+ All Categories
Home > Documents > Primary Standards fB hh Sfor Brachytherapy Sources€¦ · Primary Standards fB hh Sfor...

Primary Standards fB hh Sfor Brachytherapy Sources€¦ · Primary Standards fB hh Sfor...

Date post: 30-Apr-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
69
Primary Standards f B h h S for Brachytherapy Sources Michael G. Mitch, Ph.D. Christopher G. Soares, Ph.D. Ph i Lb t N ti lI tit t f St d d dT h l (NIST) Physics Laboratory, National Institute of Standards and T echnology (NIST)
Transcript

Primary Standards

f B h h Sfor Brachytherapy Sources

Michael G. Mitch, Ph.D.

Christopher G. Soares, Ph.D.

Ph i L b t N ti l I tit t f St d d d T h l (NIST)Physics Laboratory, National Institute of Standards and Technology (NIST)

Photon-emitting sourcesg

L 50 k V Hi hLow-energy < 50 keV < High-energy

LDR HDR LDR HDR

SK SK SK SK, Dw

WAFAC FAC Cavity Cavity, Calorimeter

Sources are Calibrated in Terms of Air-Kerma Strength (U)

dSource Air VolumeSource Air VolumeVacuum

SK = K (d) d 2

1 U = 1 Gy m2 h-1

.

• Air-kerma strength is the product of the air-kerma rate, in vacuo and due

1 U 1 Gy m h

to photons of energy greater than , at distance d and the square of this distance.

Ai k b d b l l i h f i h b• Air kerma can be measured absolutely with a free-air chamber

Low-energy, LDR seeds 20 keV < E < 35 keV

Ag wire, end weldsAg wire, end welds

Ag spheres, end welds

Resin spheres, Au-Cu markers

W wire, double wall

• Since 1999, NIST has calibrated over 900 sources

• 40 designs from 18 manufacturers

3 di lid 125I 103Pd 131C• 3 radionuclides: 125I, 103Pd, 131Cs

Primary Standard for Low-Energy X Rays (20 kV to 100 kV):

Ritz Free-Air Chamber (125I seeds, 1985)

V

Source(4 to 6 125I seeds)

Electrometer

(4 to 6 125I seeds)

Collecting Volume = 440 cm3

Active Volume = 5.5 cm3

Collecting/Active Volumes = 80

Ritz Free-Air Chamber Wide-Angle Free-Air Chamber(WAFAC, 125I, 103Pd, 131Cs, 1999) ( , , , , )

V

Electrometer

ElectrometerV/ 2

V

Collecting Volume = 440 cm3 Collecting Volume = 2500 cm3

3Active Volume = 5.5 cm3

Collecting/Active Volumes = 80

Active Volume = 715 cm3

Collecting/Active Volumes = 3.5

160 mm Al Center

Wide-Angle Free-Air Chamber (WAFAC)

Al Filt

Electrode

Al Filter

W Electrometer

Rotating Source

Aperture

V/ 2V = - 1674 V

Aluminized Mylar Electrodes

43 mm Al Center

Wide-Angle Free-Air Chamber (WAFAC)

Al Filt

Electrode

Al Filter

W Electrometer

Rotating Source

Aperture

V/ 2V = - 450 V

Aluminized Mylar Electrodes

Air-Kerma Strength from WAFAC Measurements

jj

iidetdr

effairairK QKKQKMKK

Vd

eWdQKS )(),()()(

22

125I

Net current, sI 0.06

Value Type A (%) Type B (%)

Net current, s 0.06),(det QKM

I

eW / 33.97 J / C - 0.15Air density, ρair 1.196 mg / cm3 - 0.03Aperture distance, d - 0.24Effective chamber volume, Veff 0.11 0.01Decay correction, K1 T1/2 = 59.43 d - 0.02Recombination < 1 004 0 05)(KK Recombination, < 1.004 - 0.05Attenuation in filter, K3(Q) 1.0295 - 0.61Air attenuation in WAFAC, K4(Q) 1.0042 - 0.08Source-aperture attenuation, K5(Q) 1.0125 - 0.24Inverse-square correction, K6 1.0089 - 0.01Humidity, K7(Q) 0.9982 - 0.07

)(KKdr

Humidity, K7(Q) 0.9982 0.07In-chamber photon scatter, K8(Q) 0.9966 - 0.07Source-holder scatter, K9 0.9985 - 0.05Electron loss, K10 1.0 - 0.05Aperture penetration, K11(Q) 0.9999 - 0.02External photon scatter, K12(Q) 1.0 - 0.17

Combined standard uncertainty, uc (s2 + 0.7622)1/2

Expanded uncertainty, V 2uc

Original and Automated WAFACs

AutomatedHPGe

SpectrometerAl filterwheel

OriginalWAFAC

WAFACseed

WAFAC

seed

Reference air kerma of low-energy photon-emitting LDR sources

• GROVEX (Grossvolumen Extrapolationskammer) – PTB

• VAFAC (Variable-Aperture Free-Air Chamber) – University of Wisconsin

• 3 L thin-walled cavity chamber radionuclide calibrator – NPL

• Torus free-air chamber – LNHB

Characterization Measurements Following WAFAC Calibration:

1. rotational anisotropy (WAFAC)

2 x-ray spectrometry on transverse axis of seed2. x ray spectrometry on transverse axis of seed

3. well-ionization chamber response relative to WAFAC (I / SK)

4. exposure of radiochromic film (contact geometry)

5 l t t ( )5. angular x-ray spectrometry (A)

Quality Assurance for WAFAC Measurements:

1. 241Am check source

2 x-ray spectrometry on transverse axis of seed2. x ray spectrometry on transverse axis of seed

3. well-ionization chamber response relative to WAFAC (I / SK)

1.06

263 seeds, 2003-2005: Range = (7 ± 5) %

Rotational Anisotropy (WAFAC)

1.00

1.02

1.04

ve C

urre

nt

8 %

0 94

0.96

0.98

Rel

ativ

z

0.94-20 20 60 100 140 180 220 260 300 340 380

Rotation Angle (degrees)

1.06 x

y

1.02

1.04

Cur

rent

2 %

x

= 0, 45, 90…360o

0.96

0.98

1.00

Rel

ativ

e C 2 %

0.94-20 20 60 100 140 180 220 260 300 340 380

Rotation Angle (degrees)

X-ray spectrometry of 103Pd and 131Cs seeds

100000

120000

Rh K

103Pd: EC, T1/2 = 16.99 d

60000

80000

100000

Cou

nts

Rh KRh K 20.1 keVRh K 22.7 keV, 23.2 keV

20000

40000

C Rh K

05 10 15 20 25 30 35 40

Energy (keV)

X K

150000

200000

nts

131Cs: EC, T1/2 = 9.69 d

Xe K

50000

100000Cou

n

Xe K 29.4 keV, 29.8 keVXe K 33.6 keV, 34.4 keV

Xe K

05 10 15 20 25 30 35 40

Energy (keV)

X-ray spectrometry of 125I seeds

100000

120000

Te K

125I: EC, T1/2 = 59.43 d

T K 27 2 k V 27 5 k V60000

80000

Cou

nts

Te K 27.2 keV, 27.5 keVTe K 31.0 keV, 31.7 keV125I 35.5 keV

20000

40000

C

Te K

125I

100000

05 10 15 20 25 30 35 40

Energy (keV)

T K

Ag K 22 1 keV 60000

80000

100000

nts

125I (Ag)

Te K

Ag K 22.1 keVAg K 24.9 keV, 25.4 keVTe K 27.2 keV, 27.5 keVTe K 31.0 keV, 31.7 keV 20000

40000

Cou

n

Te K

125I Ag K

Ag K125I 35.5 keV

05 10 15 20 25 30 35 40

Energy (keV)

Ag K

Ionization Chambers

NIST chambersCommercially available chambers

Spherical Aluminum

CapintecCRC-127R1

Standard ImagingHDR-1000 Plus1

Seltzer-Mitch1Certain commercial equipment, instruments, and materials are identified in this work in orderto specify adequately the experimental procedure. Such identification does not imply recommendation nor endorsement by the National Institute of Standards and Technology, nor does it imply that the material or equipment identified is necessarily the best available for these purposes.

Well Chamber Measurement Geometry

• Seed placed in end of catheter

• Centering jig for catheter

• Optimum vertical positioning

• Orientational effects:

1) up/down1) up/down

2) “points-of-compass”

Well Chamber Response Coefficients for 22 Seed Models

5.3

5.8

I (pA)S (U)

4.3

4.8

no Ag

131CsSK (U)

3.8

I / S

K (p

A /

U)

12

Ag wires

no Ag

2.8

3.3

103Pd

125IAg spheresAg spheres

1.8

2.3

Control Chart, I / SK, 125I seed “D”

4 45

4.50

4.35

4.40

4.45

4.25

4.30

I / S

K (p

A /

U)

4.10

4.15

4.20

I

4.05Apr05 Aug05 Jul06 Feb07 Nov07

I / SK vs. Ag K / , 125I seed “D”

4 45

4.50

4 30

4.35

4.40

4.45/ U

)

4.20

4.25

4.30

I / S

K (p

A /

4.05

4.10

4.15

2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 92.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

Ag K /

Radiochromic film imaging in contact exposure geometry

MD-55-2

0 35

0.45

D

Profile Scan

PeC Microdensitometer0.15

0.25

0.35

0 2 4 6 8 10

OD

0 2 4 6 8 10

X Position (mm)

Air Anisotropy Ratio = A

HPGespectrometer

( = 0 )seed

z

( = 0, )

( = /2, 3/2) x

y

177 cm Seed rotates in the x-y plane about the z axis

)2/3()2/()()0(

specspec

specspecA

KKKK

EK

en

i = photon fluence rate.

ii

ii EK

en

spec Ei = photon energy(en / )i = mass energy-absorption coefficient

Measurement Geometry for WAFAC, HPGe Spectrometer

seed

WAFAC / 2 ~ 8o

HPGe / 2 ~ 0.2o

Measurement Geometry for Well Chamber

WAFAC / 2 ~ 8o

Well Chamber~ 4

HPGe / 2 ~ 0.2o

Seed with Highly Uniform Emission (A ~ 1)

WAFAC / 2 ~ 8o

Well Chamber~ 4

Seed with Highly Directional Emission (A ~ 0)

LOWERSK

I

WAFAC / 2 ~ 8o

Well Chamber~ 4

more directional less emission “missed” by the WAFACthat is detected by the well chamber

2 25

103Pd seeds with sphere or pellet design

2.20

2.25Eav = 20.7 keV

SK

I

2.15Model

“A”Model

“B”

Model“C”

2.05

2.10

/ SK (

pA /

U)

2.00

2.05I

Model“D”

1.95

D

1.90

2 25

103Pd seeds with sphere or pellet design

2.20

2.25Eav = 20.7 keV

SK

I

2.15Model

“A”Model

“B”

Model“C”

2.05

2.10

/ SK (

pA /

U)

0.33 0.24 0.49

2.00

2.05I

A Model“D”

1.95

0.06

D

1.90

125I seed Model “E”I

4.40Eav = 27.3 keV

SK

I

4.30

4.35

U)

av

4.20

4.25

I / S

K (p

A /

U

- 2.6 %

Nov03Sep02Feb02

4 05

4.10

4.15Sep02

May04

Feb02

4.05y

125I seed Model “E”

A

0.16 Eav = 27.3 keV

0.13

0.14

Nov03Sep02Feb02

av

0.10

0.11

A - 38 %

Nov03Sep02Feb02

0 05

0.07

0.08

May04

0.05

Effects of Seed Geometry and Nuclide on A

0.9

1.0

0.7

0.8

0.4

0.5

0.6

A

0 1

0.2

0.3

0.0

0.1

Effects of Seed Geometry and Nuclide on A

1 Same Design for 125I and 103Pd Models No End Welds

0.9

1.0

1. Same Design for 125I and 103Pd Models, No End Welds

0.7

0.8

0.4

0.5

0.6

A

125I 103Pd

0 1

0.2

0.3

0.0

0.1

Effects of Seed Geometry and Nuclide on A

2 Same Design for 125I and 103Pd Models With End Welds

0.9

1.0

2. Same Design for 125I and 103Pd Models, With End Welds

0.7

0.8

0.4

0.5

0.6

A

0 1

0.2

0.3 125I

103Pd

0.0

0.1

Effects of Seed Geometry and Nuclide on A

3 125I Models: Uniform Encapsulation vs End Welds

0.9

1.0

3. 125I Models: Uniform Encapsulation vs. End Welds (“radiotransparent” substrate)

UE

0.7

0.8UE

0.4

0.5

0.6

A

0 1

0.2

0.3 EW

0.0

0.1

Effects of Seed Geometry and Nuclide on A

4 125I Models w/ Ag: Wire vs Sphere Substrates

0.9

1.0

4. 125I Models w/ Ag: Wire vs. Sphere Substrates

0.7

0.8

0.4

0.5

0.6

A

0 1

0.2

0.3

W0.0

0.1 W S

Well Chamber Response Coefficients for 22 Seed Models

5.3

5.8

I (pA)

4.8

5.3

131CsSK (U)

3.8

4.3

SK (p

A /

U)

Ag wires

no Ag

2.8

3.3

I /

103Pd

125IAg spheresAg spheres

1.8

2.3

103Pd

Photon-emitting sourcesg

L 50 k V Hi hLow-energy < 50 keV < High-energy

LDR HDR LDR HDR

SK SK SK SK, Dw

WAFAC FAC Cavity Cavity, Calorimeter

Primary Standard for Low-Energy X Rays (10 kV to 60 kV):

Lamperti Free-Air Chamber

V

HPGe

Miniature x-ray tube source El t ttube source

40 kV to 50 kVElectrometer

Primary Standard for Mammography X Rays (≤ 50 kV):

Attix Free-Air Chamber (NIST, University of Wisconsin)

Electrometer

Miniature x-ray

V

Miniature x ray tube source

40 kV to 50 kV

Photon-emitting sourcesg

L 50 k V Hi hLow-energy < 50 keV < High-energy

LDR HDR LDR HDR

SK SK SK SK, Dw

WAFAC FAC Cavity Cavity, Calorimeter

Primary Standard for Gamma Rays from 137Cs and 192Ir

1. Graphite-walled Cavity Chambers

)/()/(12 LdW )()(),()()/()/(

)/()/(

11)(

22 QKQKKQKMKK

LL

gVd

eWdQKS hwallstemdetdr

air

gr

gren

airen

airairK

137Cs1

1 cm31 source

192Ir

50 cm350 sources

Primary Standard for Gamma Rays from 137Cs and 192Ir

2. Spherical Aluminum Cavity and Re-entrant Chambers

2800 cm3137CsUS

WSUS ISS2800 cm3137CsWorking standard (WS)

orUnknown source (US)

WSKK ISS

U ow sou ce (US)

192Ir

3400 cm3

50

1ii

KUSUSK

I

SIS

226Ra sourceT1/2 = 1600 y

Photon-emitting sourcesg

L 50 k V Hi hLow-energy < 50 keV < High-energy

LDR HDR LDR HDR

SK SK SK SK, Dw

WAFAC FAC Cavity Cavity, Calorimeter

Primary Standard for Gamma Rays from HDR 192Ir

Graphite-walled Cavity Chamber, Kair

N i l Ph i l L b (NPL UK)• National Physical Laboratory (NPL, UK)• Laboratoire National Henri Becquerel (LNHB, France)• Physikalisch Technische Bundesanstalt (PTB, Germany)• Nederlands Meetinstitut (NMi Netherlands)• Nederlands Meetinstitut (NMi, Netherlands)• Bhabha Atomic Research Centre (BARC, India)

Water Calorimeter, Dw

• McGill University (Sarfehnia, Stewart, and Seuntjens)

Secondary Standard for Gamma Rays from HDR 192Ir

Goetsch “Seven Distance” Technique (1991), AAPM ADCLs

)(2)()( 250250

QKNQKNQK

N Irwall

CsK

Cswall

MK

MwallIr

K

NIST traceability is achieved through NKM250 and NK

Cs (cavity chamber)

Secondary Standard for Gamma Rays from HDR 192Ir

Goetsch “Seven Distance” Technique (1991), AAPM ADCLs

)(2)()( 250250

QKNQKNQK

N Irwall

CsK

Cswall

MK

MwallIr

K

NIST traceability is achieved through NKM250 and NK

Cs (cavity chamber)

“K-weighted Average” Technique, Mainegra-Hing and Rogers (2006)

Ei

KiIrair

Eiair

IrK NK

KN

11

2

111 250

CsK

MK

IrK

NNN192Ir ~ M250 + 137Cs

KairM250 = Kair

Cs

Secondary Standard for Gamma Rays from HDR 192Ir

Accounting for Scattering

1. Goetsch “Seven Distance” Technique

Secondary Standard for Gamma Rays from HDR 192Ir

Accounting for Scattering

1. Goetsch “Seven Distance” Technique

Secondary Standard for Gamma Rays from HDR 192Ir

Accounting for Scattering

1. Goetsch “Seven Distance” Technique

]),([)( scatdetIrKair MQKMNQK

2))(( cdQKS airK

Secondary Standard for Gamma Rays from HDR 192Ir

Accounting for Scattering

1. Goetsch “Seven Distance” Technique

]),([)( scatdetIrKair MQKMNQK

2))(( cdQKS airK

2. Shadow Shield Technique

),( QKM det

Secondary Standard for Gamma Rays from HDR 192Ir

Accounting for Scattering

1. Goetsch “Seven Distance” Technique

]),([)( scatdetIrKair MQKMNQK

2))(( cdQKS airK

2. Shadow Shield Technique

scatM

What about absorbed dose?

• Dose rate is typically measured using thermoluminescent dosimeters (TLDs)placed in solid, water-equivalent phantoms at various distances from a seed

• The dose rate at a reference point (1 cm from the seed on the trans erse a is) is• The dose rate at a reference point (1 cm from the seed on the transverse axis) is related to the NIST air-kerma strength standard, SK, through a dose-rate constant,

• Uncertainties on a TLD dose rate measurement at 1 cm are typically 4 % (k = 1)Uncertainties on a TLD dose rate measurement at 1 cm are typically 4 % (k 1), SK uncertainties are typically 1 % (k = 1), so uncertainty on is about 8 % (k = 2)

Step 1 Step 2

TLD

. =

D(r0, 0)

1 cm

SK

cGy h-1 U-1

SK measurement D(r0, 0) measurement. cGy h U

TG-43 Formalism

KSrD ),( 00

),()(),(

),(),(

00

rFrgrGrG

SrD LL

LK

Dose rate in water

)(rG 122 )4/()0( LrrG

Geometry Function

D )(

Dose rate constant (NIST-traceable SK)

sin

),(Lr

rGL )4/()0,( LrrGL

Radial Dose Function 2D Anisotropy Function1KS

rD ),( 00

),(),(

),(),(

)(0

00

00

0

rGrG

rDrD

rgX

XX

Radial Dose Function

),(),(

),(),(),( 0

0

rGrG

rDrDrF

L

L

2D Anisotropy Functionr0 = 1 cm0 = / 2

Beta-emitting sources

Dw

.

Extrapolation Chamber

• Ophthalmic applicators

1. Planar (90Sr/Y)

2 Conca e (106R /Rh)2. Concave (106Ru/Rh)

• IVB seed and line sources (90Sr/Y 32P)IVB seed and line sources ( Sr/Y, P)

Primary Standard for Beta Brachytherapy Sources

Extrapolation Chamber

kMkQSAe

WQD deteffair

0aw,w )('

dd)(1)(

slope of current vs. air gap

max

0 wcol,w d/)(

E

E ESQS

slope of current vs. air gap

max

0 acol,w

aw,d/

)( E

E ESQS

Bragg-Gray stopping power ratio

Extrapolation Chamber Schematic

Electrometer

Collectingelectrode

Insulatinggap

79.54 pA

gap

Water-equivalent plasticHigh-voltagel t d / i d

Air gap=0.40 mm

electrode/window

Source

rent

, pA

Ionization

Air gap, mm

Cur

r

Extrapolation Chamber Schematic

Electrometer

Collectingelectrode

Insulatinggap

69.73 pA

electrodegap

Water-equivalent plasticHigh-voltagel t d / i d

Air gap=0.35 mm

electrode/window

Source

rent

, pA

Ionization

Air gap, mm

Cur

r

Extrapolation Chamber Schematic

Electrometer

Collectingl t d

Insulating

59.82 pA

electrodegap

Water-equivalent plasticHigh-voltagel t d / i d

Air gap=0.30 mm

electrode/window

Source

rent

, pA

Ionization Cur

r

Air gap, mm

Extrapolation Chamber Schematic

Electrometer

CollectingInsulating

49.85 pA

gelectrode

Insulatinggap

Water-equivalent plasticHigh-voltagel t d / i d

Air gap=0.25 mm

electrode/window

Source

rent

, pA

Ionization Cur

r

Air gap, mm

Extrapolation Chamber Schematic

Electrometer

CollectingInsulating

39.89 pA

Collectingelectrode

Insulatinggap

Water-equivalent plasticHigh-voltagel t d / i d

Air gap=0.20 mm

electrode/window

Source

rent

, pA

Ionization Cur

r

Air gap, mm

Extrapolation Chamber Schematic

Electrometer

C ll ti

29.92 pA

Collectingelectrode

Insulatinggap

Water-equivalent plasticHigh-voltagel t d / i d

Air gap=0.15 mm

electrode/window

Source

rent

, pA

Ionization Cur

r

Air gap, mm

Extrapolation Chamber Schematic

Electrometer

19.95 pA

Collectingelectrode

Insulatinggap

Water-equivalent plasticHigh-voltagel t d / i d

Air gap=0.10 mm

electrode/window

Source

rent

, pA

Ionization Cur

r

Air gap, mm

Extrapolation Chamber Schematic

Electrometer

9.99 pA

Collectingelectrode

Insulatinggap

Water-equivalent plasticHigh-voltagel t d / i d

Air gap=0.05 mm

electrode/window

Source

rent

, pA

Ionization Cur

r

Air gap, mm

TG-60, TG-149 Formalism

KSrD ),( 00

)()(),()()( FrGDD L

Dose rate in water

)(rG 122 )4/()0( LrrG

Geometry Function

),()(),(

),(),(),(00

00

rFrgrG

rDrD LL

L

sin),(

LrrGL )4/()0,( LrrGL

Radial Dose Function 2D Anisotropy FunctionNIST-traceable D(r0, 0)

),(),(

),(),(

)(0

00

00

0

rGrG

rDrD

rgX

XX

Radial Dose Function

),(),(

),(),(),( 0

0

rGrG

rDrDrF

L

L

2D Anisotropy Functionr0 = 2 mm0 = / 2

Measurement Traceability for Brachytherapy Sources

sourcessourcesSK , Dw

.

Manufacturersecondary standardADCL

verification forwell-ionization

chamberssources

verification fortreatment planning

.Clinic SK

Clinic , DwClinic

Clinical Brachytherapy Source Measurements

W ll i i i h b lib d b ADCLWell-ionization chambers, calibrated by an ADCL

Photon-emitting sources Beta-emitting sources

ADCL

KClinicClinicK I

SIS

ADCL

wClinicClinicw I

DID

+ radiochromic film

Summary

• Air-kerma-strength standards are currently used for all photon-emittingbrachytherapy sources, realized by free-air and cavity ionization chambersbrachytherapy sources, realized by free air and cavity ionization chambers

• Absorbed-dose-to-water standards are used for all beta-emittingbrachytherapy sources, realized by extrapolation ionization chambersy py , y p

• Brachytherapy standards are transferred from NIST and the ADCLs to clinics using well-ionization chambers (radiochromic film for planarbeta-emitting sources)

• Absorbed-dose-to-water measurement methods for high-energy, HDR h t itti b h th tl d d l tphoton-emitting brachytherapy sources are currently under development

(water calorimetry)


Recommended