+ All Categories
Home > Documents > Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei...

Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei...

Date post: 18-Feb-2019
Category:
Upload: ledung
View: 221 times
Download: 0 times
Share this document with a friend
107
STELLAR POPULATIONS Part 1: photometry, spectroscopy, and astrometry Anno Accademico 2011-12 Prof. Giampaolo Piotto Dipartimento di Fisica e Astronomia “Galileo Galilei” Università degli Studi di Padova [email protected]
Transcript
Page 1: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

STELLAR POPULATIONS Part 1: photometry, spectroscopy, and astrometry

Anno Accademico 2011-12

Prof. Giampaolo Piotto

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Università degli Studi di Padova

[email protected]

Page 2: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

STARS

Page 3: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Stars are a minor component in the Universe. Still…..

STARS

Page 4: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 5: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

The Sun:

our closest star

Page 6: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Radius: 700 000 km =109 Earth radii

Composition (in mass):

70 % hydrogen, 28 % helium, 2 % other chemical elements

Temperature:

5770 K (at surface)

Luminosity:

3.8 x 1026 Watts

Page 7: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 8: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 9: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

1) THERMAL EMISSION

a) FREE-FREE OR BREMSSTRAHLUNG

(CONTINUUM)

b) BOUND-BOUND (LINES)

c) FREE-BOUND (CONTINUUM)

2) NON THERMAL EMISSION

(CYCLOTRON)

2) NUCLEAR

(FISSION)

Page 10: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Free-bound

Page 11: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

BACK BODY RADIATION

It doesn’t matter what the excited emission mechanism is… If the medium is optically thick, when photons are emitted they

are immediately absorbed by atoms and moloculrs or

comptonized,

e.g. by electrons. Thus, other photons are generated which will

probably be also absorbed.

This produces an equilibrium between thermal, excitation, ionisation

and radiation temperatures.

This is the mechanism that leads to Black Body Radiation

Page 12: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Visible light is only a

tiny fraction of the

radiation we receive

from the Universe,

but it still provides us

with the great

majority of the

information we have

on stars (and stellar

populations)

Page 13: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Basic tools to measure stellar parameters

1. Photometry

2. Spectroscopy

3. Astrometry

4. Asteroseismology

Page 14: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 15: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Slide 7 Fig. 6-6, p. 98

BLACK BODY TEMPERATURE & THE COLORS OF STARS

Page 16: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Photometry & Stellar Magnitudes

m

2.5log f

const where const(λ) is set by the photometric system

f1

f2

100m

2m

1 5

m 5 ratio of 100 in f

smaller m brighter star

Relative brightnesses of 2 stars at a given λ:

m2-m1 Log f 1/f2 f1/f2

0 0.00 1

1 0.40 2.512…..

2 0/80 6.31

3 1.20 15.85

4 1.60 39.8

5 2.00 100=102

10 4.00 104

15 6.00 106

20 8.00 108

-1 -0.40 0.40

-5 -2.00 0.01=10-2

Page 17: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 18: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

" Absolute Magnitude M " L

M m 5logd

10

m 5 5log d

MV M in the "V " band

Total (Bolometric) L Absolute Bolometric M

Mbol

4.75M

bol

2.5logL

L

and Mbol*

MV * BC "Bolometric Correction"

Conventionally, the absolute

magnitude is the magnitude of a

star at a distance of 10pc from the

Sun.

Observers use absolute

magnitudes in some specific

photometric band (e.g. Mv).

Theoreticians use total flux L.

Need to use the same language!

Page 19: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 20: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 21: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 22: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 23: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 24: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 25: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Slide 7 Fig. 6-6, p. 98

BLACK BODY TEMPERATURE & THE COLORS OF STARS

Page 26: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Photometric systems are

devised in order to be

able to obtain main

stellar parameters from

wide band (many

photons) photometry

There are hundreds of

photometric systems

defined for this purpose.

Many of them are

conceived in order to

get quantitative

information on some

specific parameter.

But the problem is

always the

CALIBRATION of the

systms, i.e. transform

magnitude and colors in

physical quantities

(energy/sec)

Standard Johnson-Cousins photometric system

Page 27: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Strӧmgren photometric system

Page 28: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 29: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 30: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

J H K

L M

Page 31: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 32: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 33: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 34: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 35: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 36: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Color index of the SUN

Indice di

Colore

magnitudine

Indice di Colore

magnitudine

U-B

+0.195

V-I

+0.88

B-V

+0.650

J-H

+0.310

V-R

+0.540

H-K

+0.060

R-I

+0.340

K-L

+0.034

V-K

+1.486 L-M

-0.053

Page 37: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

U-B, B-V for a black body

T

U-B

B-V

T

U-B

B-V

4000

+0.37

+1.13

20000

-1.01

-0.16

6000

-0.25

+0.62

25000

-1.06

-0.15

10000

-0.69

+0.14

40000

-1.14

-0.29

15000

-0.91

-0.07

-1.28

-0.44

Page 38: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Photometry: three important issues: Bolometric correction Reddening/absorption Photometric calibration

Page 39: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Photometry: three important issues: Bolometric correction Reddening/absorption Photometric calibration

Page 40: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 41: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 42: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 43: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Photometry: three important issues: Bolometric correction Reddening/absorption Photometric calibration

Page 44: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 45: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 46: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Reddening: E(B-V)=(B-V) - (B-V)0

Page 47: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 48: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 49: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Average Milky Way extinction law with Rv=3.1 (Cardelli et al. 1989)

Page 50: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Rv towards specific directions within the Galaxy can vary

Page 51: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 52: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Color-color diagrams to determine reddening and extinction

It works only for early spectral types

Page 53: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 54: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 55: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Photometry: three important issues: Bolometric correction Reddening/absorption Photometric calibration

Page 56: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Going towards the physical world

A number of scientific applications need to have the stellar fluxes (or

magnitudes) in some physical units.

Therefore, we need to calibrate (*) our instrumental magnitudes into

some, properly defined photometric system.

(*) Note that the term “calibration” might generate some confusion. Someone uses

the term calibration to indicate the CCD pre-processing operations (bias, dark,

flatfielding corrections). I personally prefer to use this term to indicate the

complex operations needed to transform the instrumental magnitudes into a

properly defined phot. system.

Page 57: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

We need to match

photometries from

different

observations/data sets:

1. For comparison;

2. Variability studies;

3. Extend magnitude/color

coverage;

4. etc.

Page 58: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

(Bedin, Anderson, King, Piotto, 2001)

NGC 6397

M4

(King, Anderson, Cool, Piotto, 1999)

We need to compare

observations with models.

Observations and models

need to be compared on the

same photometric system

Low

metallicity

Intermediate

metallicity

This implies to be able to

transform models from the

theoretical plane to some

properly defined photometric system.

Page 59: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

And here the real trouble starts….

The Asiago Data Base on Photometric Systems lists 218 systems

(see http://ulisse.pd.astro.it/ADPS/enter2.html)!!!

But, even when you have chosen your photometric system, you

might still be in trouble!

Page 60: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

The unbelivable

CMDs!

Theory predicts

that no stars can

be cooler than

the red giant

branch location!

Page 61: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

But theory cannot

predict that

astronomers can

be so foolish to

change the

bandpasses of

their observation

without

properly

accounting

for these changes

Page 62: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

If observations are properly calibrated

and models transformed into the correct observational plane

(not necessarely a standard system), theoretical

tracks can correctly reproduce the observed CMD (apart from

intrinsic failures of the models…but this is a different story!).

How to operate properly

Page 63: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

A general lesson

From the previous examples we have learned a few important

things:

1. Observations must be calibrated and models must be

transformed into the same photometric system;

2. We need to use as much as possible a “standard”

photometric system;

3. If your photometric bandpasses are far from any existing

photometric system, you have the responsibility to

calibrate your system (good luck!);

4. In any case, ALWAYS trasform the models to the

observational plane, and not viceversa.

Page 64: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Photometric calibration of groundbased observations

Let’s suppose that we have collected a set of images of our program

objects through a set of filters properly designed to reproduce a

“standard” photometric system.

First of all, a clarification is needed:

Here, by “standard” I intend some widely used photometric system for

which a large set of standard stars, well distributed in the sky, and

which span a large color interval (at least as large as our program

objects) are available in the literature. And by standard stars I mean

stars for which accurate magnitudes and colors in the given

photometric system are available. Indeed:

the standard stars define our photometric system.

In order to calibrate the magnitudes and colors of our program objects, we need to observe also the standard star fields, at different times during the night, making sure that the observed standards cover a sufficently large color interval.

Page 65: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Just an example (for the Johnson-Cousins system):

Landolt, 1983, AJ, 88, 439

Landolt, 1992, AJ, 104, 340

Page 66: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Photometric information on the standard stars in the

Landolt (1992) catalog

Page 67: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Position information on the

standard stars in the

Landolt (1992) catalog

Page 68: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Most of Landolt’s standards are too bright for modern CCDs.

Better to use Peter Stetson’s extension of Landolt’s catalog in:

http://cadcwww.hia.nrc.ca/standards

Page 69: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Coordinates

Photometry

DSS image General info

Page 70: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

It is important to realize that, even if we have collected a set of images

of our program objects through a set of filters properly designed to

reproduce a “standard” system, our observational system is always

different from the standard one.

Indeed, the collected flux depends on at least 6 different terms:

Signal=F()(1-)R()A()K()Q()

F() incoming flux A() atmospheric absorption

fraction of the obscured mirror K() filter trasmission curve

R() mirror reflectivity Q() detector quantum efficency

Red

leakage

Page 71: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Calibration steps (general):

1. Obtain aperture photometry of standard stars;

2. Fit the standard star data with equations of the type:

Where: v, b are the instrumental magnitudes;

V, B the standard magnitudes

X the airmass

t the time of observation (in decimal hours)

ai, bi the unknown transformation coefficents

The instrumental magnitudes must be transformed to a reference

exposure time (e.g. 1 second) and to a reference aperture (fraction of

total light of the star), or to the total light. Big problem (see later)!

Page 72: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

For well designed observing

systems, and for not too

extreme colors, a linear fit

may be enough.

3. The next step is to calculate

the aperture correction, i.e.

the zero point difference

between the (fitting)

instrumental magnitudes of

the program stars, and the

aperture photometry used to

obtain the calibr. coefficents.

Finally, once the calibration coefficents have been obtained, the corresponding calibration equations can be applied to the instrumental magnitudes of the program stars, to transform them into the beloved

magnitudes in the standard system!

Example of calibration eq.s to the Johnson-Cousins standard

system for rhe ESO-Dutch telescope (from Rosenberg et al. 2000)

Page 73: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Non-standard photometric systems

What shall we do in case we do not have a standard photometric system,

with an appropriate set of standard stars?

It must be clearly stated that when the transmission curves of the

equipment used to collect the observations are rather different from those

of any existing standard system, the transformation of the data to a

standard system can be totally unreliable, particularly for extreme

stars (i.e., extreme colors, unusual spectral type, high reddening, etc.).

If we are dealing with groundbased obsevations…it is a long, tedious,

delicate job, and I do not have the time to enter into the problem here.

Do you want an advice? Change telescope!

Unfortunatlely, also widely desired (!) and widely used telescopes like

HST….have imagers which do not mount “standard” filters.

Do you want an advice? Do not attempt to transform your WFPC2 or

ACS instrumental magnitudes into any standard system!

Page 74: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 75: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 76: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

So, what shall we do?

Provided that the transmission curves of the complete optical system and

detectors are known, a calibration of the zero points into physical units

is easy to obtain by using a reference star for which the spectral flux

(outside the atmosphere) as a function of the wavelength is known (e.g.

Vega). By multiplying the reference spectrum by the system transmission

curves one obtains the flux within the given pass bands, which can be

easily transformed into magnitudes. If one uses the same procedure

employing model atmospheres and theoretical fluxes, it is possible to

relate the magnitudes and colors to the physical parameters like

temperature and luminosity.

Bedin et al. (2004) have written a paper which describes

in a complete and clear way the methodology, applying it to the

calibration of the HST/ACS camera.

A similar method has been applied by Holtzman et al. (1995) and

Dolphin (2000) for the calibration of the HST/WFPC2 camera.

Page 77: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Example (from Bedin et al. 2005):

The spectrum of Vega from

ftp://ftp.stsci.edu/cdbs/cdbs2/ grid/

k93models/standards/vega_reference.ts

has been multiplied by the (in flight) ACS

trasmission curves on the right, in order to

calculate the ACS Vega-mag flight system

zero point coefficents.

Model atmospheres and theoretical

fluxes have been multiplied by the

same transmission curves in order

to transform the models into

the same (observational) plane

above defined.

Models and observations are

compared on the left panel.

Page 78: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Spectroscopy

Page 79: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

RICORDIAMO CHE LE RIGHE POSSONO APPARIRE IN

ASSORBIMENTO O IN EMISSIONE SUL CONTINUO

CONTINU

Page 80: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 81: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

RIVEDIAMO IL RIVEDIAMO IL

MECCANISMO MECCANISMO

DI FORMAZIONE DI FORMAZIONE

DELLE RIGHE DI DELLE RIGHE DI

ASSORBIMENTO ASSORBIMENTO

E DI EMISSIONE E DI EMISSIONE

Slide 8 p. 99

Slide 9 p. 99 Slide 10 p. 99

Page 82: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Slide 11 p. 99

S l i d e 1 5 p . 1 0 0

ABSORPTION LINES SPECTRUM

Page 83: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Boltzmann Equation

Where, Nn, Nm, are the number of atoms at the excitation

state n and m

k = Boltzmann constant= 1.38x10-16 erg/deg

gn, gm statistical weight of the two energetic levels

Enm = energy difference between the two levels

= photon frequencye

/ /mnE kT h kTn n n

m m m

N g ge e

N g g

Page 84: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Saha Equation (1)

[log X2/(1-X2)]*P=-5040V/T+2.5logT-6.5

where:

X=ionization degree (relative number of ions with respect to the

total number of atoms of a given species)

V= potential of first ionization

T=temperature

P=pressure

X=0 no ions; x=1 all atoms are ionized

X increases, as T increases, X decreases as V and P increase

Page 85: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Saha Equation (2)

Log N(r+1)/Nr = -5040Vr/T+2.5T-0.48+log2B(r+1)/Br-log Pe

N(r+1), Nr number of ions r, and r-1 ionized, respectively

Vr, the potential for the r-ionization

T temperature, Pe the electron pressure

B(r+1), Br ripartition functions

Note the dependence on P. P is smaller in giant stars with respect to

dwarfs. Therefore, the same level of ionization is reached in giants

at smaller temperature than in dwarfs

Page 86: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 87: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Solar spectrum

Page 88: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Gli spettri stellari sono descritti da 7 classi spettrali (ciascuna con 10

sottoclassi), O B A F G K M, secondo una sequenza di temperature

decrescenti.

Stellar spectra are divided in 7 main spectral classes (O,B,A,F,G,K,M),

each of them divided into 10 sub classes. From O to M the temperature

decreases.

Page 89: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Spectral classification is morphological, related to the presence of certain lines.

M

K

G

F

A

B

O

Page 90: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

5

Classification of stars

• O B A F G K M scheme

– Originally in order of H strength – A,B,etc

Above order is for decreasing temperature

– Standard mnemonic: Oh, Be A Fine Girl

(Guy), Kiss Me

– Use numbers for finer divisions: A0, A1,

... A9, F0, F1, ... F9, G0, G1, ...

From our text: Horizons, by Seeds

Page 91: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Line broadening is related to the gas pressure

Giant and supergiant stars has a more extended atmosphere, lower

pressure, smaller interaction among atomos/molecules. Narrower

lines

4

2

24 R

GM

R

FP

grav

gas

Smaller stars have less extended, higher pressure atmosphere.

More interaction among atoms, molecules. Broader lines

Narrow lines = low

pressure

Broader lines =

higher pressure

Very broad lines =

very high pressure

Page 92: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Spectra classification also includes luminosity class Very bright supergiants

Super giants

Bright Giants

Giants

Subgiants

Dwarfs Sun=G2V

Page 93: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Therefore, from the spectra, we obtain -Temperature - Gravity (pressure) - Chemical composition

Page 94: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Now we anticipate the spectroscopic notation of the Stellar

Chemical Composition.

The chemical composition of celestial bodies and environments is usually given in

terms of X, Y and Z (relative abundances of H, He, and elements heavier than He, in

mass)

However, in spectroscopy, we often do not see some elements when the physical

conditions do dot allow their detection. For example, He is not observed in cold low

mass stars that, instead, show absorption lines due to metals. Hydrogen Balmer

absorptions become relatively weak in very hot stars and even fainter in cold stars.

Obviously, abundance estimates require stellar atmosphere models to fit the observed

spectra.

However, a particular notation was developed to estimate metal abundances.

Since iron is a good metal abundance indicator because its lines are prominent and easy

to measure, the traditional metal abundance indicator is the quantity

Fe

H

log

N(Fe)

N(H )

logN(Fe)

N(H )

esun

Page 95: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Thus, for the Sun [Fe/H]=0, while stars more metal poor than the Sun have [Fe/H] < 0

Assuming that the conversion from Z to [Fe/H] is universal, being

and we can write

For example, Z=0.001 and Y=0.25 implies [Fe/H]=-1.26; while z=0.04 and Y=0.30

gives [Fe/H]=0.39. However, as, usually He and heavy elements abundance changes are

negligible (x~constant), we can approximately write: [Fe/H]~log(Z/Zsun)

(see Salaris-Cassisi p. 239-241)

Fe

H

log

Z

X

logZ

X

e

logZ

X

1.61 logZ

1Y Z

1.61

Zsun =0.018 Xsun=0.70

sun

Page 96: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

IMPORTANT: in old, metal poor ([Fe/H]<-0.6) stellar populations

(halo and globular cluster stars, the so called α-elements (O, Ne,

Mg, Si, S, Ca, and Ti) are overabundant (with respect to the Sun):

[α/Fe]~0.3,0.4

This properties of metal poor stars is

related to the chemical composition of

Type II and type Ia SN. Type II SN

progenitors are massive, short living

stars, which explode earlier. The ejecta of

the Sne are rich in α-elements, and

therefore enrich the interstellar medium

with these elements. Only at a later time

(1Gyr?) Sne Ia start exploding. The ejecta

of these Sne are rich in Fe, with a small

amount of α-elements. Consequently,

younger stellar generations, as the Sun,

have a smalle [α/Fe]

For these α-enhanced mixtures, the general relationshipd between [M/H] and [Fe/H] can

be approximated by:

[M/H]~[Fe/H]+log(0.694fα + 0.306, where fα=10[α/Fe]

For [α/Fe]=0.3, [M/H]=[Fe/H]+0.2

Page 97: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

19

Page 98: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 99: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Astrometry

Page 100: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

The major problem we face for the determination of the

main stellar parameters (e.g. mass and age) is the

measurement of their distance

The problem is challenging for stellar associations, clusters,

etc.

The problem is dramatic for single stars

This introduce the problem of the distance scale

Basic distances are coming from parallaxes, as these are

geometrical distances

Page 101: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

The concept of parallax

OA=Earth radius for solar system measurements OA=semimajor Earth orbit for stellar distances

Page 102: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 103: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 104: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 105: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 106: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the
Page 107: Presentazione di PowerPoint - unipd.it · Dipartimento di Fisica e Astronomia “Galileo Galilei ... the zero point difference between the (fitting) instrumental magnitudes of the

Recommended