+ All Categories
Home > Documents > PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry...

PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry...

Date post: 24-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
36
PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE INSIGHT INTO AUTOIGNITION PROCESSES IN SI ENGINES AT HIGH OPERATING LOAD Jim Szybist and Derek Splitter Oak Ridge National Laboratory September 12, 2017 Presented to the 13 th SAE International Conference on Engines & Vehicles (ICE2017) Acknowledgement This research was conducted as part of the CoOptimization of Fuels & Engines (CoOptima) project sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices. (Optional): CoOptima is a collaborative project of multiple National Laboratories initiated to simultaneously accelerate the introduction of affordable, scalable, and sustainable biofuels and highefficiency, lowemission vehicle engines. A special thanks to Kevin Stork, Gurpreet Singh, Leo Breton, and Mike Weismiller
Transcript
Page 1: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE INSIGHT INTO AUTOIGNITION PROCESSES IN SI ENGINES AT HIGH OPERATING LOADJim Szybist and Derek SplitterOak Ridge National LaboratorySeptember 12, 2017Presented to the 13th SAE International Conference on Engines & Vehicles (ICE2017)

AcknowledgementThis research was conducted as part of the Co­Optimization of Fuels & Engines (Co­Optima) project sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices. (Optional): Co­Optima is a collaborative project of multiple National Laboratories initiated to simultaneously accelerate the introduction of affordable, scalable, and sustainable biofuels and high­efficiency, low­emission vehicle engines.

A special thanks to Kevin Stork, Gurpreet Singh, Leo Breton, and Mike Weismiller

Page 2: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

2 Szybist_ICE2017

Why Work on SI Combustion?• Gasoline consumption in SI engines accounts for approximately 75% of on­highway petroleum consumption in the U.S.

• Moving forward with electrified architectures, OEMs are looking for cost­effective engine and aftertreatment systems– Stoichiometric SI engines offer lower cost than diesel or low temperature combustion (lower peak cylinder 

pressure, lower pressure fueling system, less complex controls)– Stoichiometric SI engines use 3­way catalyst to meet emissions standards, a mature technology

• Lean equivalence ratio for low temperature combustion and diesel will require lean NOx emissions control

• Efficiency for SI engines has been rapidly closing the gap relative to diesel and low temperature combustion– Toyota has 2 engines in production achieving 40% brake thermal efficiency– Emerging stoichiometric SI approaches exceed 40% brake thermal efficiency

• Southwest D­EGR strategy has reported 42% brake thermal efficiency• Honda projecting 45% brake thermal efficiency for their long­stroke engine

Page 3: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

3 Szybist_ICE2017

Purpose of Anti­Knock Indices is to Rank Fuel Quality.Ranking Changes Based on Operating Condition.• Research octane number (RON) and motor octane number (MON) differ in 

intake temperature and engine operating speed

• Octane Index (OI), pioneered by Kalghatgi, uses a variable K to account for changing operating conditions

– OI = RON – K*(RON – MON)– Superior correlation to knock in modern engines, negative K

RON MON

Fuel 1 98 98

Fuel 2 95 85

Fuel 3 93 87

Fuel 4 97 91

Fuel 5 92 82

Notional Set of Fuels

Which Fuel is Best?  It Depends.

Fuel Ranking RON Conditions

MON Conditions AKI K = ­0.5 K = ­1 K = ­2

Best Fuel 1 Fuel 1 Fuel 1 Fuel 2 Fuel 2 Fuel 2

Fuel 4 Fuel 4 Fuel 4 Fuel 4 Fuel 4 Fuel 5

Fuel 2 Fuel 3 Fuel 2 Fuel 1 Fuel 5 Fuel 4

Fuel 3 Fuel 2 Fuel 3 Fuel 5 Fuel 3 Fuel 3

Worst Fuel 5 Fuel 5 Fuel 5 Fuel 3 Fuel 1 Fuel 1

Fuel Sales Based on RON in EU

Fuel Sales Based on AKI in US

Negative K for Boosted SI Engine

Page 4: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

4 Szybist_ICE2017

Changing Reactivity Ranking can be Better Understood by Analysis in the Pressure­Temperature Domain, Coupling to Kinetics

• Engines are thermodynamic devices where pressure and temperature are linked

• Intake valve closing (IVC) conditions sets up the pressure­temperature trajectory of the unburned air and fuel mixture

• IVC conditions are dependent on engine speed and load as well as operating strategy– Engine compression ratio determines the end point on the trajectory– Relevant kinetic timescale determined by engine speed and engine geometry (stroke­to­bore ratio)

Page 5: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

5 Szybist_ICE2017

Initial In­Cylinder Conditions Determine Pressure­Temperature Trajectory; Autoignition Chemistry is Dependent on Trajectory

Page 6: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

6 Szybist_ICE2017

Initial In­Cylinder Conditions Determine Pressure­Temperature Trajectory; Autoignition Chemistry is Dependent on Trajectory

Page 7: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

7 Szybist_ICE2017

Initial In­Cylinder Conditions Determine Pressure­Temperature Trajectory; Autoignition Chemistry is Dependent on Trajectory

Page 8: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

8 Szybist_ICE2017

Naturally AspiratedSI Engine at WOT:

Similar to RON

Initial In­Cylinder Conditions Determine Pressure­Temperature Trajectory; Autoignition Chemistry is Dependent on Trajectory

Page 9: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

9 Szybist_ICE2017

Naturally AspiratedSI Engine at WOT:

Similar to RON

Throttled SI or HCCI

Initial In­Cylinder Conditions Determine Pressure­Temperature Trajectory; Autoignition Chemistry is Dependent on Trajectory

Page 10: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

10 Szybist_ICE2017

Naturally AspiratedSI Engine at WOT:

Similar to RON

Throttled SI or HCCI

Boosted SI

Initial In­Cylinder Conditions Determine Pressure­Temperature Trajectory; Autoignition Chemistry is Dependent on Trajectory

Page 11: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

11 Szybist_ICE2017

Solid Lines: CR = 9.2:1

Dashed Lines: CR = 14:1

Higher Compression Ratio Maintains Trajectory, Changes Endpoint

Initial In­Cylinder Conditions Determine Pressure­Temperature Trajectory; Autoignition Chemistry is Dependent on Trajectory

Page 12: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

12 Szybist_ICE2017

Kinetic Ignition Delay Calculations Illustrate Changing Autoignition Chemistry

7­Component E0 Gasoline Surrogate

RON = 98MON = 87

Initial In­Cylinder Conditions Determine Pressure­Temperature Trajectory; Autoignition Chemistry is Dependent on Trajectory

Page 13: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

13 Szybist_ICE2017

Kinetic Ignition Delay Calculations Illustrate Changing Autoignition Chemistry

4­Component E0 Gasoline Surrogate

RON = 98MON = 97

Initial In­Cylinder Conditions Determine Pressure­Temperature Trajectory; Autoignition Chemistry is Dependent on Trajectory

Page 14: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

14 Szybist_ICE2017

Comparing Constant Ignition Delay for Different Fuels Enable a Better Understanding of RON, MON, and OI

For Naturally Aspirated Engine at WOT, Fuels

are Similar

Under boost, High S fuel is

Better

8ms ID Contours

Under MON Conditions, Low S fuel is Better

Page 15: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

15 Szybist_ICE2017

Application of Pressure­Temperature Framework

1. Presence of pre­spark heat release under boosted SI conditionsSzybist, J., and Splitter, D., “Pressure and Temperature Effects on Fuels with Varying Octane Sensitivity at High Load in SI Engines,” Combustion and Flame 177(1), pp. 49­66:2017.

2. Decreasing effectiveness of EGR to mitigate knock under boostSzybist, J., Wagnon, S., Splitter, D., Pitz, W. et al., "The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines," SAE Int. J. Engines 10(5):2017.

3. Importance of the thermodynamic state on low speed preignitionSplitter, D., Kaul, B., Szybist, J., and Jatana, G., “Engine Operating Conditions and Fuel Properties on Pre­Spark Heat Release and SPI Promotion in SI Engines,” SAE Int. J. Engines 10(3):2017.

Page 16: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

16 Szybist_ICE2017

Application of Pressure­Temperature Framework

1. Presence of pre­spark heat release under boosted SI conditionsSzybist, J., and Splitter, D., “Pressure and Temperature Effects on Fuels with Varying Octane Sensitivity at High Load in SI Engines,” Combustion and Flame 177(1), pp. 49­66:2017.

2. Decreasing effectiveness of EGR to mitigate knock under boostSzybist, J., Wagnon, S., Splitter, D., Pitz, W. et al., "The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines," SAE Int. J. Engines 10(5):2017.

3. Importance of the thermodynamic state on low speed preignitionSplitter, D., Kaul, B., Szybist, J., and Jatana, G., “Engine Operating Conditions and Fuel Properties on Pre­Spark Heat Release and SPI Promotion in SI Engines,” SAE Int. J. Engines 10(3):2017.

Page 17: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

17 Szybist_ICE2017

Fuels with Constant RON (RON = 100) Exhibit Fuel­Specific Differences in Knock Limited Phasing at Different Engine Conditions

• Condition A knock resistance:  Iso­octane > Gasoline > E40

• Condition B knock resistance: E40 > Gasoline > Iso­octane

• Condition C knock resistance: E40 >> Gasoline >> Iso­octane

• In moving from Condition A to Condition C, the combustion phasing change for E40 is approximately half that of iso­octane   

Low S is Good

High S is Good

High S is Really Good

Condition A~ 10 bar IMEPg

Condition B~15 bar IMEPg

Condition C~20 bar IMEPg

Page 18: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

18 Szybist_ICE2017

Pre­Spark Heat Release (PSHR) is Present for Iso­octane and Gasoline.Phenomenon is Extremely Repeatable, Increases with Intake T

Gasoline requires higher intake temperature for similar behavior (20­25 deg C)

Iso­Octane Gasoline

Beginning Stages of

PSHR

Stronger PSHR

PSHR with NTC

Stronger PSHR with NTC

Page 19: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

19 Szybist_ICE2017

Comparison of the Ignition Delay Definitions for Iso­Octane. Substantial Differences for T < 850K.

• Above 850K, the two methods show very little difference

• Below 850K, ignition delays are much shorter for the 50K temperature increase methodology

• This region of activity is indicative of low temperature heat release!

Ignition Delay by Temperature Inflection Point

Ignition Delay by 50K Temperature Increase

Page 20: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

20 Szybist_ICE2017

Ignition Delays from the Two Definitions Can Be Subtracted to Identify Islands of Low Temperature Chemistry

• Island of low temperature chemistry can be thought of as being similar to the islands of NOx and soot formation in the phi/T domain

• Note: Ignition delay threshold of > 2ms applied

600 650 700 750 800 850 900 950100005

10152025303540

Temperature [ K ]

2.0

3.0

4.0

5.0

6.0

7.0

RON MON

Ignition Delay Difference

Page 21: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

21 Szybist_ICE2017

Experimental Temperature/Pressure Trajectories Show Interaction with the Low Temperature Chemistry Island for Different Fuels

• Iso­octane has the largest low temperature chemistry island– Condition C transitions into the low temperature chemistry island prior to ignition at high intake manifold 

temperatures– Fully consistent with the PSHR observed in the experimental data– Conditions A & B, as well as RON and MON, do not enter low temperature chemistry island prior to ignition

Iso­Octane

Page 22: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

22 Szybist_ICE2017

• Gasoline has a slightly smaller low temperature chemistry island, starts at higher T– Condition C for gasoline also enters the low temperature chemistry island prior to ignition– Fully consistent with the PSHR observed in the experimental data

Gasoline

Experimental Temperature/Pressure Trajectories Show Interaction with the Low Temperature Chemistry Island for Different Fuels

Page 23: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

23 Szybist_ICE2017

• E40 has a significantly smaller low temperature chemistry island– Island starts at ~735K for E40 vs. ~710 for iso­octane– Condition C for avoids the low temperature chemistry island for E40 prior to ignition– Consistent with the lack of ITHR and LTHR observed in the experimental data

E40

Experimental Temperature/Pressure Trajectories Show Interaction with the Low Temperature Chemistry Island for Different Fuels

Page 24: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

24 Szybist_ICE2017

Application of Pressure­Temperature Framework

1. Presence of pre­spark heat release under boosted SI conditionsSzybist, J., and Splitter, D., “Pressure and Temperature Effects on Fuels with Varying Octane Sensitivity at High Load in SI Engines,” Combustion and Flame 177(1), pp. 49­66:2017.

2. Decreasing effectiveness of EGR to mitigate knock under boostSzybist, J., Wagnon, S., Splitter, D., Pitz, W. et al., "The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines," SAE Int. J. Engines 10(5):2017.

3. Importance of the thermodynamic state on low speed preignitionSplitter, D., Kaul, B., Szybist, J., and Jatana, G., “Engine Operating Conditions and Fuel Properties on Pre­Spark Heat Release and SPI Promotion in SI Engines,” SAE Int. J. Engines10(3):2017.

Page 25: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

25 Szybist_ICE2017

EGR is Capable of Mitigating Knock at High Loads, Right???

• Alger et al. (SAE 2011­01­1149) showed CA50 phasing advance of ~16 CAD due to knock mitigation with 20% EGR at 8 bar BMEP

– Every % EGR is equivalent to 0.5 AKI increase

• Hoepke et al. (SAE 2012­01­0707) found that CA50 phasing advance of ~8 CAD due to knock mitigation at 14 bar BMEP

• Splitter and Szybist (Energy & Fuels, 2013) showed EGR loses effectiveness at mitigating knock at higher engine loads (15 bar IMEP and higher)

Pressure­Temperature Analysis can be used to develop a better 

understanding of the ability of EGR to mitigate knock across the 

operating space.

Colors represent different fuelsClosed Symbols: 0% EGROpen Symbols: 15% EGR

Page 26: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

26 Szybist_ICE2017

Analyzing Constant Volume Ignition Delay Contours Allows Us to Identify 3 Zones of Ignition Chemistry

• Ignition delay calculations performed by LLNL team (Scott Wagnon, Bill Pitz, Marco Mehl)

• Zone 1: Ignition delay contours are nearly vertical– Ignition delay is sensitive to temperature, less sensitive 

to pressure– In this region, LTHR is promoted because alkylperoxide and 

hydroperoxide radicals are relatively stable

• Zone 2: Ignition delay contours are nearly horizontal– Ignition delay is sensitive to pressure, less sensitive

to temperature– In this region alkylperoxide and hydroperoxide radicals

are thermally unstable, decreasing LTHR propensity

• Zone 3: Ignition delay is a strong function of both temperature and pressure– Exhibits third­body enhanced formation of hydroperoxyl radicals from O2 and H radicals and the abstraction 

reactions HO2 radicals on the fuel– Leads to the formation of hydrogen peroxide that subsequently decomposes to two reactive OH radicals

600 700 800 900 10000

10

20

30

40

50

Temperature [ K ]

0

2

4

6

8

10

Ignition Delay[ ms ]Aromatic 0% EGR

Zone 1:Temperature

Zone 2:Pressure Zone 3:

Pressure andTemperature

Page 27: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

27 Szybist_ICE2017

Across Pressure­Temperature Domain

•– Higher pressure for same ignition delay in Zone 2

• Direct comparison of constant ignition delay time for different EGR levels reveals more information1. Separation of ignition delay lines with different levels of EGR in Zone 2 

→ EGR Expected to have a substan al impact2. Igni on delay lines with different levels of EGR converge in Zone 1 → 

EGR Expected to have a minimal impact

Higher P Required

Higher P

600 700 800 900 10000

10

20

30

40

Beyond RON

Beyond MON

SubstantialEGR Impact

Temperature [ K ]

0% EGR10% EGR20% EGRMinimal EGR

Impact

8ms ID Contours

Alkylate

Page 28: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

28 Szybist_ICE2017

300 400 500 600 700 800 900 10000

10

20

30

40

50Pin = 0.5 barPin = 0.75 barPin = 1.0 barPin = 1.25 barPin = 1.5 barPin = 2.0 bar

Temperature [ K ]

10% EGR20% EGR

Beyond MON

Beyond RON0% EGR

Boosted “Beyond RON” Conditions Interact with Ignition Zone 1, Minimal Impact on Knock

• Throttled operation interactswith ignition zone 3

• The operating conditions are typically far away from autoignition (i.e., not knock­limited)

Page 29: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

29 Szybist_ICE2017

300 400 500 600 700 800 900 10000

10

20

30

40

50Pin = 0.5 barPin = 0.75 barPin = 1.0 barPin = 1.25 barPin = 1.5 barPin = 2.0 bar

Temperature [ K ]

10% EGR20% EGR

Beyond MON

Beyond RON0% EGR

Boosted “Beyond RON” Conditions Interact with Ignition Zone 1, Minimal Impact on Knock

• Throttled operation interactswith ignition zone 3

• The operating conditions are typically far away from autoignition (i.e., not knock­limited)

• WOT and modestly boostedoperation interacts with Zone 2

• EGR is highly effective at knock­mitigation

• Conditions similar to where EGRis shown to be effective at mitigating knock

Page 30: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

30 Szybist_ICE2017

300 400 500 600 700 800 900 10000

10

20

30

40

50Pin = 0.5 barPin = 0.75 barPin = 1.0 barPin = 1.25 barPin = 1.5 barPin = 2.0 bar

Temperature [ K ]

10% EGR20% EGR

Beyond MON

Beyond RON0% EGR

Boosted “Beyond RON” Conditions Interact with Ignition Zone 1, Minimal Impact on Knock

• Throttled operation interactswith ignition zone 3

• The operating conditions are typically far away from autoignition (i.e., not knock­limited)

• WOT and modestly boostedoperation interacts with Zone 2

• EGR is highly effective at knock­mitigation

• Conditions similar to where EGRis shown to be effective at mitigating knock

• Higher levels of boost interactwith ignition Zone 1

• At these conditions, EGR becomesincreasingly ineffective atmitigating knock

Page 31: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

31 Szybist_ICE2017

Application of Pressure­Temperature Framework

1. Presence of pre­spark heat release under boosted SI conditionsSzybist, J., and Splitter, D., “Pressure and Temperature Effects on Fuels with Varying Octane Sensitivity at High Load in SI Engines,” Combustion and Flame 177(1), pp. 49­66:2017.

2. Decreasing effectiveness of EGR to mitigate knock under boostSzybist, J., Wagnon, S., Splitter, D., Pitz, W. et al., "The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines," SAE Int. J. Engines 10(5):2017.

3. Importance of the thermodynamic state on low speed preignitionSplitter, D., Kaul, B., Szybist, J., and Jatana, G., “Engine Operating Conditions and Fuel Properties on Pre­Spark Heat Release and SPI Promotion in SI Engines,” SAE Int. J. Engines 10(3):2017.

Page 32: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

32 Szybist_ICE2017

Stochastic Preignition is an Abnormal Combustion Event that Occurs at High Loads (boosted) and can Severely Damage Engines

-20 -10 0 10 20 30 40 50 60 70 80 900

25

50

75

100

125 advanced cycles mid cycles retarded cycles

Crank Angle (°CA aTDCf)

advanced cycles mid cycles retarded cycles

-20 -10 0 10 20 30 40 50 60 70 80 900

50

100

150

200

250

300

350

Crank Angle (°CA aTDCf)-20 -10 0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

250

300

350

Crank Angle (°CA aTDCf)-20 -10 0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

250

300

350

Crank Angle (°CA aTDCf)-20 -10 0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

250

300

350

Crank Angle (°CA aTDCf)-20 -10 0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

250

300

350

Crank Angle (°CA aTDCf)-20 -10 0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

250

300

350

Crank Angle (°CA aTDCf)-20 -10 0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

250

300

350

Crank Angle (°CA aTDCf)-20 -10 0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

250

300

350

Crank Angle (°CA aTDCf)-20 -10 0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

250

300

350

Crank Angle (°CA aTDCf)15 min.

Page 33: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

33 Szybist_ICE2017

in

in

in

in

Similar to Prior Studies, Pre­Spark Heat Release Observed at Retarded Ignition Timing

• Pre­spark heat release increased with increasing intake temperature

• CA50 combustion phasing maintained with ignition timing

Page 34: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

34 Szybist_ICE2017

Constant Volume Ignition Delay Contours using 3­component Gasoline Allow Understanding of Data in Pressure­Temperature Domain

• Data plotted up to spark

• Reduced intake temp.– no PSHR and expansion temperature is 

reduced

• Increased intake temp. – PSHR developing and penetration into 

ignition delay contours

• Markers illustrate every 2 CA of time.– Slider crank mechanism increases TDC 

time– TDC ignition delay could be most 

dominant ignition delay state with very retarded CA50 phasing

Page 35: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

35 Szybist_ICE2017

Analysis Reveals that for SPI Conditions, Interaction with a High­Gradient Portion of the Ignition Delay Contours

• At lower pressure condition, temperature increase to reduce ignition delay by 50% is 200K– Low temperature sensitivity because passing through negative temperature region

• At higher pressure SPI condition, ignition delay timescales are much shorter before negative temperature region, higher autoigition propensity 

600 650 700 750 800 850 900 950 10000

10

20

30

40

50

60

8

1

2

3

457

Temperature (K)

6

Baseline SPI condition

RON =100

MON =100

600 650 700 750 800 850 900 950 10000

10

20

30

40

50

60

MON =100

23

8

4

7

5

Temperature (K)

6

RON =100

Sunoco Optima 93 C (strong ITHR) Sunoco Optima 81 C (limited ITHR) Sunoco Optima 71 C (no ITHR)

GM LNF ~ 20kPa backpressure

½ ID= ~200 K

½ ID= ~30 K

Page 36: PRESSURE-TEMPERATURE DOMAIN ANALYSIS TO PROVIDE … · Islands of Low Temperature Chemistry •Island of low temperature chemistry can be thought of as being similar to the islands

36 Szybist_ICE2017

Conclusion: Pressure­Temperature Framework is a Useful Way to Understand Kinetics and Experimental Data

• Fuel autoignition pathway and kinetics are determined by pressure­temperature trajectory– Different pressure­temperature trajectories interact with different rate­limiting steps in the autoignition chemistry– Initial conditions in engine setup pressure­temperature trajectory for unburned gas and determine the portion of 

the kinetic map that will be relevant

• Pressure­temperature analysis allow the relevant portion of the kinetic map to be understood– Revealed the role of PSHR for fuels of different octane sensitivity, and the role that plays on knock– Allowed an explanation of why effectiveness of EGR to mitigate knock is attenuated under boost– Provided insight into the thermodynamic conditions for stochastic preignition

• Technique allows for some level of error in kinetic ignition delay calculations– Dependent on trend­wise information from kinetic calculations to elucidate phenomenological differences– Avoids issue of small imperfections in kinetics at each timestep being integrated into a large error over the course 

of a full engine cycle 


Recommended