+ All Categories
Home > Documents > Present-day and mid-Holocene biomes reconstructed from ... · Journal of Biogeography (1998) 25,...

Present-day and mid-Holocene biomes reconstructed from ... · Journal of Biogeography (1998) 25,...

Date post: 11-Sep-2019
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
25
Journal of Biogeography (1998) 25, 1029–1053 Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia P E. T 1,2 ,T W III 3 ,A A. A 4 ,N B. A 5 , N A. B 5 ,L G. B 6 ,T A. B 7 , N S. B 1 ,R C 8 ,M M. C 4 , G M. C 9 ,N I. D 10 ,V G. D 9 ,G A. E 11 , L V. F 11 ,F Z. G 12 ,J G 8 ,V S. G 1 , S P. H 2 ,D J 13 ,V I. K 14 ,E V. K 15 , I M. O 16 ,N K. P 17 , I. C P 13 ,L S 18 , D V. S 9 ,V S. V 19 and V P. Z 1 Department of Geography, Moscow State University, Vorobievy Gory, Moscow 119899, Russia (Fax:+7095 9392123), 2 Dynamic Palaeoclimatology, Lund University, Box 117, S-221 00 Lund, Sweden (Fax:+46 46 2223635), 3 Department of Geological Sciences, Brown University, Rhode Island 02912–1846, USA (Fax:+1401 8632058), 4 Institute of Geography, Russian Academy of Sciences, Staromonetny 29, Moscow 109017, Russia (Fax:+7095 2302090), 5 Department of Biology, Moscow State University, Vorobievy Gory, Moscow119899, Russia, 6 Institute of Biology, Ukrainian Academy of Sciences, Repina 2, Kiev, Ukraine, 7 Institute of Biology and Biophysics, Tomsk State University, Prospekt Lenina 36, Tomsk 634050, Russia, 8 Laboratoire de Botanique Historique et Palynologie, CNRS UA 1152, Faculte ´ de St-Je ´ro ˆme, Case 451, F-13397 Marseille cedex 20, France (Fax:+33 91 208668), 9 Department of Geography & Geoecology, St.-Petersburg University, 10 Liniya 33, St.-Petersburg 199178, Russia, 10 Institute of Evolution and Ecology, Russian Academy of Sciences, Piatnitskaya 47, Stroenie 3, Moscow 109017, Russia (Fax:+7095 9530713), 11 Institute of Biology, Russian Academy of Sciences (Karelian Branch), Pushkinskaya 11, Petrozavodsk 185610, Russia, 12 Forest Institute, Russian Academy of Sciences (Siberian Branch), Akademgorodok, Krasnoyarsk 660036, Russia, 13 Department of Plant Ecology, Lund University, Ekologihuset, So ¨lvegatan 37, S-223 62 Lund, Sweden (Fax:+46 46 2223742), 14 Institute of Limnology, Russian Academy of Sciences, Sevastyanova 9, St.-Petersburg 196199, Russia (Fax:+7812 2987327), 15 Institute of Palaeobiology, Georgian Academy of Sciences, Potomaja 4, Tbilisi 380004, Georgia (Fax:+78832 998823), 16 Central Geological Laboratory, Zvenigorodskoe Shosse 9, Moscow, Russia (Fax:+7095 4308458), 17 Forest Institute, Russian Academy of Sciences (Ural Branch) Bilimbaevskaya 32 A, Ekaterinburg 620134, Russia (Fax:+73432 520853), 18 Institute of Geology, Estonian Academy of Sciences, Estonia Avenue 7, Tallinn EE-0105, Estonia (Fax:+372 6312074), 19 Institute of Geology, Russian Academy of Sciences (Siberian Branch), Universitetskii 3, Novosibirsk 630090, Russia (Fax:+73832 351351), 20 Institute of Geological Sciences, Zhodinskaya 7, Minsk 220141, Belarus (Fax:+70172 636398) Abstract. Fossil pollen data supplemented by tree Ural Mountains temperate deciduous forest extended both northward and southward from its modern range. The macrofossil records were used to reconstruct the vegetation of the Former Soviet Union and Mongolia at 6000 years. northern limits of cool mixed and cool conifer forests were also further north than present. Taiga was reduced in Pollen spectra were assigned to biomes using the plant- functional-type method developed by Prentice et al. (1996). European Russia, but was extended into Yakutia where now there is cold deciduous forest. The northern limit of Surface pollen data and a modern vegetation map provided a test of the method. This is the first time such a broad-scale taiga was extended (as shown by increased Picea pollen percentages, and by tree macrofossil records north of the vegetation reconstruction for the greater part of northern Eurasia has been attempted with objective techniques. The present-day forest limit) but tundra was still present in north-eastern Siberia. The boundary between forest and new results confirm previous regional palaeoenvironmental studies of the mid-Holocene while providing a steppe in the continental interior did not shift substantially, and dry conditions similar to present existed in western comprehensive synopsis and firmer conclusions. West of the Mongolia and north of the Aral Sea. Key words. Biome, vegetation changes, vegetation maps, Correspondence: Dr Pavel E. Tarasov, Department of Geography, Moscow plant functional types, pollen taxa, Russia, Former Soviet State University, Vorobievy Gory, Moscow 119899, Russia. E-mail: [email protected] Union, Mongolia. 1998 Blackwell Science Ltd 1029
Transcript

Journal of Biogeography (1998) 25, 1029–1053

Present-day and mid-Holocene biomes reconstructed frompollen and plant macrofossil data from the former Soviet Unionand MongoliaP E. T1,2, T W III3, A A. A4, N B. A ’5,N A. B5, L G. B6, T A. B7,N S. B1, R C8, M M. C4,G M. C9, N I. D10, V G. D 9, G A. E11,L V. F 11, F Z. G12, J G8, V S. G1,S P. H2, D J13, V I. K14, E V. K15,I M. O16, N K. P17, I. C P13, L S18,D V. S9, V S. V19 and V P. Z1Department of Geography, Moscow State University, Vorobievy Gory, Moscow 119899, Russia (Fax:+7095 9392123),2Dynamic Palaeoclimatology, Lund University, Box 117, S-221 00 Lund, Sweden (Fax:+46 46 2223635), 3Department ofGeological Sciences, Brown University, Rhode Island 02912–1846, USA (Fax:+1401 8632058), 4Institute of Geography,Russian Academy of Sciences, Staromonetny 29, Moscow 109017, Russia (Fax:+7095 2302090), 5Department of Biology,Moscow State University, Vorobievy Gory, Moscow119899, Russia, 6Institute of Biology, Ukrainian Academy of Sciences,Repina 2, Kiev, Ukraine, 7Institute of Biology and Biophysics, Tomsk State University, Prospekt Lenina 36, Tomsk 634050,Russia, 8Laboratoire de Botanique Historique et Palynologie, CNRS UA 1152, Faculte de St-Jerome, Case 451, F-13397Marseille cedex 20, France (Fax:+33 91 208668), 9Department of Geography & Geoecology, St.-Petersburg University, 10Liniya 33, St.-Petersburg 199178, Russia, 10Institute of Evolution and Ecology, Russian Academy of Sciences, Piatnitskaya47, Stroenie 3, Moscow 109017, Russia (Fax:+7095 9530713), 11Institute of Biology, Russian Academy of Sciences(Karelian Branch), Pushkinskaya 11, Petrozavodsk 185610, Russia, 12Forest Institute, Russian Academy of Sciences(Siberian Branch), Akademgorodok, Krasnoyarsk 660036, Russia, 13Department of Plant Ecology, Lund University,Ekologihuset, Solvegatan 37, S-223 62 Lund, Sweden (Fax:+46 46 2223742), 14Institute of Limnology, Russian Academy ofSciences, Sevastyanova 9, St.-Petersburg 196199, Russia (Fax:+7812 2987327), 15Institute of Palaeobiology, GeorgianAcademy of Sciences, Potomaja 4, Tbilisi 380004, Georgia (Fax:+78832 998823), 16Central Geological Laboratory,Zvenigorodskoe Shosse 9, Moscow, Russia (Fax:+7095 4308458), 17Forest Institute, Russian Academy of Sciences (UralBranch) Bilimbaevskaya 32 A, Ekaterinburg 620134, Russia (Fax:+73432 520853), 18Institute of Geology, EstonianAcademy of Sciences, Estonia Avenue 7, Tallinn EE-0105, Estonia (Fax:+372 6312074), 19Institute of Geology, RussianAcademy of Sciences (Siberian Branch), Universitetskii 3, Novosibirsk 630090, Russia (Fax:+73832 351351), 20Institute ofGeological Sciences, Zhodinskaya 7, Minsk 220141, Belarus (Fax:+70172 636398)

Abstract. Fossil pollen data supplemented by tree Ural Mountains temperate deciduous forest extended bothnorthward and southward from its modern range. Themacrofossil records were used to reconstruct the vegetation

of the Former Soviet Union and Mongolia at 6000 years. northern limits of cool mixed and cool conifer forestswere also further north than present. Taiga was reduced inPollen spectra were assigned to biomes using the plant-

functional-type method developed by Prentice et al. (1996). European Russia, but was extended into Yakutia wherenow there is cold deciduous forest. The northern limit ofSurface pollen data and a modern vegetation map provided

a test of the method. This is the first time such a broad-scale taiga was extended (as shown by increased Picea pollenpercentages, and by tree macrofossil records north of thevegetation reconstruction for the greater part of northern

Eurasia has been attempted with objective techniques. The present-day forest limit) but tundra was still present innorth-eastern Siberia. The boundary between forest andnew results confirm previous regional palaeoenvironmental

studies of the mid-Holocene while providing a steppe in the continental interior did not shift substantially,and dry conditions similar to present existed in westerncomprehensive synopsis and firmer conclusions. West of theMongolia and north of the Aral Sea.

Key words. Biome, vegetation changes, vegetation maps,Correspondence: Dr Pavel E. Tarasov, Department of Geography, Moscowplant functional types, pollen taxa, Russia, Former SovietState University, Vorobievy Gory, Moscow 119899, Russia.

E-mail: [email protected] Union, Mongolia.

1998 Blackwell Science Ltd 1029

1030 Pavel E. Tarasov et al.

ranges of north-eastern and eastern Siberia from ≈160°EINTRODUCTION

at the north to≈110°E at the south. The political boundarygenerally corresponds to the natural limit of present-dayData from the large area of the countries of the Former

Soviet Union (FSU) and Mongolia are of major importance Pacific monsoon activity. Data from the Russian Far Eastare being compiled separately within the BIOME 6000to global palaeoenvironmental studies. The broad plains of

this area support vegetation and climate distributed in a project.generally zonal pattern and thus provide a good opportunityfor modelling and data-model comparison. Modern

Modern pollen datavegetation ranges from polar desert and tundra north of67–70°N, through a broad (1500–2500 km) forest belt A set of 844 surface pollen spectra was compiled from

published and unpublished sources (Fig. 1a). The largerdominated by the boreal conifer species, to the steppe anddeserts occupying the continental interior south of 50°N. part of this data set (471 samples) consists of primary pollen

counts including all identified taxa. This number includesStudies of the vegetation history in Russia and the FSUcountries, derived mainly from pollen analysis, date back eleven samples (core tops) from Belarus (for the references

see Table 1), fifty-eight from the Ukraine (Bezusko, personalalmost a century (Sukachev, 1906; Dokturovskii, 1918;Dokturovskii & Kudryashov, 1923). Neishtadt (1957), communication), sixty from Karelia (Elina, 1981; Elina &

Lak, 1989; Elina et al. 1994; 1995, 1998; Filimonova, 1985,Khotinskii (1977, 1984), and Peterson (1983a, 1993)compiled the available pollen data mainly from the forest 1995; personal communication; Filimonova & Elovicheva,

1988), sixteen from European Russia (Afanas’eva, personalzone of the USSR and demonstrated that large vegetationchanges occurred during the Holocene. These changes were communication; Gunova, 1975; Bolikhovskaya, 1990),

nineteen from the Ural region (Makovskii & Panova, 1977;explained in terms of regional changes in temperature andprecipitation that are related to global climate changes. Panova, 1981a, 1981b, 1982, 1986, 1990, 1991; Panova &

Korotkovskaya, 1990; Panova & Makovskii, 1991; PanovaHowever, large areas currently without forests were poorlyrepresented in these syntheses. Peterson (1983a, 1983b) also et al., 1996, 1998), ninety-four from the Russian Arctic and

Yakutia (Gitterman, 1963; Popova, 1961; Savvinova, 1975a,used isopoll maps to analyse the relationships of modern-pollen spectra to present-day vegetation. His work 1975b; Klimanov & Andreev, 1992; Tarasov et al., 1995),

twenty from Tuva (Dirksen, personal communication),supported the conclusions of numerous papers published inRussian showing that the spatial patterns in the modern ninety-one from Kazakhstan and Kirghizstan (Chupina,

1974; Sevastyanov et al., 1980; Tarasov, 1992), and 102pollen data reflect the zonal vegetation.Recently Prentice et al. (1996) developed a systematic from Mongolia (Mal’gina, 1971; Metel’tseva, personal

communication; Sokolovskaya, personal communication).method of biome reconstruction from palaeoecological dataand successfully tested it in Europe and northern Africa. To improve coverage over the western part of the FSU,

an additional 373 modern pollen spectra were derived fromThis method is designed to aid in constructing globalpalaeovegetation maps for key times during the late published data sets of digitized pollen abundances (Peterson,

1983a, 1983b, 1993). These data were previously used inQuaternary. Our study is an application of this method andis a contribution to the BIOME 6000 Project (Prentice & climate (Guiot et al., 1993; Peterson, 1993; Cheddadi et al.,

1997) and biome reconstructions (Prentice et al., 1996) forWebb, 1998), which was established in order to produceglobal palaeovegetation maps from palaeoecological data. the European part of the FSU. The number of pollen

taxa was limited to twenty-four in the digitized data setsThe purpose of this study has been to reconstruct biomedistributions at 6000 14C-years (6000 years) for the FSU (Peterson, 1993). We decided to use both data sets in order

to see how well biomization works for each of them.and Mongolia based on expanded modern and 6000 yearpollen and macrofossil data sets. The number of radiocarbon Because the pollen data came from different sources,

including prior compilations, the data were carefullydated pollen records has increased during the last 15 years,and we compiled a 6000 year data set of 216 sites: four screened to avoid duplications. Thirty-five samples were

excluded as probable duplicates, and priority was given totimes more than in the most recent compilation for 6000years by Peterson (1983a, 1993). A set of 844 surface modern those with a greater number of pollen taxa, i.e. to primary

pollen counts as opposed to digitized pollen data.pollen samples were used to check the method and to adaptit for the vegetation of northern Eurasia.

Pollen data for 6000 yearsDATA AND METHODS

We compiled a set of 216 pollen spectra that date to 6000years (±about 500 years) from different sources (Table 1).

Area of studyThe majority are published and unpublished primary dataderived from the European (EPD, Arles, France) and GlobalMost of the data come from the western and central parts

of the Former Soviet Union and Mongolia, approximating (GPD, Boulder, U.S.A.) pollen data bases (Fig. 1b). We alsoincluded thirty-six samples compiled from published pollen‘northern Eurasia’. This is mainly a rather flat area with a

zonal pattern to the vegetation. To the east is the Russian diagrams (Peterson, 1993) to improve the coverage, especiallyin the central Russian Plain and in Siberia. In each case weFar East, which extends east of the political boundaries of

Yakutia and Buriatia with Khabarovskii Krai, Primorskii selected the pollen sample closest to 6000 years in the profilerather than interpolating between pollen spectra. Most of theKrai and Amurskaya Oblast, going along the mountain

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

Biomes from the FSU and Mongolia 1031

FIG. 1. Distribution of sites with (a) modern pollen data and (b) 6000 year pollen and macrofossil data. Closed circles indicate recentlycompiled sites with primary pollen data, open circles sites with digitized pollen data from Peterson (1983a, 1983b, 1993), and closed trianglessites with plant macrofossil data (Texier et al., 1997).

sites have enough radiocarbon dates to create an age model from the Russian Arctic (Table 1) with radiocarbon-datedtree macrofossils from Texier et al. (1997).by linear interpolation between bracketing dates. Pollen-

stratigraphic correlation was used to date the samples at a fewsites.Forduplicatedata,wegaveprioritytotheoriginalcounts

Biome reconstruction: the methodrather than to digitized data, as for the set of modern data.

In order to map the changes in the forest–tundra Prentice et al. (1996) developed an objective method torelate pollen taxa to plant functional types (PFTs) thatboundary at 6000 years better, we added seventeen sites

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

1032 Pavel E. Tarasov et al.

TA

BL

E1.

Sum

mar

yfo

rsi

tes

wit

hpo

llen

and

mac

rofo

ssil

data

at60

00(±

500)

year

s.

NN

Site

nam

eL

at.

Lon

.E

lev.

No.

14C

Sour

ceD

at.

Dat

aR

efer

ence

BIO

P(N

)(E

)(m

)da

tes

ofev

id.

cont

r.ba

se

1A

chit

-Nur

6∗49

,50

90,6

014

353

p(c)

3CE

PD

Dor

ofey

uk&

Tar

asov

,pe

rson

alco

mm

unic

atio

nD

ESE

2A

chit

-Nur

849

,50

90,6

014

354

p(c)

3DE

PD

Dor

ofey

uk&

Tar

asov

,pe

rson

alco

mm

unic

atio

nST

EP

3A

ntu

Sini

jarv

59,1

326

,33

957

p(c)

2CE

PD

/GP

DSa

arse

,19

94;

Saar

se&

Liiv

a(1

995)

CO

MX

4A

rkad

’evo

1745

56,5

084

.00

701

p(c)

2DB

erez

ina

&L

iss,

pers

onal

com

mun

icat

ion

TA

IG5

Bai

dara

68,8

566

,90

1212

p(c)

1CE

PD

And

reev

&T

aras

ov,

pers

onal

com

mun

icat

ion

TU

ND

6B

ezdo

nnoe

62,0

332

,77

121

3p(

c)2C

EP

DE

lina

&F

ilim

onov

a(1

996)

CO

CO

7B

ogud

a63

,67

123,

2511

98

p(c)

1CE

PD

/GP

DA

ndre

ev&

Klim

anov

(198

9)T

AIG

8B

ol.

Era

vnoe

52,6

311

1,48

947

3p(

c)1C

Vip

per

&T

aras

ov,

pers

onal

com

mun

icat

ion

TA

IG9

Bol

otno

ye51

,05

24,4

718

416

p(c)

2DE

PD

Bez

usko

,pe

rson

alco

mm

unic

atio

nT

ED

E10

Bol

otny

a50

,33

23,9

519

00

p(c)

7E

PD

Art

ushe

nko,

Ara

p&

Bez

usko

(198

2a)

CO

MX

11B

ugor

60,3

390

,00

8012

p(c)

1CG

lebo

v&K

arpe

nko

(198

9)T

AIG

12B

ugri

stoe

58,0

085

,00

125

5p(

c)2C

Bly

akha

rchu

k(1

990)

TA

IG13

Cha

bada

161

,98

129,

3729

05

p(c)

2CE

PD

/GP

DA

ndre

ev&

Klim

anov

(198

9)T

AIG

14C

haba

da2

61,9

812

9,37

290

2p(

c)4C

EP

D/G

PD

And

reev

,pe

rson

alco

mm

unic

atio

nT

AIG

15C

hany

55,0

077

,50

106

4p(

c)2D

Ber

dovs

kaya

(198

2)ST

EP

16C

haty

rkel

140

,72

75,3

035

364

p(c)

1DSe

vast

yano

vet

al.

(198

0)ST

EP

17C

hech

kino

262

,25

34,0

755

3p(

c)2C

Elin

a,pe

rson

alco

mm

unic

atio

nC

OC

O18

Che

rnik

hovo

53,1

526

,15

135

4p(

c)2C

EP

DZ

erni

tska

ya(1

985)

CL

MX

19C

hern

oe51

,37

106,

5750

04

p(c)

1CV

ippe

r&

Tar

asov

,pe

rson

alco

mm

unic

atio

nT

AIG

20C

hude

snoe

62,9

336

,02

150

31p(

c)1C

Elin

a(1

981)

CO

CO

21C

huva

shi

56,3

378

,82

110

5p(

c)1D

Ber

ezin

a&

Lis

s,pe

rson

alco

mm

unic

atio

nT

AIG

22D

aba-

Nur

348

,20

98,7

924

652

p(c)

1CE

PD

Dor

ofey

uk&

Tar

asov

,pe

rson

alco

mm

unic

atio

nST

EP

23D

aba-

Nur

848

,20

98,7

924

656

p(c)

1CE

PD

Dor

ofey

uk&

Tar

asov

,pe

rson

alco

mm

unic

atio

nST

EP

24D

erpu

t57

,03

124,

1270

04

p(c)

1CE

PD

/GP

DA

ndre

ev&

Klim

anov

(199

1)T

AIG

25D

linno

e62

,32

33,8

566

3p(

c)1C

EP

DF

ilim

onov

a&

Elo

vich

eva

(198

8)C

OC

O26

Dol

goe

255

,23

28,1

826

01

p(c)

3DE

PD

Zer

nits

kaya

,pe

rson

alco

mm

unic

atio

nC

OM

X27

Doo

d-N

ur4

51,3

399

,38

1538

2p(

c)4C

EP

DD

orof

eyuk

&T

aras

ov(1

998)

TA

IG28

Dov

jok

48,7

528

,25

100

9p(

c)2D

GP

DK

rem

enet

skii

(199

1)T

ED

E29

Dud

inka

69,4

586

,22

604

p(c)

1CK

ind

(197

4)T

AIG

30D

ukho

voe

53,1

710

9,87

500

0p(

c)7

Vip

per

&T

aras

ov,

pers

onal

com

mun

icat

ion

TA

IG31

Dun

d-N

ur2∗

49,5

089

,79

2097

2p(

c)4D

EP

DD

orof

eyuk

&T

aras

ov,

pers

onal

com

mun

icat

ion

DE

SE32

Dun

d-N

ur8

49,5

089

,79

2097

2p(

c)4D

EP

DD

orof

eyuk

&T

aras

ov,

pers

onal

com

mun

icat

ion

STE

P33

Dzh

ulaj

suo

64,5

830

,47

247

2p(

c)1C

Elin

a,pe

rson

alco

mm

unic

atio

nC

LD

E34

Ent

arno

e60

,03

79,0

247

5p(

c)2C

Ark

hipo

v,L

evin

a&

Pan

yche

v(1

980)

TA

IG35

Eze

risc

he55

,85

30,0

016

50

p(c)

7E

PD

Bog

del’

(198

4)C

OM

X36

Gag

ra43

,28

40,2

70

2p(

c)5D

EP

DK

vava

dze

(198

2)T

ED

E37

Gan

cevi

chi

52,7

326

,50

144

1p(

c)1D

EP

DZ

erni

tska

ya(1

991)

CO

MX

38G

elm

azev

skoy

e49

,67

31,8

312

07

p(c)

1CE

PD

Art

ushe

nko

etal

.(1

982b

)C

OM

X39

Gla

dkoe

55,0

083

,00

806

p(c)

1CF

irso

vet

al.

(198

2)C

OC

O40

Glu

boko

e61

,07

36,0

550

1p(

c)1D

EP

DE

lina

(198

1)T

AIG

41G

otna

volo

k62

,20

33,8

011

02

p(c)

3CE

PD

Elin

a&

Fili

mon

ova

(199

6)C

OM

X42

Gun

-Nur

50,2

510

6,60

600

7p(

c)2C

EP

DD

orof

eyuk

&T

aras

ov(1

998)

CL

DE

43H

oit-

Gol

50,0

594

,03

925

3p(

c)2C

Seva

stya

nov,

Seliv

erst

ov&

Che

rnov

a(1

993)

DE

SE44

Hot

on-N

ur48

,67

88,3

020

836

p(c)

1CE

PD

Dor

ofey

uk&

Tar

asov

,pe

rson

alco

mm

unic

atio

nT

AIG [c

onti

nued

]

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

Biomes from the FSU and Mongolia 1033

TA

BL

E1.

Con

tinu

ed

NN

Site

nam

eL

at.

Lon

.E

lev.

No.

14C

Sour

ceD

at.

Dat

aR

efer

ence

BIO

P(N

)(E

)(m

)da

tes

ofev

id.

cont

r.ba

se

45H

ubsu

gul

50,5

310

0,17

1645

2p(

c)1D

EP

DD

orof

eyuk

&T

aras

ov(1

998)

TA

IG46

Hud

o-N

ur3

48,1

399

,53

2060

2p(

c)4C

EP

DD

orof

eyuk

&T

aras

ov,

pers

onal

com

mun

icat

ion

STE

P47

Hud

o-N

ur8

48,1

399

,53

2060

4p(

c)1C

EP

DD

orof

eyuk

&T

aras

ov,

pers

onal

com

mun

icat

ion

STE

P48

Igar

ka67

,52

86,5

560

3p(

c)1D

Lev

kovs

kaya

etal

.(1

970)

TA

IG49

Il’in

skoe

60,0

038

,38

130

1p(

c)4D

Afa

nas’

eva

&B

erez

ina,

pers

onal

com

mun

icat

ion

CO

CO

50Im

atu

59,1

329

,43

453

p(c)

4CE

PD

/GP

DK

imm

el(1

995)

TE

DE

51Io

sipo

vo51

,20

28,0

08

2p(

c)1C

EP

DC

hern

avsk

aya

&F

ogel

(198

9)C

OM

X52

Ivan

o-49

,92

23,7

730

01

p(c)

7E

PD

Art

ushe

nko

etal

.(1

982a

)C

OM

XF

rank

ovsk

oe53

Kal

sa58

,17

27,4

538

12p(

c)1C

EP

D/G

PD

Kim

mel

(199

5)C

OC

O54

Kam

enny

iM

okh

63,5

736

,42

230

2p(

c)4C

Elin

a&

Yur

kovs

kaya

(198

8)C

OM

X55

Kar

akab

a49

,13

86,4

221

205

p(c)

1CG

eoek

olog

iya

gorn

ykh

kotl

ovin

(199

2)ST

EP

56K

aras

’e53

,03

70,2

243

56

p(c)

3DE

PD

Tar

asov

(199

2)ST

EP

57K

arda

shin

ski

46,5

232

,62

5013

p(c)

1CG

PD

Kre

men

etsk

ii(1

991)

TE

DE

58K

argi

nski

i70

,00

83,0

085

5p(

c)1C

Lev

ina

&N

ikit

in(1

973)

TU

ND

59K

aruj

arv

58,3

822

,20

3210

p(c)

1CE

PD

/GP

GSa

arse

(199

4)C

OM

X60

Kay

aksk

oe55

.13

80,9

710

04

p(c)

1CL

evin

aet

al.

(198

7)C

OC

O61

Kep

skoe

65,0

832

,17

124

2p(

c)1D

EP

DE

lina

(198

1)C

LM

X62

Kho

iba

60,6

789

,50

573

p(c)

3DK

arpe

nko

(196

6)T

AIG

63K

hom

inM

okh∗

51,2

028

,00

84

p(c)

1CE

PD

Che

rnav

skay

a&

Fog

el(1

989)

TE

DE

64K

hom

usta

kh63

,82

121,

6212

09

p(c)

1CE

PD

/GP

DA

ndre

evet

al.

(198

9)T

AIG

65K

irik

umae

57,6

727

,25

183

6p(

c)1D

EP

DSa

arse

(199

4)C

OM

X66

Koj

vusu

o61

,80

33,4

820

2p(

c)1C

EP

DE

lina,

pers

onal

com

mun

icat

ion

TE

DE

67K

omar

itsa

58,7

568

,82

406

p(c)

1CV

olko

vet

al.

(197

3)C

OC

O68

Kon

da60

,50

69,3

536

5p(

c)1C

Vol

kova

,pe

rson

alco

mm

unic

atio

nC

OC

O69

Kot

okol

52,8

310

8,17

460

5p(

c)1C

Kho

tins

kii

(197

7)T

AIG

70K

uben

skoe

61,0

033

,00

110

0p(

c)7

EP

D/G

PD

Kho

mut

ova

(197

7)C

OC

O71

Kul

ichk

ovsk

oe50

,33

24,1

220

00

p(c)

7E

PD

Bez

usko

,pe

rson

alco

mm

unic

atio

nC

OM

X72

Lad

oga

61,5

631

,34

51

p(c)

2DE

PD

/GP

DA

rsla

nov

etal

.(i

npr

ess)

TA

IG73

Lag

odeh

i41

,93

46,4

227

500

p(c)

7E

PD

Kva

vadz

e&

Efr

emov

(199

0)ST

EP

74L

adru

chie

61,0

039

,00

120

1p(

c)5D

EP

D/G

PD

Kho

mut

ova

(198

9)C

OC

O75

Lan

dsha

ftno

e64

,57

30,5

320

72

p(c)

2CE

PD

Elin

a,pe

rson

alco

mm

unic

atio

nC

OC

O76

Lar

ino

60,5

277

,68

509

p(c)

1CG

lebo

v(1

988)

TA

IG77

Leb

edin

oe60

,50

86,6

767

4p(

c)1D

Kar

penk

o(1

966)

TA

IG78

Lim

an49

,73

37,6

715

00

p(c)

7E

PD

Bez

usko

(197

3)T

ED

E79

Lis

i41

,78

44,6

867

60

p(c)

7E

PD

Kva

vadz

e&

Vek

ua(1

989)

CO

CO

80L

ochi

nsko

e53

,55

28,6

016

60

p(c)

7E

PD

Bog

del’

(198

4)C

OM

X81

Lop

atin

50,2

224

,83

200

0p(

c)7

EP

DA

rtus

henk

oet

al.

(198

2a)

CO

MX

82L

ovoz

ero

1∗68

,02

35,0

016

18

p(c)

1CE

PD

Elin

aet

al.

(199

5)C

LD

E83

Lov

ozer

o2

68,0

235

,00

160

1p(

c)1D

EP

DE

lina

etal

.(1

995)

CL

MX

84L

ugan

skoe

43,7

240

,68

2428

3p(

c)6D

EP

DK

vava

dze

etal

.(1

994)

STE

P85

Luk

ashk

inY

ar60

,33

78,4

045

13p(

c)1C

Gle

bov

(198

8)T

AIG

86L

ukas

hkin

Yar

60,3

378

,40

4510

p(c)

1CG

lebo

vet

al.

(197

4)T

AIG

87M

aard

u59

,43

25,0

032

3p(

c)2C

EP

D/G

PD

Ves

ki(1

992)

CO

MX

[con

tinu

ed]

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

1034 Pavel E. Tarasov et al.

TA

BL

E1.

Con

tinu

ed

NN

Site

nam

eL

at.

Lon

.E

lev.

No.

14C

Sour

ceD

at.

Dat

aR

efer

ence

BIO

P(N

)(E

)(m

)da

tes

ofev

id.

cont

r.ba

se

88M

adja

gara

64,8

312

0,97

160

7p(

c)3D

EP

D/G

PD

And

reev

&K

liman

ov(1

989)

TA

IG89

Mak

sim

kin

Yar

58,6

585

,00

125

3p(

c)1C

Bly

akha

rchu

k(1

990)

TA

IG90

Mal

.K

heta

69,7

584

,25

422

p(c)

2CK

ind

(197

4)T

AIG

91M

ardy

-Yak

ha70

,30

67,3

65

0p(

c)7

Vol

kova

,pe

rson

alco

mm

unic

atio

nT

AIG

92M

ezhg

orno

e66

,37

30,7

019

01

p(c)

4CE

PD

Elin

a(1

981)

CO

CO

93M

ocha

zhin

a60

,33

90,0

080

8p(

c)1C

Gle

bov

&K

arpe

nko

(198

9)T

AIG

94M

oshk

arno

e1

62,2

534

,05

589

p(c)

1CE

PD

Fili

mon

ova

(199

5)C

OC

O95

Mos

hkar

noe

262

,25

34,0

558

8p(

c)1C

Fili

mon

ova

(199

5)C

OC

O96

Mos

kovs

kiy

50,5

534

,50

135

0p(

c)7

EP

DA

rtus

henk

o(1

960)

TE

DE

Bob

rik

97M

ustu

suo

61,8

133

,50

101

2p(

c)4C

EP

DE

lina

(198

1)C

OC

O98

Nar

och

54,0

026

,00

120

2p(

c)5C

EP

DY

akus

hko

etal

.(1

992)

CO

CO

99N

azin

o60

,52

77,6

845

16p(

c)1C

Gle

bov

(198

8)T

AIG

100

Nei

nasu

o66

,35

30,6

311

02

p(c)

4CE

PD

Elin

a(1

981)

TA

IG10

1N

enaz

vann

oe61

,81

33,4

810

01

p(c)

4CE

PD

Elin

a(1

981)

CO

CO

102

Ner

o27

4∗57

,17

39,4

893

0p(

c)7

EP

DG

unov

a(1

975)

CO

CO

103

Ner

o2P

57,1

739

,48

933

p(c)

1CE

PD

Gun

ova

(197

5)C

OM

X10

4N

igul

a58

,00

24,6

755

11p(

c)1C

EP

D/G

PD

Sarv

&Il

ves

(197

6)T

ED

E10

5N

ikul

ino-

160

,50

86,6

759

4p(

c)3D

Gle

bov,

pers

onal

com

mun

icat

ion

TA

IG10

6N

ikul

ino-

260

,50

86,6

771

1p(

c)4D

Gle

bov,

pers

onal

com

mun

icat

ion

TA

IG10

7N

jukh

chin

skii

63,9

236

,30

201

p(c)

4DE

PD

Elin

a(1

981)

TA

IGM

okh

108

Nus

uo64

,57

30,8

316

31

p(c)

4CE

PD

Elin

a(1

981)

CO

MX

109

Now

yG

utis

ki50

,27

26,8

321

00

p(c)

7E

PD

Art

ushe

nko

etal

.(1

982a

)C

OM

X11

0N

ulsa

veit

o67

,67

70,1

755

5p(

c)1C

Pan

ova

(199

0)T

AIG

111

One

go6

61,7

234

,92

330

p(c)

7E

PD

/GP

DK

hom

utov

a(1

976)

TA

IG11

2O

nego

861

,72

34,9

233

0p(

c)7

EP

D/G

PD

Kho

mut

ova

(197

6)T

AIG

113

Oso

yevk

a50

,90

35,2

216

00

p(c)

7E

PD

Bez

usko

(197

3)C

OM

X11

4O

svea

56,0

528

,08

129

0p(

c)7

EP

DZ

erni

tska

ya,

pers

onal

com

mun

icat

ion

CO

MX

115

Oze

rki

50.4

280

,47

210

9p(

c)1C

EP

DT

aras

ov(1

992)

STE

P11

6P

aana

jarv

i66

,27

29,9

513

71

p(c)

4CE

lina

etal

.(1

994)

CO

CO

117

Pai

dre

58,2

725

,63

513

p(c)

1CE

PD

/GP

DSa

arse

,19

94;

Saar

seet

al.

(199

5)C

OM

X11

8P

ashe

nnoe

49,3

775

,40

871

14p(

c)1C

EP

DT

aras

ov(1

992)

STE

P11

9P

elis

oo58

,47

22,3

833

5p(

c)3C

EP

D/G

PD

Saar

se(1

994)

CO

MX

120

Pes

chan

oe51

,98

25,4

813

90

p(c)

7E

PD

Zer

nits

kaya

(198

9)T

ED

E12

1P

esch

anoe

(Ura

l)56

,90

60,3

231

00

p(c)

7P

anov

a&

Kor

otko

vska

ya(1

990)

CO

CO

122

Pet

rilo

vo56

,00

31,9

817

51

p(c)

4CE

PD

/GP

DG

unov

a&

Siri

n(1

995)

CO

MX

123

Pet

ropa

vlov

skii

58,3

383

,00

125

4p(

c)3D

Bly

akha

rchu

k(1

990)

TA

IG12

4P

it-G

orod

ok59

,25

93,8

045

1p(

c)7

Kin

d(1

974)

TA

IG12

5P

olon

ichk

a50

,27

24,7

520

00

p(c)

7E

PD

Art

ushe

nko

etal

.(1

982a

)C

OM

X12

6P

opov

schi

na50

,42

34,0

013

50

p(c)

7E

PD

Bez

usko

(197

3)T

ED

E12

7P

tich

je66

,35

30,5

712

02

p(c)

3DE

PD

Elin

a(1

981)

CO

CO

128

Pun

so57

,68

27,2

518

312

p(c)

1CE

PD

/GP

DSa

arse

(199

4)C

OM

X12

9P

ur-T

az66

,70

79,7

360

5p(

c)1C

And

reev

,pe

rson

alco

mm

unic

atio

nT

AIG [c

onti

nued

]

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

Biomes from the FSU and Mongolia 1035

TA

BL

E1.

Con

tinu

ed

NN

Site

nam

eL

at.

Lon

.E

lev.

No.

14C

Sour

ceD

at.

Dat

aR

efer

ence

BIO

P(N

)(E

)(m

)da

tes

ofev

id.

cont

r.ba

se

130

Qua

rtze

voe

43,6

741

,17

2726

1p(

c)6D

EP

DK

vava

dze

&E

frem

ov(1

996)

STE

P13

1R

aiga

stve

re58

,60

26,7

352

11p(

c)1C

EP

D/G

PD

Pir

rus,

Rou

k&

Liiv

a(1

987)

CO

MX

132

Rit

tusu

o61

,77

33,5

520

1p(

c)4C

Elin

a,pe

rson

alco

mm

unic

atio

nC

OC

O13

3R

udus

hsko

e56

,50

27,5

515

01

p(c)

4CE

PD

Kho

mut

ova

(198

9)C

OM

X13

4R

ugoz

ero

64,0

832

,63

140

2p(

c)2C

EP

DE

lina

(198

1)C

OC

O13

5S1

9kst

rm57

,00

40,0

012

70

p(c)

7E

PD

/GP

DO

sipo

va,

pers

onal

com

mun

icat

ion

CO

MX

136

S269

saht

56,0

039

,00

150

0p(

c)7

Osi

pova

,pe

rson

alco

mm

unic

atio

nC

OM

X13

7Sa

lekh

ard

66,5

566

,58

52

p(c)

2CV

olko

va,

pers

onal

com

mun

icat

ion

TA

IG13

8Sa

man

don-

70,7

813

6,26

107

p(c)

1DE

PD

/GP

DV

elic

hko,

And

reev

&K

liman

ov(1

994)

TU

ND

Kaz

ach’

e13

9Sa

mba

lsko

e61

,77

34,1

512

045

p(c)

1CE

lina,

Ars

lano

v&

Klim

anov

(199

6)C

OM

X14

0Sa

viku

58,4

227

,24

306

p(c)

1CE

PD

/GP

DSa

rv&

Ilve

s(1

975)

CO

MX

141

Sebb

olot

o64

,67

43,3

365

1p(

c)4C

Yur

kovs

kaya

,E

lina

&K

liman

ov(1

989)

;C

OM

XY

urko

vska

ya&

Elin

a(1

991)

142

Sely

ahi

51,8

323

,75

154

0p(

c)7

EP

DZ

erni

tska

ya(1

991)

TE

DE

143

Sern

y43

,67

40,4

824

852

p(c)

5DE

PD

Kva

vadz

e&

Efr

emov

(199

5)ST

EP

144

Shir

et-N

ur46

,53

101,

8225

003

p(c)

3CE

PD

Dor

ofey

uk&

Tar

asov

,pe

rson

alco

mm

unic

atio

nST

EP

145

Shom

bash

uo1

65,1

232

,98

100

2p(

c)1C

EP

DE

lina

(198

1)C

OC

O14

6Sh

omba

shuo

265

,12

32,9

899

2p(

c)2C

Elin

a,pe

rson

alco

mm

unic

atio

nC

OC

O14

7So

leno

e47

,90

46,1

7−

194

p(c)

3CB

olik

hovs

kaya

(199

0)C

OM

XZ

aim

ishc

he14

8So

loki

ya50

,42

24,1

719

00

p(c)

7E

PD

Art

ushe

nko

etal

.(1

982a

)C

LD

E14

9So

svya

tsko

e56

,20

32,0

017

51

p(c)

4CE

PD

/GP

Gun

ova

&Si

rin

(199

5)C

OM

X15

0St

arni

ki50

,27

26,0

219

810

p(c)

1CE

PD

Bez

usko

,K

liman

ov&

Shel

yag-

Sose

nko

(198

8)C

OM

X15

1St

av50

,42

35,4

015

50

p(c)

7E

PD

Bez

usko

(197

3)ST

EP

152

Stoy

anov

-150

,38

24,6

319

80

p(c)

7E

PD

Bez

usko

,pe

rson

alco

mm

unic

atio

nC

OM

X15

3St

oyan

ov-2

50,3

824

,63

198

8p(

c)1C

EP

DB

ezus

ko,

Klim

anov

&Sh

elya

g-So

senk

o(1

988)

CO

MX

154

Stup

ino

52,2

539

,83

951

p(c)

3DE

PD

Che

rnav

skay

a,pe

rson

alco

mm

unic

atio

nC

LM

X15

5Su

dobl

e54

,03

28,6

016

58

p(c)

1DE

PD

Bog

del’

etal

.(1

983)

CO

MX

156

Surg

ut61

,23

73,3

340

5p(

c)1C

Nei

shta

dt(1

976)

TA

IG15

7Sv

itja

z53

,70

28,6

824

20

p(c)

7E

PD

Bog

del’

(198

4)T

ED

E15

8Sv

jato

e54

,00

31,2

319

50

p(c)

7E

PD

Bog

del’

(198

4)T

ED

E15

9Sv

yato

ye-2

51,1

024

,33

183

0p(

c)7

EP

DA

rtus

henk

o(1

957)

TE

DE

160

Tan

ino

ozer

o58

,00

85,0

012

58

p(c)

1CB

lyak

harc

huk

(199

0)T

AIG

161

Teg

ul’d

etsk

ii57

,00

89,0

012

53

p(c)

1DB

lyak

harc

huk

(199

0)T

AIG

162

Ter

khiin

-Tsa

gan-

48,1

599

,70

2060

8p(

c)1C

Dor

ofey

uk&

Tar

asov

,pe

rson

alco

mm

unic

atio

nST

EP

Nur

816

3T

om’

56,8

384

,45

856

p(c)

1CA

rkhi

pov

&V

otak

h(1

980)

TA

IG16

4U

rmiin

-Tsa

gan-

48,8

410

2,93

1450

2p(

c)1C

Dor

ofey

uk&

Tar

asov

,pe

rson

alco

mm

unic

atio

nST

EP

Nur

165

Ust

’M

ash

56,3

257

,88

220

5p(

c)1C

Pan

ova,

Mak

ovsk

ii&

Ero

khin

(199

6)C

OC

O16

6V

erhi

51,8

528

,80

146

2p(

c)6D

EP

DZ

erni

tska

ya(1

986)

TE

DE

167

Vis

hnev

skoe

60,5

029

,52

151

p(c)

2DE

PD

Ars

lano

vet

al.

(199

2)C

LM

X

[con

tinu

ed]

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

1036 Pavel E. Tarasov et al.

TA

BL

E1.

Con

tinu

ed

NN

Site

nam

eL

at.

Lon

.E

lev.

No.

14C

Sour

ceD

at.

Dat

aR

efer

ence

BIO

P(N

)(E

)(m

)da

tes

ofev

id.

cont

r.ba

se

168

Vod

oraz

del

59,3

876

,90

101

17p(

c)1C

Gle

bov

etal

.(1

997)

TA

IG16

9V

ohm

a59

,05

27,3

346

14p(

c)1C

EP

D/G

PD

Kim

mel

(199

5)C

OM

X17

0Y

aman

t-N

ur49

,90

102,

6010

001

p(c)

7E

PD

Dor

ofey

uk&

Tar

asov

,pe

rson

alco

mm

unic

atio

nC

LD

E17

1Y

enis

ei68

,17

87,1

510

06

p(c)

1DA

ndre

ev,

pers

onal

com

mun

icat

ion

TA

IG17

2Z

aboi

noe

55,5

362

,37

275

0p(

c)7

EP

DK

hom

utov

a,pe

rson

alco

mm

unic

atio

nT

AIG

173

Zal

ozci

-249

,75

25,4

532

015

p(c)

1CE

PD

Art

ushe

nko

etal

.(1

982a

)C

OC

O17

4Z

amos

hje

62,0

535

,20

404

p(c)

1CE

lina,

pers

onal

com

mun

icat

ion

CO

CO

175

Zap

oved

noe

65,1

232

,63

110

2p(

c)4C

EP

DE

lina

(198

1)C

OC

O17

6Z

arut

skoe

63,9

036

,25

205

p(c)

1CE

PD

Elin

a(1

981)

CO

CO

177

Zdi

tovo

52,6

025

,55

147

1p(

c)4C

EP

DZ

erni

tska

ya&

Dai

neko

(198

6)C

LM

X17

8Z

urat

kul’

54,9

059

,27

720

0p(

c)7

Pan

ova

(198

2)C

OC

O17

9A

iats

koe

57,0

060

,08

229

7p(

d)1C

Pet

erso

on(1

993)

CO

MX

180

Ara

lSe

a46

,67

61,5

077

0p(

d)7

Pet

erso

n(1

993)

DE

SE18

1B

.71

,07

156,

5077

4p(

d)1C

Pet

erso

n(1

993)

TU

ND

Kur

opat

ochy

a18

2B

alka

shki

nski

i53

,03

35,3

777

2p(

d)7

Pet

erso

n(1

993)

CO

MX

183

Beg

lians

kii

Ria

m55

,50

81,5

777

0p(

d)7

Pet

erso

n(1

993)

TA

IG18

4B

elka

chi

59,1

513

1,98

458

0p(

d)7

Pet

erso

n(1

993)

TU

ND

185

Bol

.P

ersh

ino

59,3

569

,00

772

p(d)

4CP

eter

son

(199

3)T

AIG

186

Chu

nia

61,7

510

2,80

229

1p(

d)4C

Pet

erso

n(1

993)

TA

IG18

7D

avsh

e54

,33

110,

0345

88

p(d)

1CP

eter

son

(199

3)T

AIG

188

Glu

khar

inoe

66,0

069

,00

770

p(d)

7P

eter

son

(199

3)T

AIG

189

Iam

sove

i65

,67

78,2

577

0p(

d)7

Pet

erso

n(1

993)

TA

IG19

0Im

nats

koe

42,0

841

,72

458

4p(

d)1C

Pet

erso

n(1

993)

TE

DE

191

Iuri

bei

69,0

070

,00

770

p(d)

7P

eter

son

(199

3)C

LD

E19

2Iv

anov

skoe

356

,83

39,0

077

2p(

d)2C

Pet

erso

n(1

993)

CO

MX

193

Kra

deno

e62

,00

129,

5822

94

p(d)

1CP

eter

son

(199

3)T

AIG

194

Lak

htin

skoe

60,0

030

,17

773

p(d)

4CP

eter

son

(199

3)C

OC

O19

5M

arkh

ida

67,1

752

,55

772

p(d)

2CP

eter

son

(199

3)T

AIG

196

Mul

iank

a57

,78

56,3

222

91

p(d)

5CP

eter

son

(199

3)C

OC

O19

7M

yksi

58,1

524

,97

776

p(d)

1CP

eter

son

(199

3)C

OM

X19

8N

izhn

e-V

arto

vsk

60,9

376

,63

7713

p(d)

1CP

eter

son

(199

3)T

AIG

199

Ors

hins

kii

Mok

h56

,95

35,9

577

3p(

d)2C

Pet

erso

n(1

993)

CO

MX

200

Ose

chen

skoe

57,5

234

,83

229

6p(

d)1C

Pet

erso

n(1

993)

CO

MX

201

Pad

en’g

a62

,80

42,9

377

0p(

d)7

Pet

erso

n(1

993)

CO

CO

202

Pol

ovet

sko-

57,5

737

,90

772

p(d)

5CP

eter

son

(199

3)C

OM

XK

upan

skoe

203

R.

B.

70,7

598

,60

773

p(d)

2CP

eter

son

(199

3)T

AIG

Rom

anik

ha20

4Sa

khty

sh1

56,8

040

,42

770

p(d)

7P

eter

son

(199

3)C

OM

X20

5Sa

rtyn

ia64

,17

65,4

777

0p(

d)7

Pet

erso

n(1

993)

CO

CO

206

Sele

rika

n64

,30

141,

8745

82

p(d)

2CP

eter

son

(199

3)T

UN

D20

7Sh

uval

ovsk

oe60

,05

30,3

377

7p(

d)1C

Pet

erso

n(1

993)

CO

MX

[con

tinu

ed]

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

Biomes from the FSU and Mongolia 1037

TA

BL

E1.

Con

tinu

ed

NN

Site

nam

eL

at.

Lon

.E

lev.

No.

14C

Sour

ceD

at.

Dat

aR

efer

ence

BIO

P(N

)(E

)(m

)da

tes

ofev

id.

cont

r.ba

se

208

Som

ino

56,6

038

,80

776

p(d)

4CP

eter

son

(199

3)C

OM

X20

9So

rt68

,83

148,

000

2p(

d)2C

Pet

erso

n(1

993)

TU

ND

210

Tes

ovo-

58,9

230

,90

776

p(d)

1CP

eter

son

(199

3)C

OM

XN

etyl

’sko

e21

1T

iuliu

ksko

e54

,67

59,1

745

80

p(d)

7P

eter

son

(199

3)C

OC

O21

2T

ugiy

an-Y

ugan

63,5

565

,72

7710

p(d)

5CP

eter

son

(199

3)T

AIG

213

Ubi

nski

iri

am55

,32

80,0

077

0p(

d)7

Pet

erso

n(1

993)

TA

IG21

4U

lano

vo55

,55

48,7

277

0p(

d)7

Pet

erso

n(1

993)

CL

MX

215

Vak

haru

58,8

524

,78

7710

p(d)

2CP

eter

son

(199

3)C

OM

X21

6V

asiu

gan’

eI

56,8

783

,08

771

p(d)

7P

eter

son

(199

3)T

AIG

217

B.

Bal

akhn

ia73

,25

100,

7250

1m

3DT

exie

ret

al.,

(199

7)C

LD

E21

8B

.B

alak

hnia

73,3

010

2,63

501

m1D

Tex

ier

etal

.,(1

997)

CL

DE

(A-3

18)

219

B.

Bal

akhn

ia-2

773

,37

104,

3550

1m

2DT

exie

ret

al.,

(199

7)C

LD

E22

0B

.B

alak

hnia

-28

73,4

310

0.52

501

m2D

Tex

ier

etal

.,(1

997)

CL

DE

221

B.

Bal

akhn

ia-2

973

,31

100,

5350

1m

2DT

exie

ret

al.,

(199

7)C

LD

E22

2B

.R

oman

ikha

70,8

299

,08

501

m1D

Tex

ier

etal

.,(1

997)

CL

DE

(XX

-44)

223

Kar

gins

kii

69,9

583

,58

501

m1D

Tex

ier

etal

.,(1

997)

TA

IG22

4K

hata

nga

72,7

810

4,63

501

m1D

Tex

ier

etal

.,(1

997)

CL

DE

225

Khe

ta70

,63

94,7

550

1m

1DT

exie

ret

al.,

(199

7)C

LD

E22

6L

adon

nakh

G-

72,0

096

,33

501

m2D

Tex

ier

etal

.,(1

997)

CL

DE

119

227

M.

Bal

akhn

ia72

,75

103,

0050

1m

3DT

exie

ret

al.,

(199

7)C

LD

E22

8M

alay

aK

heta

69,5

784

,53

501

m1C

Tex

ier

etal

.,(1

997)

TA

IG22

9M

osun

72,7

810

4,22

501

m3D

Tex

ier

etal

.,(1

997)

CL

DE

230

Nov

aya-

M.

72,5

510

3,50

501

m1D

Tex

ier

etal

.,(1

997)

CL

DE

Bal

akhn

ia23

1P

ukhu

chay

akha

71,4

367

,96

501

m3D

Tex

ier

etal

.,(1

997)

CL

DE

232

Zak

haro

va72

,78

101,

6250

1m

1DT

exie

ret

al.,

(199

7)C

LD

ER

asso

kha

(I-1

56)

233

Zap

.T

aim

yr74

,53

100.

5050

1m

1DT

exie

ret

al.,

(199

7)C

LD

E

1.W

hen

mor

eth

anon

eco

reis

avai

labl

efr

omth

esa

me

site

the

core

wit

hbe

tter

dati

ngco

ntro

lha

sbe

enus

edfo

rm

appi

ngpu

rpos

es.

How

ever

,co

res

mar

ked

bya

star

are

not

used

inF

ig.

3(d)

.2.

Sour

ceof

data

isin

dica

ted

by‘p

(c)’

for

new

com

pile

dpr

imar

ypo

llen

data

,by

‘p(d

)’fo

rdi

giti

zed

polle

nda

taan

dby

‘m’

for

plan

tm

acro

foss

ilda

ta.

3.D

atin

gco

ntro

lis

am

easu

reof

the

accu

racy

ofth

eid

enti

ficat

ion

ofth

e60

00ye

arti

me-

slic

ean

dm

akes

use

ofsc

hem

esfo

rco

ntin

uous

(C)

and

disc

onti

nuou

s(D

)re

cord

sas

give

nin

Tar

asov

etal

.(1

996)

.F

orco

ntin

uous

reco

rds,

a1C

inth

eda

ting

cont

rol

colu

mn

indi

cate

sth

atth

ere

are

two

brac

keti

ngra

diom

etri

cda

tes

each

wit

hin

2000

year

sof

6000

year

s,

whe

reas

2C,

3C,

4Can

d5C

indi

cate

two

brac

keti

ngda

tes

wit

hin

2000

and

4000

;40

00an

d40

00;

4000

and

6000

;60

00an

d60

00ye

ars

of60

00ye

ars

,

resp

ecti

vely

.fo

rdi

scon

tinu

ous

reco

rds,

1D,

2D,

3D,

4D,

5D,

and

6Din

dica

tea

radi

omet

ric

date

wit

hin

250,

500,

750,

1000

,15

00an

d20

00ye

ars,

resp

ecti

vely

,of

6000

year

s.

A7

inth

eda

ting

cont

rol

colu

mn

indi

cate

sth

atth

ere

cord

sar

epo

orly

date

d.4.

Dat

aba

sew

here

the

polle

nda

taar

ecu

rren

tly

plac

ed:

EP

D–

Eur

opea

nP

olle

nD

ata

Bas

e(A

rles

,F

ranc

e);

GP

D–

Glo

bal

Pol

len

Dat

aB

ase

(Bou

lder

,U

.S.A

.).

5.B

IOP

–po

llen-

deri

ved

biom

esat

6ka

,w

here

TU

ND=

tund

ra,

TA

IG=

taig

a,C

LD

E=

cold

deci

duou

sfo

rest

,C

OC

O=

cool

confi

erfo

rest

,C

LM

X=

cold

mix

edfo

rest

,C

OM

X=

cool

mix

edfo

rest

,T

ED

E=

tem

pera

tede

cidu

ous

fore

st,

STE

P=

step

pe,

and

DE

SE=

dese

rt.

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

1038 Pavel E. Tarasov et al.

group taxa by their stature, leaf form, phenology, and We also defined several new PFTs in an attempt toincrease the number of taxa available for identification ofbioclimatic tolerance. The method has been successfully

applied to the modern and 6000-year pollen data from forest biomes.Europe (Prentice et al., 1996), western and eastern Africa

1. Pinus pumila (Pall.) Regel, a shrub-like form of Pinus(Jolly et al., 1998), eastern North America (Summers et al.,

subgen. Haploxylon, can survive under the snow cover1998), and China (Yu et al., 1998).

in the cold continental climate of eastern Siberia withThe procedure for reconstructing biomes from pollen

mean coldest-month temperature below −35 °Cdata known as ‘biomization’ is based on a fuzzy logic

(Klimaticheskii Atlas SSSR, 1960). This taxon wasapproach in which all pollen spectra are supposed to have

assigned to a ‘cool-boreal conifer’ type.an ‘affinity’ for every biome and the affinity is expressed in

2. A number of deciduous shrubs (e.g. Lonicera, Sambucus,terms of a numerical score. The key steps are (1) assignment

Viburnum) have a range spanning the distribution of bothof each pollen taxon to one or more PFTs according to its

temperate and boreal summergreen trees (Hulten & Fries,biology; (2) assignment of characteristic PFTs to biomes

1986). We classified these as ‘boreal-temperate summer-according to their bioclimatic range and actual distribution;

green’.(3) construction of a biome by taxon matrix illustrating

3. Rubus chamaemorus L. was defined as an ‘arctic-borealwhich taxa may occur in each biome; (4) calculation of the

dwarf shrub’ since it acts both as an arctic-alpine dwarfaffinity scores for all pollen samples by

shrub and as a common understorey or mire plant inthe boreal forest (Hulten & Fries, 1986).

Aik=RjdijJ{max[0, (pjk−hj)]} (1) 4. Russian studies of pollen morphology (Kupriyanova,1965; Kupriyanova & Aleshina, 1972) demonstrated thatthe pollen of dwarf birch (Betula nana L., sensu lato)where Aik is the affinity of pollen sample k for biome i;and shrub alder (Alnus fruticosa Rupr.) can generally besummation is over all taxa j; d ij is the entry in thedistinguished from the corresponding tree forms (e.g.biome×taxon matrix for biome i and taxon j; pjk are theBetula sect. Albae, Alnus glutinosa (L.) Gaertner, Alnuspollen percentages, and hj is a threshold pollen percentageincana (L.) Moench). Where these distinctions were made,(0.5% in this paper, following Prentice et al. (1996)). Forwe were able to assign these taxa to appropriate PFTs.each pollen sample, the biome with the highest score is

assigned. Several further modifications were made to the treatmentof nonarboreal PFTs.

Assignment of pollen taxa to plant functional types 1. We increased the number of taxa assigned to steppe forbs(PFTs) and PFTs to biomes and desert forbs compared to Prentice et al. (1996) to

improve the distinction between tree and tree-less biomesIn their initial study, Prentice et al. (1996) used the published

and among the herbaceous biomes themselves. The samedata set of surface pollen samples from Guiot, Harrison &

kind of empirical decisions as in Prentice et al. (1996)Prentice (1993) to test the biomization method for the area

were made for the nonarboreal taxa. Most of them canof ‘biogeographical Europe’ west of 60°E. A limited number

appear in each biome, but certain taxa have a usefulof taxa were available in this data set, and these were

diagnostic value. For example, Rubiaceae andassigned to one or several PFTs using the PFT classification

Caryophyllaceae have higher percentages in steppe, asdescribed in Prentice et al. (1992). The results of this study

do Ephedra in desert and Cyperaceae in tundra.were good in terms of recovering the broad distribution of

2. Artemisia and Chenopodiaceae were included in bothbiomes. Prentice et al. (1996), however, noted that a

steppe-forb and desert-forb PFTs because they oftenrestriction in the agreement between actual and

codominate in both the steppe and desert environmentsreconstructed biomes may occur because many minor pollen

(Walter, 1985).taxa (mainly herbaceous) were not listed in their surface

3. We allowed Poaceae to be characteristic in the tundradata set (Prentice et al., 1996). This limitation could be a

and steppe biomes where grasses grow and are a keymajor problem in central Eurasia where tree-less biomes

taxon, but we excluded Poaceae from the desert biome.(tundra, steppe and desert) are more important than in

In Europe, Prentice et al. (1996) also placed this taxonEurope. Having a chance to use both primary pollen counts

in the desert biome. However, desert is only a minorand digitised pollen percentages, we decided to start with

biome in Europe so the accuracy of assignment to desertthe same assignment of pollen taxa to PFTs and PFTs to

was not well tested.biomes as Prentice et al. (1996) used and then modify theassignment by paying special attention to taxa not presented Biomes were then characterized in terms of the newly

adopted PFTs (Table 3). Data from Tables 2 and 3 providein their scheme. Table 2 lists all available pollen taxa in theset of modern surface samples and shows the set of PFTs a basis for constructing a biome-taxon matrix used for the

calculation of the affinity scores. We followed Prentice et al.to which they were assigned. After exclusion of aquatic taxa(e.g. Typha, Potamogeton, Sparganium, etc.), taxa (1996) and used the universal threshold of 0.5% for pollen

percentages. Biomes were identified in the order that theyrepresented by only one grain (e.g. Oxalis), exotic taxa(e.g. Tsuga), and taxa restricted to local microhabitats (e.g. appear in Table 3. This order does not play any role in the

choice among species-rich biomes, or biomes with well-Drosera, Scheuchzeria, Geum), the remaining taxa were usedin assigning biomes to the pollen samples (Table 2). represented indicator taxa in the pollen assemblage. The

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

Biomes from the FSU and Mongolia 1039

TABLE 2. Plant functional types and the pollen taxa assigned to them.

Codes Trees and shrubs

bec Boreal evergreen conifer Piceabs Boreal summergreen Betula, Larixbec/cbc Boreal evergreen conifer/cool-boreal conifer Pinus (Haploxylon)

shrubbec/ctc Boreal evergreen/cool-temperate conifer Abiesec Eurythermic conifer Juniperus, Pinus (Diploxylon)bts Boreal-temperate summergreen shrub Cornus, Lonicera, Sambucus, Sorbus, Viburnumbs/ts Boreal/temperate summergreen Alnus, Populusbs/ts/aa Boreal/temperate summergreen/arctic-alpine Salix

shrubts Temperate summergreen Acer, Euonimus, Fraxinus excelsior-type, Quercus (deciduous)ts1 Cool-temperate summergreen Carpinus, Corylus, Fagus, Frangula, Tilia, Ulmusts2 Warm-temperate summergreen Castanea, Juglans, Rhamnus, Vitis, Myricawte Warm-temperate broad-leaved evergreen Quercus (evergreen)wte1 Cool-temperate broad-leaved evergreen Hederawte2 Warm-temperate sclerophyll shrub Olea

Otherssf Steppe forb Allium, Apiaceae, Asteraceae (Asteroideae), Asteraceae

(Cichorioideae), Brassicaceae, Campanulaceae, Cannabis,Caryophyllaceae, Centaurea, Convolvulaceae, Dipsacaceae,Epilobium, Euphorbiaceae, Fabaceae, Filipendula, Galium,Geraniaceae, Hippophae, Iridaceae, Lamiaceae, Linaria, Liliaceae,Onagraceae, Papaveraceae, Plantago, Plumbaginaceae, Potentilla,Ranunculaceae, Rosaceae, Rubiaceae, Rutaceae, Scabiosa,Stellera, Taraxacum

sf/df Steppe/desert forb Artemisia, Boraginaceae, Chenopodiaceae, Kochiadf Desert forb Ephedra, Salsola, Tamaricaceae, Zygophyllaceaeaa Arctic-alpine dwarf shrub Alnus fruticosa-type, Betula nana-type, Dryas, Gentiana,

Pedicularis, Saxifragaceaesf/aa Steppe/arctic-alpine forb Scrophulariaceae, Valerianaceaesf/df/aa Steppe/desert/arctic-alpine forb Polygonaceaeab Arctic-boreal dwarf shrub Rubus chamaemorusg Grass Poaceaes Sedge Cyperaceaeh Heath Calluna, Cassiope, Empetrum, Ericales, Pyrola, Pyrolaceae

TABLE 3. FSU and Mongolian biomes and their characteristic plant functional tupes (PFTs) PFTs inparentheses are restricted to part of their biome. Abbreviations for PFTs as in Table 2.

Tundra aa, (ab), g, s, (h)Cold deciduous forest bs, (cbc), ec, (ab), (h)Taiga bs, bec,(bts), ec, (ab), (h)Cold mixed forest bs, ctc, ec, (bts), (ts1), (h)Cool conifer forest bs, bec, ctc, ec, (bts), (ts1), (ab), (h)Temperate deciduous forest bs, (ctc), ec, bts, ts, ts1, (ts2), (wte1), (h)Cool mixed forest bs, bec, (ctc), ec, bts, ts, ts1, (h)Warm mixed forest ec, (bts), ts, ts1, ts2, wteXerophytic woods/scrub ec, wte, wte2

Desert dfSteppe sf, g

order becomes important when biomes are represented by woody remains from the now tree-less Arctic region. Weassume that the presence even of a single tree stump, barkonly a few broadly distributed taxa (e.g. cold deciduous or

cold mixed forest) where some biomes are distinguished fragment, cone or needle at sites north of the present-daytree line indicates a shift in the forest boundary and canonly by the absence of one or more of these taxa.therefore help to define the boundary between tundra andforest. In cases when only a single arboreal macrofossil was

Extension of the method to plant macrofossil datarecorded we took it as 100%. If more than one arborealtaxon was identified then each was assigned an equalA similar biomization procedure was applied to the

radiocarbon-dated plant macrofossils, which are mainly proportion. The order of biomes, as discussed before, play

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

1040 Pavel E. Tarasov et al.

TABLE 4. Simplified vegetation types used in the Fiziko-Geograficheskii Atlas Mira (1964) and their allocation to the biomes used byPrentice et al. (1992)

Biome name Vegetation type

Tundra Arctic tundraMoss-lichen, dwarf shrub and sedge tundraMountain arctic and subarctic tundra

Cold deciduous forest Larch taiga-like forestBirch and larch-birch thin forest (forest-tundra)Pinus pumila shrubby weedsPoplar-birch and pine forests of western SiberiaPine-birch forests of Kazakhstan and Mongolia

Taiga “Dark” conifer (taiga) forest with Picea, Abies and Pinus sibiricaPine and pine-larch forests (with Pinus sibirica)Spruce-birch and spruce-larch thin forests (forest-tundra)

Cool conifer forest “Dark” conifer (taiga) forest (southern part)Mixed broad-leaved-“dark” conifer forest (northern part)

Cool mixed forest Mixed broad-leaved-“dark” conifer forest (southern part)Pine-broad-leaved forest (northern part)

Temperate deciduous forest Deciduous broad-leaved forestPine-broad-leaved forest (southern part)

Broad-leaved evergreen/warm mixed forest Broad-leaved forest with subtropical elements (western Caucasus)Steppe Meadow-steppe and steppe-meadows (forest-steppe)

Graminoid (typical) steppeAlpine and subalpine meadowArtemisia–graminoid desertic steppe (semidesert)Mountain and submountain steppe

Desert Artemisia, chenopod and ephemeral-wormwood shrub desertsHaloxylon persicum and H. ammodendron tree-shrub and shrub desertHigh-altitude Artemisia and dwarf shrub desert

a key role for the biomization of tree macrofossil data. Table 4 we have simply assigned this vegetation type tocold deciduous forest.Thus the presence of only a temperate summergreen tree

(e.g. Betula or Larix) gives priority to the cold deciduousforest biome, but the presence of a boreal conifer as well

RESULTS(e.g. Picea) results in assignment to the taiga biome. Thissimple diagnostic approach based on limited data works

Mapped patterns in the pollen datawell for regions where the forest vegetation is characterizedby only a few species, belonging to one or two PFTs. Figure 2 indicates some of the geographical patterns in

pollen abundance that provide the basis for reconstructedbiome distributions and their changes from 6000 years to

Testing the method with modern pollen datapresent. The present-day pollen abundances (Fig. 2a) showstrong geographical patterns that clearly reflect the zonalVegetation descriptions for the modern pollen samples with

primary counts were obtained from site descriptions and vegetation pattern. Picea is strongly represented throughoutthe modern taiga (including high-elevation sites in the centralwere derived from vegetation maps of the USSR and

Mongolia (Fiziko-Geograficheskii Atlas Mira, 1964) for the Asian mountains). Cool-temperate summergreen andtemperate summergreen taxa are confined to the westernother sites.

Biome reconstructions based on the modern pollen part and are abundant in the deciduous forest zone(including the belt of deciduous forest that lies between thesamples were then compared with vegetation assignments

on a site-by-site basis. The names of the vegetation types taiga and the steppe). The cool-temperate taxa extendfurther north, with moderate abundances also in the coolin the Russian botanical literature are different from the

biome names used in this paper, but it was easy to assign mixed forest zone. Artemisia and Chenopodiaceae have highabundances in the steppe and desert zones of south-easternthese vegetation types to biomes (Table 4). The only problem

was to identify the cold mixed forest biome as shown by Europe and central Asia as well as in the steppe-likevegetation of interior Yakutia. Poaceae have high pollenPrentice et al. (1992) in the discontinuous belt along the

forest-steppe transition east of the Urals, where there are abundances primarily in the steppes but also in the Arctictundra. Moderate and variable abundances of Poaceae alsoin fact woodlands with Pinus, Populus and Betula. This

vegetation type occupies a relatively small area in northern appear throughout the European part, probably mainly asa result of human impact in agricultural areas.Eurasia and has no well-represented indicative taxa to

separate it from cold deciduous forests. In the map of Broadly similar patterns are observed for 6000 years(Fig. 2b) but with certain important differences. Picea showspresent vegetation at the sampling sites (Fig. 3b) and in

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

Biomes from the FSU and Mongolia 1041

FIG

.2.

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

1042 Pavel E. Tarasov et al.

FIG

.2.

Map

ped

tota

lab

unda

nces

ofse

lect

edta

xaor

PF

Ts:

(a)

inm

oder

npo

llen

sam

ples

,(b

)in

6000

year

polle

nsa

mpl

es.

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

Biomes from the FSU and Mongolia 1043

TABLE 5. Numerical comparison for each site between biomes derived from modern surface samples (indexed by a “p”) for whichprimary pollen data was available and observed biomes (indexed by an “a”). (TUND=tundra, TAIG=taiga, CLDE-cold deciduous forest,COCO=cool conifer forest, COMX=cool mixed forest, TEDE=temperate deciduous forest, STEP=steppe, DESE=desert).

DESEp STEPp TEDEp COMXp COCOp CLDEp TAIGp TUNDp

DESEa 10 25 0 0 0 0 0 0STEPa 1 170 0 0 0 1 5 0TEDEa 0 0 32 0 0 0 0 0COMXa 0 0 0 14 0 0 0 0COCOa 0 0 0 0 17 0 5 0CLDEa 0 3 0 0 0 37 23 2TAIGa 0 0 0 0 2 7 70 0TUNDa 0 2 0 0 0 6 5 34

TABLE 6. Numerical comparison for each site between biomes derived from modern surface samples (indexed by a “p”) for which digitisedpollen data was available and observed biomes (indexed by an “a”). (TUND=tundra, TAIG=taiga, CLDE=cold deciduous forest,COCO=cool conifer forest, CLMX=cold mixed forest, COMX=cool mixed forest, TEDE=temperate deciduous forest, WAMX=warmmixed forest, STEP=steppe, DESE=desert).

DESEp STEPp WAMXp TEDEp COMXp CLMXp COCOp CLDEp TAIGp TUNDp

DESEa 9 9 0 4 0 12 0 3 0 0STEPa 0 19 2 1 4 2 2 4 1 2TEDEa 0 0 0 20 13 2 5 0 2 0COMXa 0 0 0 1 56 3 2 2 2 0COCOa 0 0 0 0 0 0 45 0 12 0CLDEa 0 0 0 0 0 0 0 10 4 2TAIGa 0 0 0 0 1 0 2 3 91 0TUNDa 0 0 0 0 0 0 0 0 12 9

a slight increase in pollen abundances and areal extent in the available modern pollen samples (Fig. 3a) and separatelythe far north (at least in the western half of the region), for the data set, which includes samples with primary countsand is somewhat more abundant in the eastern interior of and forty-seven digitized samples (Peterson, 1993) in whichSiberia. Cool-temperate summergreen taxa also show a dwarf shrub- and tree-forms of Betula and Alnus weredistinct northward expansion in eastern Europe, while pollen separated (Fig. 3c). The comparison of the observed andof both cool-temperate and temperate summergreen taxa reconstructed vegetation shows the following.also were found at locations further south than present inwhat is now the steppe zone. Artemisia and Chenopodiaceae

1. The tree-less biomes (e.g. desert, steppe and tundra) areshow little change between 6000 years and present exceptreconstructed well. Few samples in these regions arefor generally lower than present abundances in the steppeclassified as being from forest biomes. The use ofzone of eastern Europe.additional nonarboreal taxa with positive indicator valuecontributed to this success. Often, however, steppe was

Comparison of actual and reconstructed biomes for reconstructed where the vegetation map shows desert.the present This discrepancy occurs systematically when the modern

surface samples were collected in large river valleys (e.g.The results of this comparison are shown separately for theVolga, Ural, Amu-Darya) or close to fresh-water lakesraw (Table 5) and digitized (Table 6) pollen data sets. The(e.g. Balkhash, Chatyrkel). River samples yield the sameresults show that 81% of the biomes are correctly predictedtype of bias in the tundra where forest biomes (e.g.in reconstructions based on primary pollen data as opposedtaiga or cold deciduous forest) are reconstructed. Theseto only 69% correctly predicted using digitized data. Thediscrepancies, which reflect the growth of trees incontrast is even more pronounced in the reconstruction ofprotected microhabitats, show that the biomizationtree-less biomes: the percentages of sites correctly identifiedmethod works well for reconstructing the localare 29% v. 24% for desert, 97% v. 51% for steppe, and 72%vegetation, when its pollen dominates in a surface sample.v. 43% for tundra.

Maps of pollen-derived biomes were produced for all of No problem will arise when fossil pollen samples are

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

1044 Pavel E. Tarasov et al.

FIG

.3.

FIG

.3.

FIG

.3.

FIG

.3.

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

Biomes from the FSU and Mongolia 1045

FIG

.3.

FIG

.3.

FIG

.3.

FIG

.3.

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

1046 Pavel E. Tarasov et al.

FIG

.3.

FIG

.3.

FIG

.3.

FIG

.3.

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

Biomes from the FSU and Mongolia 1047

FIG

.3.

Dis

trib

utio

nof

(a)

polle

n-de

rive

dbi

omes

atpr

esen

t,(b

)pr

esen

tve

geta

tion

type

sat

the

sam

plin

gsi

tes,

(c)

polle

n-de

rive

dbi

omes

atpr

esen

tba

sed

only

onsi

tes

for

whi

chhi

gh-

qual

ity

data

was

avai

labl

e,an

d(d

)po

llen-

and

mac

rofo

ssil-

deri

ved

biom

esat

6000

year

s.F

IG.

3.D

istr

ibut

ion

of(a

)po

llen-

deri

ved

biom

esat

pres

ent,

(b)

pres

ent

vege

tati

onty

pes

atth

esa

mpl

ing

site

s,(c

)po

llen-

deri

ved

biom

esat

pres

ent

base

don

lyon

site

sfo

rw

hich

high

-qu

alit

yda

taw

asav

aila

ble,

and

(d)

polle

n-an

dm

acro

foss

il-de

rive

dbi

omes

at60

00ye

ars.

FIG

.3.

Dis

trib

utio

nof

(a)

polle

n-de

rive

dbi

omes

atpr

esen

t,(b

)pr

esen

tve

geta

tion

type

sat

the

sam

plin

gsi

tes,

(c)

polle

n-de

rive

dbi

omes

atpr

esen

tba

sed

only

onsi

tes

for

whi

chhi

gh-

qual

ity

data

was

avai

labl

e,an

d(d

)po

llen-

and

mac

rofo

ssil-

deri

ved

biom

esat

6000

year

s.F

IG.

3.D

istr

ibut

ion

of(a

)po

llen-

deri

ved

biom

esat

pres

ent,

(b)

pres

ent

vege

tati

onty

pes

atth

esa

mpl

ing

site

s,(c

)po

llen-

deri

ved

biom

esat

pres

ent

base

don

lyon

site

sfo

rw

hich

high

-qu

alit

yda

taw

asav

aila

ble,

and

(d)

polle

n-an

dm

acro

foss

il-de

rive

dbi

omes

at60

00ye

ars.

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

1048 Pavel E. Tarasov et al.

derived from lakes or mires whose pollen source area is northern limit of cool mixed forests was also shiftedcorrespondingly northwards.regional rather than local.

2. Among the forest biomes, temperate deciduous and cool 2. Taiga was apparently reduced in overall area at 6000years, mainly because cool conifer forests extendedconifer forests are well reconstructed. Cool mixed forests

are sometimes shown in the place of temperate deciduous northwards far into what is now the broad taiga belt ofEuropean Russia. Cool conifer forests also occurredforests because of the presence of Picea pollen in the

spectra, partly due to widespread planting. The same further north and east than present in the Ural Mountainsand western Siberia. Cold mixed forest was presentproblem was mentioned by Prentice et al. (1996) as a

weakness of the biomization method when applied to instead of taiga in the extreme north-west of the region(northern Karelia and Kola). However, taiga hadsurface samples in Europe.

3. Cold mixed forest was incorrectly reconstructed in a few attained its modern range in the continental interior(central and southern Siberia and northern Mongolia).places, especially pollen samples subject to long-distance

pollen transport (e.g. from the Caucasus to the One site in western Mongolia shows taiga where thereis steppe today, and taiga was present at some sites inKarakumy desert over the Caspian Sea).

4. The absence of key taxa led to reconstruction of taiga central Yakutia where now there is cold deciduous forest.3. The northern forest limit was extended poleward at 6000in place of cool conifer forest at some locations along

the southern limit of the taiga belt. years. This is shown most clearly by tree macrofossildata from sites in the Yamal and Taymyr peninsulas,5. The map (Fig. 3a) and Tables 5 and 6 show that the

method has a limitation for pollen samples collected in several hundred km north of the modern forest limit,and by increased Picea pollen percentages along theareas with sparse or no vegetation (e.g. the central part

of the hot sandy desert, or the polar desert of the Arctic Arctic coast from the White Sea to Taymyr. The limiteddata available from eastern Siberia, however, indicateislands). When the pollen production of local plants is

extremely low, long distance transport (mostly from that tundra was present at 6000 years in coastal locations,just as it is today.forested areas) dominates, leading to incorrect biome

assignments. This is not likely to cause problems in 4. Apart from the slight encroachment of temperatedeciduous forest in the west, the steppe biome is shownreconstructing vegetation from fossil pollen spectra,

however, because nonvegetated environments do not occupying essentially the same area at 6000 years astoday. There is not enough data to locate the boundarygenerally provide conditions for continuous

sedimentation. between steppe and desert. The available data however,show that arid conditions similar to present were foundnorth of the Aral Sea and in western Mongolia.

Biome reconstructions for 6000 yearsDISCUSSION

Figure 3 confirms the impression from the pollen abundanceOur results for 6000 years are in good agreement withmaps (Fig. 2) that the biome distribution at 6000 yearsprevious studies of Holocene vegetation changes of northern(Fig. 3d) differed substantially from both the actual modernEurasia (e.g. Khotinskii, 1984).biome distribution (Fig. 3b) and the biome distribution as

The extension of temperate deciduous forests at 6000reconstructed from surface samples (Fig. 3c). The 6000years north of their present position, as far as the easternyear biome distributions look even more coherent than theBaltic, implies both warmer summers (or at least a longerpatterns seen in surface pollen data, because the 6000 yeargrowing season), and warmer winters, than today. Thedata are more homogeneous (the fossil pollen data beingoccurrence of temperate deciduous forests at scattered sitesall from peat and lake sediments), and because humanacross the south-eastern Baltic region may imply conditionsimpact on the mid-Holocene vegetation was minimal. Thedrier than present, analogous to the modern forest-steppeavailable 6000 year pollen sites from the Arctic are ratherborder region.sparse; however, the inclusion of tree macrofossil records

Warmer summers during the mid-Holocene haveincreases confidence in the reconstructed tree-line changespreviously been inferred from many pollen sites acrossbecause the macrofossils are not subject to long-distancethe northern and central part of the East-European Plaintransport beyond the forest limit.(Klimanov, 1978, 1987, 1989; Bezusko & Klimanov, 1987;The main features revealed by comparison of Fig. 3(d)Bezusko et al., 1988; Bolikhovskaya et al., 1988; Elovichevawith Fig. 3(b) and (c).et al., 1988). The largest inferred July temperature increase(3–4 °C above the modern value) was reconstructed for the1. At 6000 years the temperate deciduous forest belt

extended both northward and southward from its modern high latitudes north of 60°N; the increase declines almostto zero south of 50°N (Klimanov, 1978). According toposition. The southward extension occurred along the

river valleys as far as the northern Black Sea in the area constrained analogue climate reconstructions for Europe at6000 years (Cheddadi et al., 1997), winter temperatures werecurrently dominated by steppe. The northward extension

was less pronounced. However, individual 6000 year also significantly (up to 2–3 °C) warmer than present in thenorthern part of the Russian Plain. Summer warming insamples record temperate deciduous forest close to the

Gulf of Finland and Lake Ladoga, near the modern mid-to high latitudes at 6000 years is expected as a directeffect of higher-than-present summer insolation caused byboundary between taiga and cool conifer forests. The

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

Biomes from the FSU and Mongolia 1049

changes in the Earth’s orbital geometry (Berger & Loutre, Andreev & Klimanov, 1991). The presence of boreal1991). The summer insolation anomalies were greater in the evergreen conifers in the area that is now dominated byhigh latitudes (where total annual insolation was also higher cold deciduous forests indicates that mid-Holocene wintersthan present), but other (indirect) mechanisms are required were warmer than present also in this region. Pollen-basedto explain winter temperatures higher than present. reconstructions for central Yakutia in fact suggest both that

Conditions drier than present in the band south and July and January temperatures were 2 °C higher, and thatsouth-east of the Baltic Sea were previously reconstructed precipitation was slightly higher, than today during mid-from lake-status data (Harrison et al., 1996). Such Holocene time (Andreev et al., 1989).conditions may reflect an increased incidence of blocking The pollen record provides no evidence that steppeanticyclones centred on the Baltic. (Harrison et al., 1996) occupied a larger area at 6000 years than now (Khotinskii,By contrast, the annual water balance (precipitation minus 1984). Lake-status data from Kazakhstan and Mongoliaevapotranspiration) reconstructed from pollen and lake- (Harrison et al., 1996) even indicate slightly wetterlevel data was 50–150 mm greater than present across most conditions than present during the mid-Holocene, andof the rest of the European part of the FSU (Cheddadi suggest that the direct drying effect of higher 6000 yearset al., 1997). The southward shift of temperate deciduous summer insolation on evapotranspiration was compensatedtrees to the northern coast of the Black Sea, indicates by atmospheric circulation-induced changes inconditions clearly wetter than present. Pollen records from precipitation. However, small forest patches with borealthe southern East-European Plain suggest that patchy and eurythermic conifers that grow today in the Asianforests dominated by broad-leaved deciduous species and steppe were apparently less widely distributed inPinus were common in the valleys of the Dniper, Don, Kazakhstan and Mongolia at 6000 years. This changeDnestr (Khotinskii, 1984; Kremenetskii, 1991) and Volga could indicate that conditions in the interior were drier(Bolikhovskaya, 1990). However, the adjacent plains were at 6000 years than today. Tarasov et al. (1997) analysingcovered by steppe and meadow-steppe vegetation as they the well-dated pollen record from Ozerki (Tarasov, 1992;are today. According to pollen-based climate Kremenetskii et al., 1994), eastern Kazakhstan, concludedreconstructions, the mean July temperature in the lowland that either warmer (and drier) summers or colder wintersnorth of the Black Sea was similar to present while the could explain the absence of conifers during the early toannual precipitation was 50–100 mm higher (Kremenetskii, mid-Holocene. At the same time boreal summergreen taxa1991). (e.g. Betula, Salix) grew continuously at Ozerki. Evergreen

The northward extension of forests in northern Russia at conifers have similar moisture requirements to boreal6000 years implies warmer summers and/or longer growing summergreen trees, but cannot tolerate an absoluteseasons than present. The warming was most pronounced

minimum temperature below −60 °C (Prentice et al.,in European Russia, where tundra was probably absent

1992). Given that at 6000 years winter insolation wasat 6000 years (Khotinskii, 1984) and open boreal forests

9.6% less than at present at 50°N (Berger & Loutre,dominated by spruce and birch extended northwards to the1991) and that the absolute minimum temperature recordedBarents Sea (Bolikhovskaya et al., 1988). In western Siberiatoday in Kazakhstan is −52 °C (Klimaticheskii Atlasthe taiga and cold deciduous forests extended 100–150 kmSSSR, 1960), it is possible that colder than present wintersinto the modern tundra area (Khotinskii, 1984) or up tocould have been a limiting factor for the evergreen conifers500 km further north on the Yamal and Taymyr peninsulasin the cold continental climate of central Asia. Cold(Nikol’skaya & Cherkasova, 1982; Nikol’skaya, 1982;winters at 6000 years are to be expected in low to mid-Vasil’chuk et al., 1983; Volkova et al., 1989; MacDonaldlatitudes, which experienced the largest negative insolationet al. submitted). However, forest vegetation in the far northanomalies, in contrast with high latitudes where wintermay have been represented by individual trees or smalltemperatures are more strongly controlled by atmosphericforest patches (forest tundra), rather than continuous zonalcirculation patterns.taiga or cold deciduous forests. On the Yamal Peninsula,

In conclusion, the results of biomization show a strong,pollen-based temperatures reconstructions for 5750 years coherent spatial pattern to the way that the 6000 year(Nikol’skaya et al., 1989) were 2–3 °C greater in July andvegetation differed from today. These changes can be2 °C greater in January than today, and annual precipitationbroadly explained by orbitally induced changes in insolation,was 100 mm more than present.and can be further used for comparisons with climate modelQualitatively similar changes have been reconstructedsimulations. We have been able to obtain a good datafurther east near the Laptev Sea coast (Nikol’skaya et al.,coverage for much of the FSU and Mongolia, but some1989). However, the mid-Holocene climate change thereregions are still poorly represented. For example, more datawas not strong enough for a northward shift of the forestare needed for the high Arctic and for the southern forestto be detectable in the biome map. Khotinskii (1984)limit, in order to determine more exactly the boundariessuggested that the northward extension of forest in thisamong forest, tundra and steppe at 6000 years. More dataregion at 6000 years was less than 100 km, suggesting aare also needed to reconstruct vegetation changes in themore modest temperature increase than occurred furthermountain regions, since the available data do not providewest.clear evidence for shifts in the elevation and in theA greater extension of Picea at 6000 years compared tocomposition of mountain forests, although such shifts arepresent was noted from pollen records in central and

southern Yakutia (Khotinskii, 1977; Andreev et al., 1989; likely to have occurred.

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

1050 Pavel E. Tarasov et al.

Berdovskaya, G.N. (1982) K paleogeografii ozera Chany.ACKNOWLEDGMENTSPul’siruyushchee ozero Chany, pp. 33–40. Nauka, Leningrad.

The EU-sponsored INTAS project and the NSF Earth Berger, A. & Loutre, M.F. (1991) Insolation values for the last 10System History Program supported the new compilation of million years. Quat. Sci. Rev. 10, 297–317.

Bezusko, L.G. (1973) Concerning the problem of development ofpollen data from the FSU. A substantial part of the newvegetation in the Left-Bank Forest-Steppe of the Ukraine inpollen data for 6000 years was provided during theHolocene from data of spore-pollen investigations. UkrainskiiWorkshop on Late Quaternary Palaeoenvironments ofBot. Zhurnal, 30, 228–237.Northern Eurasia that was held in Horby in August 1996.

Bezusko, L.G. & Klimanov, V.A. (1987) Climate and vegetation ofFunding for this workshop came from the NSF Earththe plain part of the Ukrainian SSR West in the Late-Post-

Systems History Program to the TEMPO (Testing Earth- Glacial Period. Ukrainskii Bot. Zhurnal 43, 54–58.System Models with Palaeoenvironmental Data) Project, Bezusko, L.G., Klimanov, V.A. & Shelyag-Sosenko, Yu.R. (1988)the International Geosphere-Biosphere Programme’s Data Klimaticheskie usloviya Ukrainy v pozdnelednikovye i golotsene.and Information System (IGBP-DIS), the Swedish Institute, Paleoklimaty golotsena evropeiskoi territorii SSSR (ed. by N.A.the Royal Swedish Academy of Sciences (KVA) and the Khotinskii and V.A. Klimanov), pp. 125–135. AN SSSR, Institut

Geografii, Moscow.Swedish Museum of Natural History. Pavel TarasovBlyakharchuk, T.A. (1990) Istoriya rastitel’nosti yugo-vostokacompleted the paper while he was a guest-scientist in

Zapadnoi Sibiri v golotsene (po dannym botanicheskogo i sporovo-Dynamic Palaeoclimatology, Lund University funded bypyl’tsevogo analizov torfa). Unpublished Cand. Sci. Dissertation.KVA. This study is a contribution to BIOME 6000, a globalInstitute of Biology and Biophysics, Tomsk State University,palaeovegetation mapping project sponsored by the IGBP.Tomsk.

Bogdel’, I.I. (1984) Razvitie prirody Belorussii v golotsene.Unpublished Cand. Sci. Dissertation. Department of Geography,Belorussian State University, Minsk.REFERENCES

Bogdel’, I.I., Vlasov, B.P., Ilves, E.O. & Klimanov, V.A. (1983)Razrez Sudoble – stratotip rekonstruktsii paleogeograficheskikh

Andreev, A.A. & Klimanov, V.A. (1989) Istoriya rastitel’nosti i uslovii golotsena tsentral’noi Belorussii. Istoriya ozer v SSSR,pp. 30–33. VI All-Soviet Union Symposium, Vol. 1, Abstracts.klimata Tsentral’noi Yakutii v golotsene i pozdnelednikovye.

Formirovanie rel’efa, korrelyatnykh otlozhenii i rossypei severo- Tallinn.Bolikhovskaya, N.S. (1990) Palinoindikatsiya izmeneniyavostoka SSSR, pp. 26–51. Magadan.

Andreev, A.A. & Klimanov, V.A. (1991) Izmenenie rastitel’nosti i landshaftov Nizhnego Povolzhya v poslednie 10 tysyach let.Kaspiiskoe more. Voprosy geologii i geomorfologii, pp. 52–68.klimata mezhdurechya rek Ungra i Yakokit (Yuzhnaya Yakutia)

v golotsene. Bot. Zhurnal, 76, 334–351. Nauka, Moscow.Bolikhovskaya, N.S., Bolikhovskii, V.F. & Klimanov, A.A. (1988)Andreev, A.A., Klimanov, V.A., Sulerzhitskii, L.D. & Khotinskii,

N.A. (1989) Khronologiya landshaftno-klimaticheskikh Klimaticheskie i kriogennye faktory razvitiya torfyanikovEvropeiskogo severo-vostoka SSSR v golotsene. Paleoklimatyizmenenii Tsentral’noi Yakutii v golotsene. Paleoklimaty

pozdnelednikovya i golotsena (ed. by N.A. Khotinskii), pp. golotsena evropeiskoi territorii SSSR (ed. by N.A. Khotinskiiand V.A. Klimanov), pp. 36–44. AN SSSR, Institut Geografii,116–121. Nauka, Moscow.

Arkhipov, S.A., Levina, T.P. & Panychev, V.A. (1980) Moscow.Cheddadi, R., Yu, G., Guiot, J., Harrison, S.P. & Prentice, I.C.Palinologicheskaya kharakteristika dvukh golotsenovykh

torfianikov iz doliny Srednei i Nizhnei Obi. Paleopalinologiya (1997) The climate of Europe 6000 years ago. Clim. Dyn. 13,1–9.Sibiri, pp. 123–127. Nauka, Moscow.

Arkhipov, S.A. & Votakh, M.R. (1980) Palinologicheskaya Chernavskaya, M. & Fogel, G. (1989) Climatic change in the south-western part of the USSR during Holocene. Doklady AN SSSR,kharakteristika i absolyutnyi vozrast torfianika v ust’e r. Tomi.

Paleopalinologiya Sibiri, pp. 118–122. Nauka, Moscow. 307, 1474–1477.Chupina, L.N. (1974) Paleogeograficheskie usloviya severo-zapadaArslanov, Kh.A., Davydova, N.N., Subetto, D.A. & Khomutova,

V.I. (1992) Karel’skii peresheek. Istoriya ozer Vostochno- Tsentral’nogo Kazakhstana v pozdnem pleistotsene i golotsene.Unpublished Cand. Sci. Dissertation. Department of Geology,Evropeiskoi ravniny, pp. 64–77. Nauka, St. Petersburg.

Arslanov, Kh., Gey, N., Davydova, N., Dzhinoridze, R., Pushenko, Kazakh State University, Alma-Ata.Dokturovskii, V.S. (1918) Data from a study of bogs. VestnikM., Rybalko, A., Spiridonov, M., Subetto, D. & Khomutova,

V. (1998) Novye dannye po pozdnepleistotsenovoi i golotsenovoi Torfyanogo Dela, 4, 10–37.Dokturovskii, V.S. & Kudryashov, V.V. (1923) Pyl’tsa v torfe.istorii Ladozhskogo ozera. Izvestiya RGO, in press.

Artushenko, A.T. (1957) History of the development of the West Izvestiya Nauchnoeksperimental’nogo Torfyanogo Inst. 5, 33–44.Dorofeyuk, N.I. & Tarasov, P.E. (1998) Vegetation and lake levelsUkrainian Polessye vegetation in Late Glacial and Post Glacial

times on the basis of the palynological studies. Ukrainskii Bot. of northern Mongolia since 12,500 yr B.P. based on the pollenand diatom records. Stratigraphy and Geological Correlation,Zhurnal, 14, 12–29.

Artushenko, A.T. (1960) On the history of the vegetation of the 6(1), 73–87.Elina, G.A. (1981) Printsipy i metody rekonstruktsii i kartirovaniyaleft-bank forest-steppe area of the Ukrainian SSR in the Late-

and Post-Glacial times. Ukrainskyi Bot. Zhurnal, 17, 48–65. rastitel’nosti golotsena. Nauka, Leningrad.Elina, G.A., Arslanov, Kh.A. & Klimanov, V.A. (1996) EtapyArtushenko, A.T., Arap, R.Ya. & Bezusko, L.G.. (1982a) History

of vegetation of Western areas of Ukraine in Quaternary period. razvitiya rastitel’nosti golotsena v yuzhnoi i vostochnoi Karelii.Bot. Zhurnal, 81, 1–17.Naukova Dumka, Kiev.

Artushenko, A.T.., Arap, R.Ya., Bezusko, L.G., Ilves, E.O., Elina, G.A., Arslanov, Kh.A., Klimanov, V.A. & Usova, L.I. (1995)Paleorastitel’nost i klimatostratigrafiya golotsena LovozerskoiKayutkina, T.M. & Kovalyukh, N.N. (1982b) Novye dannye o

rastitel’nosti Ukrainy v golotsene. Razvitie prirody territorii SSSR ravniny Kol’skogo poluostrova. Bot. Zhurnal, 80, 3–16.Elina, G.A. & Filimonova, L.V. (1996) Russian Karelia.v pozdnem pleistotsene i golotsene, pp. 173–179. Nauka, Moscow.

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

Biomes from the FSU and Mongolia 1051

Palaeoecological events during the last 15000 years. Regional Glebov, F.Z., Karpenko, L.V., Klimanov, V.A. & Mindeeva, T.N.(1998) Paleoekologicheskaya kharakteristika golotsenasyntheses of palaeoecological studies of lakes and mires in Europe

(ed. by B.E. Berglund, H.J.B. Birks, M. Ralska-Jasiewiczova and mezhdurechya Obi i Vasyugana. Ecologiya, in press.Glebov, F.Z., Toleiko, L.S., Starikov, E.V. & Zhidovlenko, V.A.H.E.Wright), pp. 353–366. John Wiley & Sons, Chichester.

Elina, G.A., Filimonova, L.V. & Kuznetsov, O.L. (1998) Suktsessii (1974) Palinologicheskaya kharakteristika i datirovanie po 14Ctorfianika v Aleksandrovskom raione Tomskoi oblastipaleorastitel’nosti pozdnelednikovya-golotsena v Kizhskom

zapovednike v zavisimosti ot dinamiki urovnya Onezhskogo (srednetaezhnaya zona). Tipy bolot SSSR i printsipy ikhklassifikatsii, pp. 194–199. Nauka, Leningrad.ozera. Bot. Zhurnal, in press.

Elina, G.A. & Kuznetsov, O.L. (1996) Paleovegetation and Guiot, J., Harrison, S.P. & Prentice, I.C. (1993) Reconstruction ofHolocene precipitation patterns in Europe using pollen and lake-Paleogeography of Holocene of Pribelomorskaya lowland in

Karelia: prognosis for 1000 years. Aquilo, Ser. Bot. 36, 9–20. level data. Quat. Res. 40, 139–149.Gunova, V.S. (1975) Istoriya ozera Nero po paleobotanicheskimElina, G.A., Kuznetsov, O.L., Devyatova, E.I., Lebedeva, R.I.,

Maksimov, A.I. & Stoikina, N.V. (1994) Sovremennaya i dannym. Unpublished Cand. Sci. Dissertation. Department ofGeography, Moscow State University, Moscow.golotsenovaya rastitel’nost natsional’nogo parka Paanayarvi

(severo-zapadnaya Kareliya). Bot. Zhurnal, 79, 13–31. Gunova, V.S. & Sirin, A.R. (1995) Paleogeograficheskie usloviyarazvitiya bolot Zapadnodvinskoi nizmennosti v golotsene.Elina, G.A. & Lak, G. (1989) Torfyanye bolota – indikatory

prirodno-klimaticheskoi obstanovki. Paleoklimaty Palinologiya v Rossii, 2nd volume, pp. 27–36. Moscow.Harrison, S.P., Yu, G. & Tarasov, P.E. (1996) Late Quaternarypozdnelednikovya i golotsena (ed. by N. A. Khotinskii), pp. 52–57.

Nauka, Moscow. lake-level record from northern Eurasia. Quat. Res. 45, 138–159.Hulten, E. & Fries, M. (1986) Atlas of North European vascularElina, G.A. & Yurkovskaya, T.K. (1988) Bolotnye ekosistemy

nizkogorii severnoi taigi. Bolotnye ekosistemy Evropeiskogo plants, North of the Tropic of Cancer, 3 volumes. Koeltz ScientificBooks. D-6240 Konigstein/Federal Republic of Germany.Severa, pp. 5–24. Karel’skii filial AN SSSR, Institut biologii,

Petrozavodsk. Jolly, D., Prentice, I.C., Guiot, J., Bengo, M., Bonnefille, R.,Brenac, P., Buchet, G., Edorh, T., Elenga, H., Lezine, A.M.,Elovicheva, Ya.K., Bogdel’, I.I., Zernitskaya, V.P. & Klimanov,

V.A. (1988) Klimaticheskie rekonstruktsii golotsena Belorussii po Maley, J., Reynauld-Ferrara, I., Riollet, G. & Vincens, A. (1998)Reconstruction de biomes a partir des donnees polliniquespalinologicheskim dannym. Paleoklimaty golotsena evropeiskoi

territorii SSSR (ed. by N.A. Khotinskii and V.A. Klimanov), actuelles d’Afrique de l’Ouest. Geogr. Phys. Quat. in press.Karpenko, L.V. (1966) Dinamika rastitel’nogo pokrova,pp. 86–94. AN SSSR, Institut Geografii, Moscow.

Filimonova, L.V. (1985) K palinologicheskomu izucheniyu bolot torfonakopleniya i ugleroda v Tugulanskoi kotlovine. GeografiyaI Prirodnye Resursy, 3, 74–81.morennykh ravnin srednei Karelii. Voprosy ekologii rastenii bolot,

bolotnykh mestoobitanii i torfyanykh zalezhei, pp. 122–132. Khomutova, V.I. (1976) Geokhronologiya ozernykh otlozhenii popalinologicheskim dannym. Palinologiya Onezhskogo ozera, pp.Karel’skii filial AN SSSR, Institut biologii, Petrozavodsk.

Filimonova, L.V. (1995) Standartnye pyl’tsevye diagrammy 45–67. Nauka, Leningrad.Khomutova, V.I. (1977) Pyl’tsa i spory v donnykh otlozheniyakhpozdnelednikovya i golotsena Tsentral’noi Karelii. Palinologiya

v Rossii, pp. 86–103. Moscow. ozera Kubenskogo. Ozero Kubenskoe, 2nd part, pp. 192–218.Nauka, Leningrad.Filimonova, L.V. & Elovicheva, Ya.K. (1988) Osnovnye stadii

razvitiya lesnoi i bolotnoi rastitel’nosti na territorii zapovednika Khomutova, V.I. (1989) Paleogeografiya i biostratigrafiya ozernykhotlozhenii lesnoi zony Evropeiskoi chasti SSSR. UnpublishedKivach. Bolotnye ekosistemy evropeiskogo Severa. Karel’skii filial

AN SSSR, Institut biologii, Petrozavodsk, pp. 94–109. Doctor Sci. Dissertation. Institute of Limnology, Leningrad.Khotinskii, N.A. (1977) Golotsen Severnoi Evrazii. Nauka, Moscow.Firsov, L.V., Troitskii, S.L., Levina, T.P., Nikitin, V.P. & Panychev,

V.A. (1974). Absolutnyi vozrast i pervaya dlya severa Sibiri Khotinskii, N.A. (1984) Holocene Vegetation History. LateQuaternary environments of the Soviet Union (ed. bystandartnaya pyl’tsevaya diagramma golotsenovogo torfianika.

Bull. Komissii Po Izuch. Chetv. Perioda, 41, 121–127. A.A.Velichko), pp. 179–200. Longman, London.Kimmel, K. (1995) Holocene stratigraphy and vegetation history inFirsov, L.V., Volkova, V.S., Levina, T.P., Nikolaeva, I.V., Orlova,

L.A., Panychev, V.A. & Volkov, I.A. (1982) Stratigrafiya po the southeastern part of Lake Peipsi basin. Master thesis, Tartu.Kind, N.V. (1974) Geokhronologiya pozdnego antropogena pokhronologicheskoi i standartnoi sporovo-pyl’tsevoi diagramme

golotsenovogo torfianika boloto ‘Gladkoe’ v Novosibirske. izotopnym dannym. Nauka, Moscow.Klimanov, V.A. (1978) Paleoklimaticheskie usloviya RusskoiProblemy stratigrafii i paleogeografii pleistotsena Sibiri, pp.

92–107. Nauka, Novosibirsk. ravniny v klimaticheskii optimum golotsena. Doklady AN SSSR,242, 902–904.Fiziko-Geograficheskii Atlas Mira (1964) (ed. by I.P. Gerasimov).

AN SSSR-GUGK SSSR, Moscow. Klimanov, V.A. (1987) About climatic changes in the northern partof the East-European plain. Palaeohydrology of the temperateGeoekologiya gornykh kotlovin (1992) (ed. by Yu.P. Seliverstov). St.

Petersburg University, Leningrad. zone III. Mires and lakes (ed. by A. Raukas and L. Saarse), pp.23–37. Valgus, Tallinn.Gitterman, R.E. (1963) Etapy razvitiya chetvertichnoi rastitel’nosti

Yakutii i ikh znachenie dlya stratigrafii. Nauka, Moscow. Klimanov, V.A. (1989) Tsiklichnost i kvaziperiodichnostklimaticheskikh kolebanii v golotsene. PaleoklimatyGlebov, F.Z. (1988) Vzaimootnosheniya lesa i bolota v taezhnoi zone.

Nauka, Novosibirsk. pozdnelednikovya i golotsena (ed. by N.A. Khotinskii), pp. 29–33.Nauka, Moscow.Glebov, F.Z. & Karpenko, L.V. (1988) The palinological analysis

of bogs of the central taiga subzone in west Siberia. Problems of Klimanov, V.A. & Andreev, A.A. (1992) Korrelyatsionnyi analizsovremennykh sporovo-pyl’tsevykh spektrov Yakutii. Izvestiyathe Holocene, pp. 35–36. International conf. Abstracts. Tbilisi.

Glebov, F.Z. & Karpenko, L.V. (1989) Sravnenie istorii razvitiya i AN SSSR. Ser. Geografiya, 5, 83–93.Klimaticheskii Atlas, S.S.S.R. (1960) 1st volume, p. 181.palinologicheskii analiz devstvennogo i estestvenno

drenirovannogo uchastkov verkhovogo bolota. Struktura i Gidrometeoizdat, Moscow.Kremenetskii, K.V. (1991) Paleoekologiya drevneishikh zemledel’tsevrazvitie bolotnykh ekosistem i rekonstruktsii paleogeograficheskikh

uslovii, pp. 55–59. X Vsesoyuznyi seminar-ekskursiya. Abstracts. i skotovodov Russkoi ravniny. AN SSSR, Institut Geografii,Moscow.Tallin.

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

1052 Pavel E. Tarasov et al.

Kremenetskii, K.V., Tarasov, P.E. & Cherkinskii, A.E. (1994) & Shofman, I.L. (1989) Klimaticheskie izmeneniya v nekotorykhraionakh Severnoi Azii v pozdnelednikovye i golotsene.Istoriya ostrovnykh borov Kazakhstana v golotsene. Bot.

Zhurnal, 79, 13–29. Paleoklimaty pozdnelednikovya i golotsena (ed. by N.A.Khotinskii), pp. 141–145. Nauka, Moscow.Kupriyanova, L.A. (1965) Palinologiya serezhkotsvetnykh. Nauka,

Moscow-Leningrad. Nikol’skaya, M.V. & Cherkasova, M.N. (1982) Dinamikagolotsenovykh flor Taimyra (po paleofitologicheskim iKupriyanova, L.A. & Aleshina, L.A. (1972) Pyl’tsa i spory rastenii

Evropeiskoi chasti SSSR. Nauka, Leningrad. geokhronologicheskim materialam). Razvitie prirody territoriiSSSR v pozdnem pleistotsene i golotsene, pp. 192–204. Nauka,Kvavadze, E.V. (1982) The new data on the stratigraphy and

palaeogeography of the Holocene of the Colchis lowlands. Moscow.Panova, N.K. (1981a) Formirovanie rastitel’nogo pokrovaQuaternary system of Georgia, pp. 123–130. Metsniereba, Tbilisi.

Kvavadze, E.V. & Efremov, Yu.V. (1990) Rezyl’taty srednegornogo vysotnogo poyasa Yuzhnogo Urala sizmeneniyami klimata v golotsene. Vzaimosvyazi sredy i lesnoipalinologicheskogo izycheniya golotsenovykh otlozhenii

vysokogorii Lagodekhskogo zapovednika (Vostochnaya rastitel’nosti na Urale, pp. 40–57. AN SSSR, Institut Lesa,Sverdlovsk.Gruziya). Bull. Acad. Sci. Georgian SSR, 139, 641–644.

Kvavadze, E.V. & Efremov, Yu.V. (1995) Palynological studies of Panova, N.K. (1981b) Rol prirodnykh i antropogennykh faktorovv formirovanii rastitel’nosti gornykh temnokhvoinykh lesovHolocene lake sediments in the headwaters of the river

Bezymianka (Western Caucasus). Acta Palaeobot. 34, 205–214. Srednego Urala v golotsene. Antropogennye faktory v istoriirazvitiya sovremennykh ekosistem, pp. 149–157. Nauka, Moscow.Kvavadze, E.V. & Efremov, Yu.V. (1996) Palynological studies of

lake and lake-swamp sediments of the Holocene in the high Panova, N.K. (1982) Istoriya gornykh lesov tsentral’noi chastiYuzhnogo Urala v golotsene. Lesovedenie, 1, 26–34.mountains of Arkhyz (Western Caucasus). Acta Palaeobot. 36,

121–147. Panova, N.K. (1986) Golotsenovaya dinamika rastitel’nosti podannym sporovo-pyl’tsevogo analiza torfianika na gore Shaitan-Kvavadze, E.V., Efremov, Yu.V., Bukreeva, G.N. & Akatov, V.V.

(1994) Palynological characteristic of the series of lacustrine and Kamen. Gornye ekosistemy Urala i problemy ratsional’nogoprirodopol’zovaniya, pp. 56–58. AN SSSR, Institut Lesa,paludal deposits of the Holocene in the headwaters of the Zakan

river (Western Caucasus). Bull. Acad. Sci. Georgian SSR 150, Sverdlovsk.Panova, N.K. (1990) Novye dannye k paleoekologii I istorii177–184.

Kvavadze, E.V. & Vekua, M.L. (1989) New data on the rastitel’nosti Yuzhnogo Yamala v golotsene. Chetvertichnyiperiod: metody issledovaniya, stratigrafiya i ekologiya III, pp.palaeoecological and microfaunistic study of the Late Glacial

and Holocene deposits from Lake Lisi. Istoriya ozer. Ratsional’noe 45–46. VII Vsesoyuznoe Soveshchanie. Abstracts. Tallinn.Panova, N.K. (1991) Palinologicheskaya kharakteristikaispol’zovanie i okhrana ozernykh vodoemov, pp. 64–65. VIII All-

Soviet Union Symp. Abstracts. Minsk. Ol’khovskogo bolota. Vliyanie Ol’khovskogo bolota naekologicheskoe sostoyanie raiona raspolozheniya Beloyarskoi AES,Levina, T.P. & Nikitin, V.P. (1973) Paleobotanicheskaya

kharakteristika golotsenovogo torfianika v raione mysa pp. 42–50. RAN, Institut Lesa, Ekaterinburg.Panova, N.K., Alekseenkov, Yu.M., Makovskii, V.I. & Khizhnyak,Karginskogo na r. Enisei. Pleistotsen Sibiri i smezhnykh oblastei,

pp. 80–85. Nauka, Moscow. V.A. (1998) Istoriya i sovremennoe sostoyanie sosnovO-pushitsevo-sfagnovogo bolota v raione s. Bol’shie Galashki. Ran,Levina, T.P., Orlova, L.A., Panychev, V.A. & Ponomareva, E.A.

(1987) Radiokhronometriya i pyl’tsevaya stratigrafiya Institut Lesa, Ekaterinburg, in press.Panova, N.K. & Korotkovskaya, T.G. (1990) Palinologicheskiegolotsenovogo torfianika Kayakskogo zaimishcha (Barabinskaya

lesostep). Regional’naya geokhronologiya Sibiri i Dal’nego issledovaniya torfianika u ozera Peschanoe. Lesoekologicheskie ipalinologicheskie issledovaniya bolot na Srednem Urale, pp. 49–55.Vostoka, pp. 136–143. Nauka, Novosibirsk.

Levkovskaya, G.M., Kind, N.V., Zavel’skii, F.S. & Forova, V.S. AN SSSR, Institut Lesa, Sverdlovsk.Panova, N.K. & Makovskii, V.I. (1991) O smenakh rastitel’nosti v(1970) Absolytnyi vozrast torfianikov raiona g. Igarka i

raschlenenie golotsena Zapadnoi Sibiri. Bull. Komissii Po verkhnem techenii reki Pur v golotsene. K kharakteristike lesovSevernogo Priobya, pp. 33–42. RAN, Institut Lesa, Ekaterinburg.Izucheniyu Chetvertichnogo Perioda, 37, 94–101.

MacDonald, G.M., Kremenetski, C.V., Velichko, A.A., Cwynar, Panova, N.K., Makovskii, V.I. & Erokhin, N.G. (1996)Golotsenovaya dinamika rastitel’nosti v raione KrasnoufimskoiL.C., Riding, R.T., Goleva, A.A., Andreev, A.A., Borisova, O.K.,

Edwards, T.W.D., Hammarlund, D., Szeicz, J.M. & Forman, lesostepi. Lesoekologicheskie i palinologicheskie issledovaniyabolot na Srednem Urale, pp. 80–93. AN SSSR, Institut Lesa,S. (submitted) Postglacial history of northern treeline across

European part of Russia and Siberia. Nature. Ekaterinburg.Peterson, G.M. (1983a) Holocene vegetation and Climate in theMakovskii, V.I. & Panova, N.K. (1977) Formirovanie rastitel’nosti

verkhnego gornogo poyasa Yuzhnogo Urala v golotsene. Razvitie Western USSR. Unpublished PhD thesis. University ofWisconsin, Madison.lesoobrazovatel’nogo protsessa na Urale, pp. 3–17. AN SSSR,

Institut Lesa, Sverdlovsk. Peterson, G.M. (1983b) Recent pollen spectra and zonal vegetationin the western USSR. Quat. Sci. Rev. 2, 281–321.Mal’gina, E.A. (1971) Rezul’taty sporovo-pyl’tsevogo analiza prob s

poverkhnosti pochvy iz Tsentral’noi Mongolii. Palinologiya Peterson, G.M. (1993) Vegetational and Climatic History of theWestern Former Soviet Union. Global climates since the Lastgolotsena (ed. by V.P. Grichuk), pp. 239–257. Nauka, Moscow.

Neishtadt, M.I. (1957) Istoriya lesov SSSR v golotsene. Izd. Glacial Maximum (ed. by H.E. Wright, J.E. Kutzbach, T. WebbIII, W.F. Ruddiman, F.A. Street-Perrott and P.J. Bartlein), pp.Akademii Nauk SSSR, Moscow.

Neishtadt, M.I. (1976) Golotsenovye protsessy v Zapadnoi Sibiri i 169–193. University of Minnesota Press, Minneapolis.Pirrus, R., Rouk, A.-M. & Liiva, A. (1987) Geology andvoznikayushchie v sviazi s etim problemy. Izuchenie i osvoenie

prirodnoi sredy, pp. 90–99. Nauka, Moscow. stratigraphy of the reference site of Raigastvere Lake in Saadjarvdrumlin field. Palaeohydrology of the temperate zone II. LakesNikol’skaya, M.V. (1982) Paleobotanicheskie i paleoklimaticheskie

rekonstruktsii golotsena Taimyra. Antropogen Taimyra, pp. (ed. by A. Raukas and L. Saarse), pp. 101–122. Valgus, Tallinn.Popova, A.I. (1961) O sporovo-pyl’tsevykh spektrakh148–157. Nauka, Moscow.

Nikol’skaya, M.V., Borisova, Z.K., Kaplyanskaya, F.A., Klimanov, sovremennykh rastitel’nykh soobshchestv Tsentral’noi Yakutii.Materialy po rastitel’nosti Yakutii, pp. 3–6. Nauka, Leningrad.V.A., Stefanovich, E.N., Tarnogradskii, V.D., Cherkasova, M.N.

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053

Biomes from the FSU and Mongolia 1053

Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, Lake Status Records from the Former Soviet Union andMongolia: Documentation of the Second Version of the DataR.A. & Solomon, A.M. (1992) A global biome model based on

plant physiology and dominance, soil properties and climate. J. Base. NOAA Paleoclimatology Publications Series Report no.5. Boulder.Biogeogr. 19, 117–134.

Prentice, I.C., Guiot, J., Huntley, B., Jolly, D. & Cheddadi, R. Texier, D., de Noblet, N., Harrison, S.P., Haxeltine, A., Joussaume,S., Laarif, F., Prentice, I.C. & Tarasov, P. (1997) Quantifying(1996) Reconstructing biomes from palaeoecological data: a

general method and its application to European pollen data at the role of biosphere-atmosphere feedbacks in climate change:coupled model simulations for 6000 years BP and comparison0 and 6 ka. Clim. Dyn. 12, 185–194.

Prentice, I.C. & Webb, T. (1998) BIOME 6000: global with palaeodata for northern Eurasia and northern Africa. Clim.Dyn. 13, 865–882.palaeovegetation maps and testing global biome models. 25,

997–1006. Vasil’chuk, Yu.K., Petrova, E.A. & Serova, A.K. (1983) Nekotoryecherty paleogeografii golotsena Yamala. Bull. Komissii PoSaarse, L. (1994) Bottom deposits of small Estonian lakes. Estonian

Academy of Sciences, Institute of Geology, Tallinn. Izucheniyu Chetvertichnogo Perioda, 52, 73–89.Velichko, A.A., Andreev, A.A. & Klimanov, V.A. (1994) DinamikaSaarse, L. & Liiva, A. (1995) Geology of the Antu group of lakes.

Proc. Estonian Acad. Sci., Geol. 44, 119–132. rastitel’nosti i klimata v tundrovoi i lesnoi zonakh SevernoiEvrazii v pozdnelednikov’e i golotsene. Korotkoperiodichnye iSaarse, L., Veski, S., Heinsalu, A., Rajamae, R. & Martma, T.

(1995) Litho- and biostratigraphy of Lake Paidre − South rezkie landshaftno-klimaticheskie izmeneniya za poslednie 15000let, pp. 4–60. RAN, Institut Geografii, Moscow.Estonia. Proc. Estonian Acad. Sci., Geol. 44, 45–59.

Sarv, A. & Ilves, E. (1975) On the age of the Holocene deposits at Veski, S. (1992) The Holocene development of Lake Maardu andthe vegetational history of north Estonia. Licentiat thesis 165.the mouth of Emajogi River (based on material from Saviku).

Proc. Estonian Acad. Sci., Geol. 24, 64–69. Uppsala.Volkov, I.A., Gurtovaya, E.E., Firsov, L.V., Panychev, V.A. &Sarv, A. & Ilves, E. (1976) Geochronological subdivision of

Holocene bog-lacustrine deposits in South-western Estonia. Orlova, L.A. (1973) Stroenie, vozrast i istoriya formirovaniyagolotsenovogo torfianika u s. Gorno-Slinkino na Irtyshe.Palynology in continental and marine geological investigations (ed.

by T.D. Bartosh), pp. 47–59. Ziwathe, Riga. Pleistotsen Sibiri i smezhnykh oblastei, pp. 34–39. Nauka,Moscow.Savvinova, G.M. (1975a) Sporovo-pyl’tsevye spektry razlichnykh

travyanistykh assotsiatsii Tsentral’noi Yakutii. Palinologicheskie Volkova, V.S., Bakhareva, V.A. & Levina, T.P. (1989) Rastitel’nosti klimat golotsena Zapadnoi Sibiri. Paleoklimatymaterialy k stratigrafii osadochnykh otlozhenii Yakutii, pp. 49–73.

Yakutskoe Knizhnoe Izdatel’stvo, Yakutsk. pozdnelednikovya i golotsena (ed. by N.A. Khotinskii), pp. 90–95.Nauka, Moscow.Savvinova, G.M. (1975b) Sporovo-pyl’tsevye spektry sovremennoi

tundry Severo-Vostoka Yakutii. Stratigrafiya, paleontologiya i Walter, H. (1985) Vegetation of the Earth and ecological systems ofthe geo-biosphere, 3rd edn. Springer-Verlag, New York.litologiya osadochnykh formatsii Yakutii, pp. 165–172. Yakutskoe

Knizhnoe Izdatel’stvo, Yakutsk. Yakushko, O.F., Rachevskii, A.N., Zhukhovitskaya, A.L.,Elovicheva, Ya.K., Bogdel’, I.I. & Vlasov, B.P. (1992) IstoriyaSevastyanov, D.V., Seliverstov, Yu.P. & Chernova, G.M. (1993) K

istorii razvitiya landshaftov Ubsunurskoi kotloviny. Vestnik Spb. belorusskikh ozer. Istoriya ozer Vostochno-Evropeiskoi ravniny,pp. 144–167. Nauka, St. Petersburg.Gos. Univ., Ser. 7, 28 (4), 71–81.

Sevastyanov, D.V., Shnitnikov, A.V., Liiva, A.A., Berdovskaya, Yu, G., Prentice, I.C., Harrison, S.P. & Sun, X. (1998) Pollen-basedbiome reconstructions for China at 0 and 6000 years J. Biogeogr.G.N. & Zemlyanitsyna, L.A. (1980) Tyan-Shanskie ozera i ikh

istoriya, pp. 70–149. Nauka, Leningrad. 25, 1055–1069.Yurkovskaya, T.K. & Elina, G.A. (1991) KrupnomashtabnoeSukachev, V.N. (1906) Data from a study of bogs and peat bogs

of a lacustrine region. Proc. Freshwater Biol. Station St. kartografirovanie paleorastitel’nosti golotsena. Geobotanicheskoekartografirovanie, p. 3–12. Nauka, St.-Petersburg.Petersburg Soc. Naturalists, 2, 161–262.

Summers, R.L., Williams, J.W. & Webb, T. III (1998) Applying Yurkovskaya, T.K., Elina, G.A. & Klimanov, V.A. (1989)Rastitel’nost i paleogeografiya lesnykh i bolotnykh ekosistemplant functional types to construct biome maps from eastern

North American pollen data: comparison with model results. pravoberezya r. Pinega (Arkhangel’skaya oblast). Bot. Zhurnal,74 (12), 1711–1722.Quat. Sci. Rev. in press.

Tarasov, P.E. (1989) Osobennosti pozdnego golotsena Zernitskaya, V.P. (1985) Razvitie rastitel’nosti zapadnoi chastiKopyl’skoi gryady v pozdnelednikovye i golotsene.Kokchetavskoi vozvyshennoati. Vestn. Mosk. Univ., Ser. Geogr.

6, 54–60. Geograficheskie aspekty ratsional’nogo prirodopol’zovaniya, pp.110–116. Nauka i Tekhnika, Minsk.Tarasov, P.E. (1992) Paleogeografiya stepnoi zony Severnogo i

Tsentral’nogo Kazakhstana v golotsene. Unpublished Cand. Sci. Zernitskaya, V.P. (1986) Usloviya formirovaniya i sporovo-pyl’tsevye kompleksy Vysoko-Makhnovichskogo torfyanika.Dissertation, Department of Geography, Moscow State

University, Moscow. Sovremennye rel’efoobrazuyushchie protsessy, pp. 49–54. Nauka iTekhnika, Minsk.Tarasov, P.E., Andreev, A.A., Romanenko, F.A. & Sulerzhitskii,

L.D. (1995) Palynostratigraphy of upper Quaternary deposits of Zernitskaya, V.P. (1989) K istorii razvitiya ozer Polesya. Istoriyaozer v SSSR, pp. 52–53. Minsk.Sverdrup Island, the Kara Sea. Stratigraphy and Geol. Correlation

3, 190–196. Zernitskaya, V.P. (1991) Paleogeografiya Belorusskogo Polesya vpozdnelednikov’e i golotsene. Unpublished Cand. Sci.Tarasov, P.E., Jolly, D. & Kaplan, J.O. (1997) A continuous Late

Glacial and Holocene record of vegetation changes in Dissertation, Department of Geography, Belorussian StateUniversity, Minsk.Kazakhstan. Paleogeog. Paleoclim. Paleoecol. 136, 281–292.

Tarasov, P.E., Pushenko, M.Ya, Harrison, S.P., Saarse, L., Andreev, Zernitskaya, V.P. (1996) Paleogeografia Bilaruskiego Polesia wpoznym glacjale i holocenie. Przeglad Geograficzny, LXVIIIA.A., Aleshinskaya, Z.V., Davydova, N.N., Dorofeyuk, N.I.,

Efremov, Yu.V., Elina, G.A., Elovicheva, Ya.K., Filimonova, (1–2), 137–149.Zernitskaya, V.P. & Daineko, G.I. (1986) Etapy formirovaniyaL.V., Gunova, V.S., Khomutova, V.I., Kvavadze, E.V.,

Neustrueva, I.Yu., Pisareva, V.V., Sevastyanov, D.V., Shelekhova, kotloviny oz. Sporovskoe. Sovremennye rel’efoobrazuyushchieprotsessy, pp. 55–61. Nauka i Tekhnika, Minsk.T.S., Subetto, D.A., Uspenskaya, O.N., Zernitskaya, V.P. (1996)

Blackwell Science Ltd 1998, Journal of Biogeography, 25, 1029–1053


Recommended