+ All Categories
Home > Documents > Presentation Overview - nwremediation.com · Presentation Overview ... Petroleum ‐BTEX...

Presentation Overview - nwremediation.com · Presentation Overview ... Petroleum ‐BTEX...

Date post: 03-Nov-2018
Category:
Upload: vuduong
View: 223 times
Download: 0 times
Share this document with a friend
15
October 19, 2015 © 2015 TerraTherm 1 Using Thermal to Remediate Groundwater: Combining thermal technologies for more efficient remediation efforts Robert D’Anjou – Technical Director Cascade Thermal Northwest Remediation Conference – September 20 th , 2018 Presentation Overview ISTR Technologies Overview of Different ISTR Technologies Available Best Applications and Technology Sweet Spots Heat Enhanced Biodegradation Background and Basic Theory Types of Combined ISTRBio Applications Case Studies of Completed/Ongoing Projects Importance of Site Characterization
Transcript

October 19, 2015

© 2015 TerraTherm 1

Using Thermal to Remediate Groundwater:Combining thermal technologies for more efficient remediation efforts

Robert D’Anjou – Technical Director Cascade Thermal

Northwest Remediation Conference – September 20th, 2018

Presentation Overview • ISTR Technologies

• Overview of Different ISTR Technologies Available 

• Best Applications and Technology Sweet Spots

• Heat Enhanced Biodegradation

• Background and Basic Theory

• Types of Combined ISTR‐Bio Applications

• Case Studies of Completed/On‐going Projects

• Importance of Site Characterization

October 19, 2015

© 2015 TerraTherm 2

Dominant Heating Technologies

• Thermal Conduction Heating (TCH)• Electrical Resistance Heating (ERH)• Steam Enhanced Extraction (SEE)• Any Combinations of these three technologies

3

4

October 19, 2015

© 2015 TerraTherm 3

5

TREATEXTRACT

Four Step ISTR Process

HEAT COOL

1 2 3 4

Steam

COC Vapors

Pumpable Fluids

SVE

MPE

Pumps

Condensate

COC Vapors

NAPL

POTW

GAC/Oxidizer

Recycle

Conceptual Model of Typical ISTR System

6

October 19, 2015

© 2015 TerraTherm 4

7

Combined ApproachesTo Groundwater Remediation

• ISTR – Biodegradation (Heat Enhanced Bio)• Post ISTR Bio‐polishing

• Low Temp ISTR – Heat Enhanced Bio

• ISTR Source –Enhanced Bio Downgradient Plume

There are three general biodegradation processes, all three of which may be found during the ISTR process:

8

Biodegradation

Aerobic metabolism (primary substrate)

Anaerobic Reductive Dechlorination (Dichloroeleimination)

Aerobic Co‐metabolism (Dechlorination )

October 19, 2015

© 2015 TerraTherm 5

So how Does this Tie Into ISTR?

9

At an ISTR Site, heat accelerates dissolution/desorption but also accelerates biodegradation rates of petroleum hydrocarbons and chlorinated solvents.

Petroleum  ‐ BTEX biodegradation has been shown to triple (3X) from 10 to 20°C and petroleum hydrocarbon biodegradation rates have shown peak degradation rates between 30 and 40°C.

Chlorinated Solvents ‐ Up to approximately 40°C, dechlorination rates are expected to double with every 10°C increase in subsurface temperature. Due to:• Population Growth• Electron Availability (release from organic material)• Metabolic Rates/Degradation Rate

* See Referneces at end of Presentation: 1,2,3,4,5,6,7 & 8

How do we put these themes together?

10

1. Bio‐Polishing

2. Low Temperature ISTR– Heat Enhanced Biodegradation

3. ISTR Source + Biodegradation of Diffuse GW Plume

Image Taken From; https://i.pinimg.com/736x/7d/52/e8/7d52e8928a2111dbb93593e34d9959df.jpg

Three different “ISTR‐Bioremediation” Options

Hot Bugs!

October 19, 2015

© 2015 TerraTherm 6

Combining ISTR with Bio

11

Bio‐Polishing – Utilizing residual heat energy from completed ISTR to “polish” off source area contamination through enhanced biodegradation. 

Low‐Temp Heat Enhanced Bio Application – Deploy an ISTR system with the operational strategy of achieving 30 to 35 ⁰C temperatures throughout subsurface, maximizing biodegradation rates while potentially increasing hydrolysis and free product extraction (if exists). 

ISTR Source‐ Heat Enhanced Biodegradation DowngradientGroundwater Plume – Deploy an ISTR system with the operational strategy of achieving 100⁰C temperatures in the source area, and allow warm water to move downgradient to aid in the biodegradation of dissolved phase diffuse plume area. 

12

1. Bio‐Polishing 

SRSNE – TCH ProjectDNAPL500,000 lbs

removed

Bedrock

October 19, 2015

© 2015 TerraTherm 7

ISTR Target Zone

13

SRSNE – Groundwater Temperature 

14

October 19, 2015

© 2015 TerraTherm 8

SRSNE – treatment system influent

15

SI‐Schenectady NY (Low Temp Heat Enhanced Bio)

• Thermally enhanced bio and SVE

• BTEX and phenols

• 20-ft TCH spacing

• WaterlooAPS used to optimize

• 425-days of heating

• 70% of site met goals after 9 months

• As of 09/05/18 – Project goals met and system has been

16

2. Low‐Temp Heat Enhanced Bio Application 

October 19, 2015

© 2015 TerraTherm 9

TTZ Vertical Temperature Profile

Most recent data is black line

17

3. Heat Enhanced Biodegradation Downgradient Plume 

18

• Reuse and repurpose the residual heat energy in the subsurface during, or following an ISTR project

• Utilize downgradient bioaugmentation and biostimulation

• Warm water recirculation system, or downgradientbarrier wall 

October 19, 2015

© 2015 TerraTherm 10

19

Site Characterization and

Source Area Delineation are the KEY

High Resolution Soil SamplingFind the mass!!!

20

Former BSCSS Site – Bothell, WAERH/Heat Enhanced Bio Project

29,500‐ft2

106‐electrodes 

Theoretical electrode field

required to treat entire plume

October 19, 2015

© 2015 TerraTherm 11

ERH TREATMENT AREA

21

ERH/Heat Enhanced Bio Project

34-electrodes

22

ERH/Heat Enhanced Bio Project

October 19, 2015

© 2015 TerraTherm 12

23

24

ERH/Heat Enhanced Bio Project

The post-ISTR heat enhanced biodegradation phase of the project includes a heat enhanced bioremediation and warm groundwater recirculation system to remediate the larger dissolved

phases plume. Kane Environmental will conduct groundwater compliance monitoring quarterly after the remedial efforts are complete.

October 19, 2015

© 2015 TerraTherm 13

25

26

October 19, 2015

© 2015 TerraTherm 14

27

Illustration by Rob Donnelly. www.slate.com

How Not to Heat Your Bugs

How to Heat Your Bugs

Final Words of Wisdom

Contact e‐mail: rdanjou@cascade‐env.com

Thanks for Listening!

October 19, 2015

© 2015 TerraTherm 15

29

1. Friis, A.K., Kofoed, J.L.L., Heron, G. et al. Microcosm evaluation of bioaugmentation after field-scale thermal treatment of a TCE-contaminated aquifer. Biodegradation (2007) 18: 661. https://doi-org.proxy.lib.pdx.edu/10.1007/s10532-006-9098-y

2. Friis AK, Heimann AC, Jakobsen R, Albrechtsen HJ, Cox E, Bjerg PL. (2006) Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture. Water Res. 2007 Jan;41(2):355-64. Epub 2006 Nov 28.

3. May H.D., Sowers K.R. (2016) “Dehalobium chlorocoercia” DF-1—from Discovery to Application. In: Adrian L., Löffler F. (eds) Organohalide-RespiringBacteria. Springer, Berlin, Heidelberg

4. Zeman, Natalie Rae, M.S., (2013)Thermally enhanced bioremediation of LNAPL. COLORADO STATE UN IVERSITY, 139 pages

5. Suthersan, S., Horst, J., Klemmer, M., Malone, D. (2012), Temperature- Activated Auto-Decomposition Reactions: An Underutilized In Situ Remediation Solution. Ground Water Monitoring & Remediation Vol. 32 No. 3 p. 34-40)

6. Yeung, P. Y., R. L. Johnson, and J. G. Xu. 1997. Biodegradation of Petroleum Hydrocarbons in Soil as Affected by Heating and Forced Aeration. J. Environ. Qual. 26:1511-1516. doi:10.2134/jeq1997.00472425002600060009x

7. Park Gi-Ho; Shin Hang-Sik; Park Min-Ho; Hong Seung-Mo; Ko Seok-Oh; (2005) Effects of Soil Temperature on Biodegradation Rate of Diesel Compounds from a Field Pilot Test Using Hot Air Injection Process, Journal of Soil and Groundwater Environment Vol. 10, No. 4 Pp.45-53.

8. Aulenta, F. et al. Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. 2006. J Chem Technol Biotechnol. 81: 1463-1474.

9. Maym´ o-Gatell, X., Anguish, T. & Zinder, S. H. Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by ”Dehalococcoides ethenogenes” 195. Applied and Environmental Microbiology 65, 3108–3113 (1999).

10. Hendrickson, E. R. et al. Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminatedsites throughout North America and Europe. Applied and Environmental Microbiology 68, 485–495 (2002).

11. Lu, X., Wilson, J. T. & Kampbell, D. H. Relationship between Dehalococcoides DNA in ground water and rates ofreductive dechlorination at field scale. Water Research 40, 3131–3140 (2006).

Additional Resources available upon requestEmail: [email protected]

Heat Enhanced Biodegradation References


Recommended