegradable lactone copolymers. 1. Characterization and mechanical behavior of 8-caprolactone and lactide copolymers. Journal of Applied Polymer Science. 59 : 1281-1288.•Hiljanen V.M., Orava, P. A. and Seppala, J. V. (1997). Properties of epsilon-caprolactone/DL-lactide (epsilon-CL/DL-LA) copolymers with a minor epsilon-CL content. Journal of Biomedical Materials Research. 34 : 39-46.•Huang, X. and Brittain, W.J. (2001). Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization. Macromolecules. 34(10) : 3255-3260•Jang, W. Y., Shin, B.Y., Lee, T.J. and Narayan R. (2007).Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. Journal of Industrial and Engineering Chemistry. 13(3) : 457-464.•Jiang, L., Wolcott, M. P. and Zhang, J. (2006). Study of biodegradable polylactide/poly(butylenes adipate-co-terephthalate) blends. Biomacromolecules. 7(1) : 199-207.•Jordan, J., Jacob, K. I., Tannenbaum, R., Sharaf M.A. and Jasiuk, I. (2005). Experimental trends in polymer nanocomposites: A review. Materials Science and Engineering A. 393(1-2) : 1-11.•Kager-Kocsis, J. (2004). Thermoset rubber/layered silicate nanocomposites: Status and future trends. Polymer Engineering and Science. 44 : 1083-1093.

Thank you


Recommended