+ All Categories
Home > Documents > Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd Edition

Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd Edition

Date post: 11-Jan-2016
Category:
Upload: brita
View: 27 times
Download: 0 times
Share this document with a friend
Description:
Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd Edition. Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 28, 2005. Alkene Reaction With Ozone. Ethene (11.89). - PowerPoint PPT Presentation
Popular Tags:
53
Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson partment of Civil & Environmental Engineerin Stanford University Stanford, CA 94305-4020 [email protected] March 28, 2005
Transcript
Page 1: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Presentation Slides for

Chapter 11, Part 2of

Fundamentals of Atmospheric Modeling 2nd Edition

Mark Z. JacobsonDepartment of Civil & Environmental Engineering

Stanford UniversityStanford, CA [email protected]

March 28, 2005

Page 2: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Alkene Reaction With Ozone

Ethene (11.89)

C C

H

H

H

H

+ O3

H2

C CH2

O O

O

Ethene Ethene molozonide

+37 %

Formaldehyde Criegee biradical

+63%

Formaldehyde Excited Criegee

biradical

C O

H

H

C O

H

H

C O

H

H

O

C O

H

H

O *

Page 3: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Alkene Reaction With Ozone

Criegee biradical reaction (11.90)

Excited criegee biradical decomposition (11.91)

FormaldehydeCriegee biradical

C O

H

H

C O

H

H

O

NO2

+ NO

Excited Criegee

biradical

C O

H

H

O *

C O

H

O*

60% CO + H2

O

21% CO2

+ H2

19%

+ O2

CO + OH + HO2

Excited formic

acid

H

Page 4: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Alkene Reaction With OzonePropene (11.92)

C CH2

H

H3

C

Propene

+ O3

CH CH2

O O

O

Propene molozonide

7.5 %

42.5%

18.5%

33.5%

Formaldehyde Methyl criegee biradical

+

Formaldehyde Excited methyl criegee

biradical

C O

H

H

C O

H3

C

H

O *

H3

C

C O

H3

C

H

C O

H3

C

H

Acetaldehyde

Acetaldehyde

Criegee biradical

Excited criegee

biradical

C O

H

H

O

C O

H

H

O *

+C O

H

H

C O

H3

C

H

O

+

+

Page 5: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Alkene Reaction With OzoneMethylcriegee biradical reaction (11.93)

Excited methylcriegee biradical decomposition (11.94)

Acetaldehyde

Methyl criegee

biradical

C O

H3

C

H

C O

H3

C

H

O

NO2

+ NO

Excited methyl criegee

biradical

C O

H3

C

H

O *

C O

H3

C

O*

16% CH4

+ CO2

64% CH3

+ CO + OH

20% CH3

O + HO2

+ CO

Excited acetic

acid

H

Page 6: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Alkene Reaction With NitrateEthene --> nitrated organic radicals (11.95)

Propene --> nitrated organic radicals (11.96)

C C

H

H

H

H

+ NO3

C CH2

H

H

O N

O

O

+ O2

C CH2

H

H

O N

O

O

O

Ethylperoxy nitrate

radical

Ethyl nitrate radical

C CH2

H

H

O N

O

O

O

Ethoxy nitrate radical

O

Ethene

NO2

+ NO

+ NO3

+ O2

NO2

+ NO

C C

H

H3

C

H

H

C CH2

H

H3

C

O N

O

O C CH2

H

H3

C

O N

O

O

O

Propylperoxy nitrate

radical

Propyl nitrate radical

C CH2

H

H3

C

O N

O

O

O

Propoxy nitrate radical

O

Propene

Page 7: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aromatic Reaction With OHToluene oxidation (11.97)

CH3

H

OH

O

O

CH3

H

OH CH3

OH

H2

C O O

CH2

Toluene

o -Cresol

Benzylperoxy

radical

Toluene-hydroxyl-

radical adduct

Benzyl

radical

8%

92%

o -Hydroxytoluene

CH3

+ O2

+ O2

+ HO2

+ OH

H2

O

+ OH

Page 8: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aromatic Reaction With OHBenzylperoxy radical reaction with NO (11.98)

CHH2

C

BenzaldehydeBenzoxy

radical

Benzyl nitrate

H2

C O O

Benzylperoxy

radical

H2

C O N

O

O

OO

NO2

+ NO + O2

HO2

+ NO

Page 9: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aromatic Rxn With Hydroxyl Radical

Toluene-hydroxyl radical adduct reaction (11.99)

CH3

H

OH

Toluene-hydroxyl

radical adduct

CH3

H

OH

O

O

O

NO2

+ NO

Page 10: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fate of CresolCresol --> methylphenylperoxy radical and nitrocresol (11.100)

CH3

OH

o -Cresol

CH3

O

Methylphenylperoxy

radical

O

+ OH, 2O2

2HO2

CH3

O

CH3

OH

m -Nitrocresol

+ NO2

N

O

Methylphenoxy

radical

+ OH

H2

O

O

Page 11: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Isoprene Reaction With OH(11.101)

Isoprene

H

C C

H2

CCH

2

CH3

CH C

C

H2

CH2

CH3

HO

O

O

CH C

C

H2

CH2

CH3

O

HO

O

H

C C

C

H2

C

H2

CH3

HOO

O

H

C C

H2

CC

H2

CH3

O

O

HO

H

C C

H2

CC

H2

CH3

OH

O

O

H

C C

C

H2

C

H2

CH3

O

OOH

(1)

16.4%

(2)

12.3%

(3)

12.3%

(4)

23.6%

(5)

21.2%

(6)

14.1%

Isoprene peroxy radicals

+ OH, O2

All six products convert NO to NO2

Page 12: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fate of Isoprene ProductsMethacrolein production via second product (11.102)

Methylvinylketone production via fifth product (11.103)

CH C

C

H2

CH2

CH3

O

HO

O

H

C C

O CH2

CH3

Isoprene peroxy radical Methacrolein

+

Formaldehyde

C O

H

H

NO2

+ NO + O2

HO2

NO2

+ NO + O2

HO2

C O

H

H

H

C C

H2

CO

CH3

Isoprene peroxy radical Methylvinylketone

+

Formaldehyde

H

C C

H2

C C

H2

CH3

OH

O

O

Page 13: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Isoprene Reaction With Ozone(11.104)

Isoprene

+ O3H

C C

H2

C CH2

CH3

H

C C

OCH

2

CH3

Methylvinylketone

H

C C

H2

C O

CH3

H

C C

OCH

2

CH3

O

H

C C

H2

CO

CH3

O

+

+

+

+

Criegee biradical

Formaldehyde

Methacrolein

Ozonide product

Ozonide product Formaldehyde

Criegee biradical

C O

H

H

O

C O

H

H

O

C O

H

H

C O

H

H

Page 14: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Alcohol Reactions

Methanol oxidation by OH (36-h lifetime) (11.105)

H C

H

O

H

Methanol

H

H C O

H

H

H C

Formaldehyde

O

H

H

C O

H

H

Methoxy radical

85%

15%

+ OH

H2

O

+ O2

HO2

Page 15: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Alcohol Reactions

Ethanol oxidation by OH (10-h lifetime) (11.106)

C C

H

O

H

Ethanol

H C C O

H

H

C C

Acetaldehyde

O

H

H

C O

H

C

Ethoxy radical

5%

90%

H

H

H

H

H

H

H

H

H

H

H

H

5%

C C O

H

H

H

H

H

+ OH

H2

O

+ O2

HO2

Page 16: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Carbon Bond LumpingOrganic gases lumped into surrogate groups

PAR (paraffins) -- Single carbon atoms with a single-bond between them

OLE (olefins) -- Terminal carbon atom pair with a double-bond between the two atoms

ALD2 -- Non-terminal carbon atom pairs with a double bond attached to one of the carbons and terminal two-carbon carbonyl groups [C-C(=O)H]

KET -- Single carbon ketone groups (C=O)

TOL (toluene) -- 7-carbon aromatics

XYL (m-xylene) -- 8-carbon aromatics

ISOP (isoprene) -- Terpenes

UNR -- Unreactive

Page 17: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Carbon Bond Lumping

Table 11.7

H C

H

C

H

H

H

H

Ethane : 0.4 PAR + 1.6 UNR

n-Butane : 4 PAR H C

H

C

H

H

C

H

H

H

C

H

H

H

H3

C C

H

CH3

C

H2

C

CH3

CH3

CH32,2,4-Trimethylpentane : 8 PAR

Page 18: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Carbon Bond Lumping

Table 11.7

Trans-2-butene : 2 ALD2

Propene : 1 PAR + 1 OLE

Propionaldehyde : 1 PAR + 1 ALD2

H C

H

C

H

C

H

C

H

H

H

H

C CH2

H

H3

C

H

C CH2

OCH

3

Page 19: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Carbon Bond Lumping

Table 11.7

Benzaldehyde : 1 ALD2 + 5 UNR

1,2,3-Trimethylbenzene : 1 PAR + 1 XYL

CHO

CH2

H3

C

CH3

CH3

CH3

Ethylbenzene : 1 PAR + 1 TOL

Page 20: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Vertical Profile of Ozone

Fig. 11.30 2 4 6 8 10 12 14

0

10

20

30

40

Altitude (km)

O

3

(ppmv)

O

3

(molecules cm

-3

x 10

-12

)

Air (molecules cm

-3

x 5 x 10

-19

)

Alt

itud

e (k

m)

Page 21: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Column Abundance of Ozone

Fig. 11.4

Surface

Top of the atmosphere

293-Dobson Unit column of ozone= 293 x 2.7 x 10 16 molecules cm -2

= 2.93-mm column of air at 273 K and 1 atm

2.93-mm highcolumn of air

Stratosphereand above

Troposphere

Page 22: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Stratospheric ChemistryOzone mixing ratios

stratosphere ≈ 10 ppmv

free troposphere ≈ 40 ppbv

urban air ≈ 0.05 - 0.3 ppmv

Ozone production in the stratosphere

Oxygen photolysis (11.107-8)

O2

+ h ν λ < 175 nm(O1

D ) + O

O2

+ h ν 175 < λ < 245 nmO + O

Page 23: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Stratospheric Chemistry

Natural ozone formation (11.110)

(11.109)

Ozone photolysis (11.111)

(11.112)

O(

1

D ) O

M

O + O2

+ M O3

+ M

O3

+ h νO

2 + (O

1

D ) λ < 310 nm

O3

+ h ν O2

+ O λ > 310 nm

Page 24: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Natural Ozone Destruction by NOx

Nitrous oxide reaction: 10% of N2O destruction (11.113)

Nitrous oxide photolysis: 90% of N2O destruction (11.114)

N2

O + O(1

D )

64% 2NO

36% N2

+ O2

N2

O + h ν λ < 240 nmN2

+ (O1

D )

Page 25: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Natural Ozone Destruction by NOx

NO catalytically destroys ozone in upper stratosphere (11.115-7)

NO + O3

NO2

+ O2

NO2

+ O NO + O2

O + O3

2O2

Page 26: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Natural Ozone Destruction by HOx

Hydroxyl radical formation in stratosphere (11.115)

O(

1

D ) +

H2

O2OH

CH4

CH3

+ OH

H2

H + OH

Page 27: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Natural Ozone Destruction by HOx

OH catalytically destroys ozone in lower stratosphere (11.121-3)

OH + O3

HO2

+ O2

HO2

+ O3

OH + 2O2

2O3

3O2

Page 28: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Removal of HOx and NOx

(11.118)

(11.124)

(11.119)

Nitric acid and peroxynitric acid photolysis are slow

NO2

+ OH HNO3

M

M

HO2

+ NO2

HO2

NO2

HO2

+ OH H2

O + O2

Page 29: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Stratospheric Source of Water Vapor

(11.125)

CH4

+ OH CH3

+ H2

O

Page 30: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Changes in Monthly-Averaged Global Ozone From 1979-2001

Fig. 11.5

-10

-5

0

5

1980 1985 1990 1995 2000

Percent difference in global ozonefrom 1979 monthly average

Year

Mount Pinatubo

(June, 1991)

El Chichon

(April, 1982)

Per

cent

dif

fere

nce

in g

loba

l ozo

nefr

om 1

979

mon

thly

ave

rage

Page 31: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Variation with Latitude of October Zonally-Averaged Ozone in ‘79, ‘99, ‘00

Fig. 11.6

100

150

200

250

300

350

400

450

500

-90 -60 -30 0 30 60 90

Ozone (Dobson units)

Latitude (degrees)

October zonal average

1999

1979

2000Ozo

ne (

Dob

son

unit

s)

Page 32: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Variation with Altitude of CFCs and Other Chlorinated Compounds

Fig. 11.7

0 100 200 300 400 500 600

0

10

20

30

40

50

Altitude (km)

CFC-11

HCFC-22

CFC-12

CCl

4

(g)

Mixing ratio (pptv)

Tropopause

Alt

itud

e (k

m)

Page 33: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Variations With Altitude of CFCs and Other Chlorinated Compounds

Photolysis of chlorinated compounds above 20 km (11.126)

(11.127)

F C

Cl

Cl

Cl

+ h ν F C

Cl

Cl

+ Cl λ < 250 nm

F C

Cl

Cl

F

+ h ν F C

Cl

F

+ Cl λ < 230 nm

Page 34: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Natural Sources of Chlorine

Methyl chloride photolysis (11.130)

Methyl chloride scavenging by hydroxyl radical (11.128)

H C

H

Cl

H

+ h ν H C

H

H

+ Cl λ < 220 nm

H C

H

Cl

H

H C Cl

H

+ OH

H2

O

Page 35: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Chlorine Emission to Stratosphere

WMO (1994)

Chemical Percent emission to stratosphere

Anthropogenic sourcesCFC-12 (CF2Cl2) 28CFC-11 (CFCl3) 23Carbon tetrachloride (CCl4) 12Methyl chloroform(CH3CCl3)10CFC-113 (CFCl2CF2Cl) 6HCFC-22 (CF2ClH) 3

Natural sourcesMethyl chloride (CH3Cl) 15Hydrochloric acid (HCl) 3

Total 100

Page 36: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Ozone Destruction by Chlorine

Chlorine catalytic ozone destruction cycle (11.130)

(11.131)

(11.132)

Cl + O3

ClO + O2

ClO + O Cl + O2

O + O3

2O2

Only 1% of chlorine is typically active as Cl or ClO

Page 37: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Conversion of Active Chlorine to Reservoirs

Conversion of Cl and ClO (11.133)

(11.134)

CH4

HCl + CH3

HO2

HCl + O2

H2

HCl + H

H2

O2

HCl + HO2

Cl +

Cl O + NO2

Cl O

N

O

O

Chlorine

monoxide

Chlorine

nitrate

M

Page 38: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Conversion of Reservoirs to Active Chlorine

HCl reservoir leaks (11.135)

ClONO2 reservoir leaks

H + Clh ν

OH + Cl H2

O

O + Cl OH

+HCl

λ < 220 nm

Cl O

N

O

O

+ h ν + Cl O N

O

O

Chlorine

nitrate

Nitrate radical

λ < 400 nm

Page 39: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Ozone Destruction by Bromine

CH3Br = methyl bromide (produced biogenically in the oceans and anthropogenically as soil fumigant)

Photolysis of methyl above 20 km (11.137)

H C

H

Br

H

+ h ν H C

H

H

+ Br λ < 260 nm

Page 40: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Ozone Destruction by Bromine

Catalytic ozone destruction by bromine (11.138-40)

Br + O3

BrO + O2

BrO + O Br + O2

O + O3

2O2

Page 41: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Conversion of Active Bromine to Reservoirs

Conversion of Br and BrO (11.141)

(11.142)

HO2

HBr + O2

H2

O2

HBr + HO2

Br +

Br O + NO2

Br O

N

O

O

Bromine

monoxide

Bromine

nitrate

M

Page 42: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Conversion of Reservoirs to Active Bromine

HBr and BrONO2 reservoir leaks (11.143)

HBr + OH Br + H2

O

Br O

N

O

O

+ h ν +BrO N

O

O

Bromine

nitrate

Nitrate radical

λ < 390 nm

Page 43: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Change in Size of Antarctic Ozone Hole

Fig. 11.8

50

100

150

200

250

300

0

5

10

15

20

25

30

1980 1985 1990 1995 2000

Ozone minimum (DU)

Ozone-hole area (10

6

km

2

)

Year

Area of N. America

Area of Antarctic

continent

Ozo

ne m

inim

um (

Dob

son

unit

s)O

zone hole area (106 km

2)

Page 44: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Polar Stratospheric Cloud ReactionsType I Polar Stratospheric Clouds (PSCs)

nitric acid and water

temperature of formation < 195 K

diameter ≈ 0.01 - 3 m

number concentration ≈ 1 particle cm-3

Type II Polar Stratospheric Clouds

Water ice

temperature of formation < 187 K

diameter ≈ 1 - 100 m

number concentration ≈ 0.1 particle cm-3

Page 45: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Polar Stratospheric Cloud Reactions

Reactions on Polar Stratospheric Cloud Surfaces (11.145-9)

ClONO2

(g) + H2

O(a) HOCl(g) + HNO3

(a)

ClONO2

(g) + HCl (a) Cl2

(g) + HNO3

(a)

N2

O5

(g) + H2

O(a) 2HNO3

(a)

N2

O5

(g) + HCl(a) ClNO2

(g) + HNO3

(a)

HOCl (g) + HCl(a) Cl2

(g) + H2

O(a)

Page 46: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Surface Reaction Rates

First-order rate coefficient (s-1) (11.150)

Thermal speed of impinging gas (cm s-1) (11.151)

ks,q =14

v qγqa

v q =8kBTπM q

Page 47: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Reaction Probabilities

Table 11.9

Fractional loss of a species from the gas phase due to reaction with a particle surface. Accounts for diffusion of the gas to the surface and reaction with the surface.

Reaction ProbabilityReaction Type I PSC Type II PSC

ClONO2(g) + H2O(a) 0.001 0.3ClONO2(g) + HCl(a) 0.1 0.3N2O5(g) + H2O(a) 0.0003 0.01N2O5(g) + HCl(a) 0.003 0.03HOCl(g) + HCl(a) 0.1 0.3

Page 48: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Polar Ozone Destruction

Cl2 and HOCl photolysis in early spring (11.161-2)

Chlorine nitrite photolysis in early spring (11.163)

Cl2

+ h ν 2Cl λ < 450 nm

HOCl + h ν + Cl OH λ < 375 nm

ClNO2

+ h ν + Cl NO2

λ < 370 nm

Page 49: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Polar Ozone DestructionCatalytic ozone destruction by dimer mechanism (11.164-7)

Cl + O3

ClO + O2

2 x ( )

Cl2

O2

ClO + ClO

M

Cl2

O2

+ h ν λ < 360 nm + ClOO Cl

M

Cl + O2

ClOO

2O3

3O2

Page 50: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Polar Ozone DestructionA second catalytic cycle that involves bromine (11.169-72)

Cl + O3

ClO + O2

Br + O3

BrO + O2

BrO + ClO Br + Cl + O2

2O3

3O2

Page 51: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Conversion of Cl Reservoirs to Active Cl

Fig. 11.9

62%

HCl

37%

ClONO

2

1% Cl, ClO

Before PSC and photolysis

reactions

HCl

ClONO

2

Cl, ClO

After PSC and photolysis

reactions

Page 52: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Ozone Regeneration

Fig. 11.10

Change in globally-averaged ozone column abundance during two global model simulations in which all ozone was initially removed and chlorine was present and absent, respectively.

0

50

100

150

200

250

300

350

0 100 200 300 400

Avgerage global ozone column (Dobson units)

Day and date of simulation

10/1 1/7 4/17 7/26 11/4

No chlorine

With chlorine

Ave

rage

glo

bal o

zone

col

umn

(D

obso

n un

its)

Page 53: Presentation Slides for Chapter 11, Part 2 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Regeneration of Ozone Vertical ProfileTime-evolution of modeled profile of ozone (a) mixing ratio and (b)

number concentration at 34oN latitude, starting with zero ozone.

0 2 4 6 8 10

0

10

20

30

40

1 h

6 h

1 d

5 d

50 d

464 d

Ozone volume mixing ratio (ppmv)

Altitude (km)

Alt

itud

e (k

m)

Fig. 11.11

0 10 20 30 40 50 60

0

10

20

30

40

1 h

6 h

1 d

5 d

50 d

464 d

Ozone (10

11

molecules cm

-3

)

Altitude (km)

Alt

itud

e (k

m)


Recommended