+ All Categories
Home > Documents > Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server...

Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server...

Date post: 18-Jan-2016
Category:
Upload: allan-welch
View: 217 times
Download: 0 times
Share this document with a friend
Popular Tags:
19
Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters
Transcript
Page 1: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Present by Sheng Cai

Coordinating Power Control and Performance

Management for Virtualized Server

Clusters

Page 2: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Two critical challenges of data centers• First, various customers need to be

assured by meeting their required service-level agreements such as response time and throughput.

• Second, server power consumption must be controlled in order to avoid failures caused by power capacity overload or system overheating due to increasing high server density.

Page 3: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Existing solutions

• Performance-oriented solutions at the system level focus on using power as a knob to meet application-level SLAs .

• Power-oriented solutions treat power as the first-class control target by adjusting hardware power states with no regard to the SLAs of the application services running on the servers.

Page 4: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

CO-CON: COORDINATED CONTROL

ARCHITECTURE

• Co-Con is a two-layer control solution, which includes a cluster-level power control loop and a performance control loop for each virtual machine.

Page 5: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Performance ControlExample: response time control control input: response time of the web

server installed in each virtual machine control output: CPU resource to the virtual

machine

Page 6: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Performance ControlPID controller: The PID controller involves three separate

parameters: the proportional, the integral and derivative values, denoted P, I, and D.

( ) ( 1) ( ) ( ( ) ( 1) ( 2)) ( ( ) ( 1))P I Da k a k K e k K e k e k e k K e k e k

Page 7: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Performance Controlsystem model: where is the change of response time, is

the change of CPU resources to VM. and are control parameters whose values need to be determined.

Stability Analysis for CPU Frequency Variations Stability has to be guaranteed even when the

model varies due to CPU frequency changes. (1) derive the controller function and system

model in Z-domain.

(2) derive the closed-loop system transfer function by plugging the controller into the actual system.

r a1b 1c

21 2 3( )( 1)

K z K z KF z

z z

1

1

( )c

G zz b

21 1 1 2 1 3

3 21 1 1 1 2 1 1 3

( ) ( )( )

1 ( ) ( )

( 1) ( )

F z G zH z

F z G z

c K z c K z c K

z c K b z c K b z c K

Page 8: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Performance Control Stability Analysis for CPU Frequency Variations (3)derive the stability condition of the closed-

loop system by computing the poles of the closed-loop transfer function.

(4)If all the poles are inside the unit circle, the system is stable when it is controlled by the designed response time controller, even when the real CPU frequency is different from the frequency used to design the controller.

Results show that the system is guaranteed to be stable as long as the relative CPU frequency is within the range of [0.19, 1].

3 21 1 1 1 2 1 1 3( 1) ( )z c K b z c K b z c K

Page 9: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Cluster-Level Power Control control input: total power consumption in

the cluster. control output: CPU frequency of each

server with DVFS.

Page 10: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Cluster-Level Power Control system model:

Power consumption of Server i: where is a parameter whose

concrete value may vary for different server and workloads. is the frequency change.

Total power consumption:

iaif

Page 11: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Cluster-Level Power Control Controller Design :Model predictive

control(MPC)MPC is an advanced control technique that

can deal with coupled Multi-Input Multi-Output (MIMO) control problems with constraints on the objects.

The controller uses a system model to predict the control behavior over several control periods.

The control objective is to minimizes the cost function while satisfying the constraints.

This control problem can be transformed to a standard constrained least-squares problem.

Page 12: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Cluster-Level Power Control

Page 13: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Cluster-Level Power Control Controller Design :MPCcost function:

where P is the prediction horizon, M is the control horizon, Q(i) is the tracking error weight, and R(i) is the control penalty weight vector.

The x(k+i|k) means that the value of variable x at time depends on the conditions at time , where is the control period.

( ) pk i TpkT pT

Page 14: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Coordination of Control Loops• Without effective coordination, the two control

loops may conflict with each other(system instability).

• Methods: Power loop, needs to be configured with a

control period that is longer than the settling time of the response time control loop.

• Decoupled The impact of the power loop on the

response time loop can be modeled as variations in its system model, while the impact of the response time loop on the power loop can be treated as system noise.

Page 15: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

EMPIRICAL RESULTSResponse Time Control

Page 16: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

EMPIRICAL RESULTSCoordinated Power and Response Time

Control

Page 17: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

EMPIRICAL RESULTSPower Budget Reduction at Runtime

Page 18: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

CONCLUSIONS• Performance-oriented and power-oriented

solutions cannot simultaneously provide explicit guarantees on both application level performance and underlying power consumption.

• Co-Con, a cluster-level control architecture that coordinates individual power and performance control loops to explicitly control both power and application-level performance for virtualized server clusters.

Page 19: Present by Sheng Cai Coordinating Power Control and Performance Management for Virtualized Server Clusters.

Thank you!


Recommended