+ All Categories
Home > Documents > PRINCIPE FUNDERING

PRINCIPE FUNDERING

Date post: 31-Dec-2016
Category:
Upload: hoangxuyen
View: 236 times
Download: 5 times
Share this document with a friend
253
PRINCIPE FUNDERING
Transcript
  • PRINCIPE FUNDERING

  • 119.325+Ref.120.000+

    119.500+ 119.500+

    116.830+

    V112 3.3 ACCIONA AW116/3000

    3.210-

    0.325+

    2.550-

    V112 3.3

    2.435-

    1.500+

    Nordex N117

    1.100+

    2.020-

    Gemiddelde maaiveld

    3.000+

    2.600-

    Senvion 3.2. M114

    V117 3.3

    3.200-

    0.330+

    Alstom ECO 110 Siemens SWT-3.0-113 Enercon E-101 GE

    1.750-

    3.100-2.020-

    3.000-

    Alstom ECO 110

    0.100-

    3.020-

    Siemens SWT-3.0-113

    1.200-

    0.200+

    Enercon E-101

    1.300-

    GE

    0.1.150-

    0.900+0.150+

    1.100-

    1.500+0.900+

    1.500+

    0.200-

    1.500+

    0.400-

    1.500-

    0.400-

    Senvion 3.4

    0.850+

    3.550+

    6.500+

    Senvion 3.4

    1.200-

    1.500+

    4.450+

    Gamesa

    1.500+

    Gamesa

    3.265

    (NOT CONTROLLED) (NOT CONTROLLED)

    0.435-

    2.830+

    98.320+

    115.000+

    90.000+

    99.200+

    91.900+

    116.900+

    100.900+

    98.920+100.000+

    97.950+

    93.000+

    95.860+

    ABCD

    R:\F

    DE\P

    roject

    en\P

    7000

    584

    Windp

    ark

    Wierin

    germ

    eer

    - Do

    ornb

    os\0

    4. E

    nginee

    ring\

    4.5

    Bouw

    kund

    e Civiel\a

    utoc

    ad\d

    ossier

    s\3.112.27

    1\-\

    3.112.27

    1_blad

    1.dwg

    15-7

    -2014

    7:44

    :49

    3.112.2711

    -

    Windpark Wieringermeer WCWHoogte's Fundaties en Turbines

    1:250 mm 15 PPD

    717 B 06 FDEC hr. Doornbos P70005874

    2014-07-02 E.B FDEC

    AC2012 EEBC

    Detail A

    Geen aanpassing Geen aanpassing

    Opmerking:Maaiveld per lijn te bepalen

    VERTROUWELIJK

    Geen aanpassing

    Detail AEnercon E-101schaal 1 : 50

    0.900+

    1.300-

    Gemiddelde Maaiveld

    1.500+

  • E: Fundatiebreedte max. 22000 (22.00 m1)

    1700

    1000

    3200maaiveld 500

    Bovenkant fundatie

    BA

    D

    C: Opstort

    C2: Opstort Senvion anchorcage 3000 mm

    A: max.: 500B: max.: 1000

    A + B = mv tot aan bovenkantfundatie: max.: 1500 mm

    Heipalen

    mmmm

    VERTROUWELIJK

    Opmerking:

    Diepte en hoogte fundatie afhankelijk van grondonderzoek en

    type windturbine (definitieve fundatieontwerp).

    Indicatieve fundatie

    Maaiveldhoogte t.p.v. windturbine.

  • ACCIONA AW116

  • 18-11-2013 18-11-2013 18-11-2013

  • 08-04-2013 08-04-2013 08-04-2013

  • 03-04-2013 04-04-2013 04-04-2013

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 1 of 19

    Rev. Date Description of the revision

    A 06/2011 Initial report

    B 02/2012 Envelope 2CTP1, 2CTP2 and 2CTP1-BT. Extreme Loads and Soil Dynamics Requirements Updated.

    C 02/2012 Design conditions update. Anchoring prestressing cable foundation design condition included.

    D 03/2012 Joint at 0m detail External Prestressing tendon anchor definition (Annex A). Safety Factors included in Load Tables

    E 03/2012 Drawing DI0021 updated (diameter of tendons axis position)

    Done PAM

    Reviewed EAL

    Approved MNP

    2012 ACCIONA WINDPOWER S.A. All rights reserved

    LOAD CALCULATION

    FOUNDATION LOADS

    2CTP1, 2CTP2 and 2CTP1-BT

    AW 116/3000 IEC-IIA TH120 AW56.7

    60Hz, 50Hz and Cold Climate

    09-03-2012 09-03-2012 09-03-2012

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 2 of 19

    0 INDEX

    1 INTRODUCTION ................................................................................................................ 3

    2 TOTAL HUB HEIGHT ........................................................................................................ 4

    3 LOADS AT TOWER BASE ................................................................................................ 5

    3.1 MAXIMUM EXTREME LOADS .................................................................................... 5

    3.2 MAXIMUM OPERATIONAL LOADS ............................................................................ 6

    3.3 MAXIMUM NO GAPPING LOADS ............................................................................... 7

    3.4 FATIGUE LOADS ........................................................................................................ 8

    3.4.1 RAINFLOW-COUNTS .......................................................................................... 8

    3.4.2 DAMAGE EQUIVALENT LOADS ......................................................................... 9

    4 REQUIREMENTS OF THE SOIL FOR THE FOUNDATION ............................................ 13

    4.1 SETTLEMENT ........................................................................................................... 13

    4.2 SOIL DYNAMICS REQUIREMENTS ......................................................................... 14

    5 DESIGN CONDITIONS .................................................................................................... 15

    5.1 CONNECTION TOWER-FOUNDATION ................................................................... 15

    5.2 GENERAL FOUNDATION REQUIREMENTS ........................................................... 16

    5.3 EARTHING SYSTEM ................................................................................................ 17

    5.4 FLOOD LEVEL .......................................................................................................... 17

    ANNEX A. DI0021 TH120 FOR TURBINE AW3000. TH CONNECTION WITH

    FOUNDATION ......................................................................................................................... 18

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 3 of 19

    1 INTRODUCTION

    In the present report, foundation loads to extreme and fatigue calculations for AW 116/3000 IEC-IIa

    120M concrete Tower AW56.7 are shown. The loads envelope of the cases 2CTP1, 2CTP2 and

    2CTP1-BT have been considered. This means AW 116/3000 IEC-IIa TH120m AW56.7 60Hz, 50Hz

    and Cold Climate.

    In addition, it includes the requirements when analyzing the appearance of the ground gap in the

    foundation design. Finally, the minimum dynamic soil requirements and design conditions of the

    connection tower-foundation, foundation layout, earthing system and flood level are specified.

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 4 of 19

    2 TOTAL HUB HEIGHT

    The total hub height of the AW 116/3000 IEC-IIa 120m concrete Tower AW56.7 is 120.0m. The total

    hub height is measured from the top of the foundation to the hub center.

    Figure 1: Scheme of the total hub height.

    Ht=120m

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 5 of 19

    3 LOADS AT TOWER BASE

    Loads have been calculated according to IEC 61400 ed 2 and GL2003 regulations.

    3.1 MAXIMUM EXTREME LOADS

    The following table shows the loads, which are found in the base of tower by the extreme load cases.

    The table loads INCLUDES safety factors (S.F.) for each load case (Fz also includes the safety

    factor). Safety factors are different depending on the load case as specified in the next table. The loads

    have already been increased by their corresponding safety factor.

    Load case S.F.

    Included in loads

    Mx (kNm) My (kNm) Mxy (kNm) Mz (kNm) Fx (kN) Fy (kN) Fxy (kN) Fz (kN)

    Mx Max 6.1j 1.35 141954 46698 149437 4836.5 745 -1509.3 1683.1 -17154

    Mx Min 6.1a 1.35 -142582 49810 151031 -3335.8 826.3 1510.3 1721.6 -17270

    My Max 1.5v3 1.35 1866.6 133464 133477 -2211.6 1377.1 33.1 1377.5 -17378

    My Min 1.5v2 1.35 -25141 -137200 139485 -6406.5 -1135.5 300.1 1174.5 -17251

    Mxy Max 6.1a 1.35 -142011 51415 151031 -3396.5 852.2 1514.7 1738 -17282

    Mxy Min 8.1ea1 1.35 -3.9 -7.95 8.86 401.8 74 6.98 74.3 -19324

    Mz Max 1.5x2 1.35 -8994.3 179.2 8996.1 8186.1 195.3 129.2 234.2 -17307

    Mz Min 2.2e 1.10 -15284 -51541 53760 -10211 -421.7 158.3 450.5 -14081

    Fx Max 6.1j 1.35 81880 108441 135882 3086.2 1427.1 -878.4 1675.7 -17231

    Fx Min 1.5v2 1.35 -26106 -136469 138943 -6286.6 -1139.2 326.1 1184.9 -17249

    Fy Max 6.1f 1.35 -141637 30134 144808 -3998.7 596.7 1588.4 1696.7 -17317

    Fy Min 6.1j 1.35 141943 48929 150140 4875.6 776 -1513.6 1700.9 -17143

    Fxy Max 6.1g 1.35 -130988 66743 147011 -3114.9 1032.6 1411.3 1748.8 -17135

    Fxy Min 1.5e1 1.35 -219.7 -9111 9113.7 245.9 -0.92 0.34 0.98 -17378

    Fz Max 7.1s31 1.35 22385 32298 39297 -602.5 465.4 -306.2 557.1 -13878

    Fz Min 8.1ua7 1.35 -397.8 -33989 33992 -37.9 -368.3 3.76 368.3 -19394

    Table 1: Extreme Load Cases.

    Figure 2: Coordinate system for the foundation.

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 6 of 19

    3.2 MAXIMUM OPERATIONAL LOADS

    The next table presents the maximum operational loads of the wind turbine. These loads occur when

    the turbine is working under normal circumstances.

    Safety factor INCLUDED in this table. The loads have already been increased by their corresponding

    safety factor.

    Load case S.F.

    Included in loads

    Mx (kNm) My (kNm) Mxy (kNm) Mz (kNm) Fx (kN) Fy (kN) Fxy (kN) Fz (kN)

    Mx Max 6.4b 1.00

    41704 14014 43996 1129.1 265.4 -418.0 495.1 -12730

    Mx Min 6.4b 1.00 -35823 11042 37486 -1259.6 184.5 350.5 396.1 -12810

    My Max 1.2p 1.00 3690.3 68536 68635 2002.2 638.5 -2.64 638.5 -12918

    My Min 2.3a 1.00 9396.7 -52206 53045 -1271.9 -420.3 -159.1 449.4 -12853

    Mxy Max 1.2p 1.00 3690.3 68536 68635 2002.2 638.5 -2.64 638.5 -12918

    Mxy Min 1.2b 1.00 105.0 -73.6 128.2 448.2 12.4 -0.18 12.4 -12888

    Mz Max 2.3b 1.00 1041.8 -3090.0 3260.9 6969.4 104.2 -60.0 120.2 -12793

    Mz Min 2.3b 1.00 6408.8 -26491 27255 -7256.1 -128.8 -134.1 185.9 -12820

    Fx Max 2.3b 1.00 8613.3 43262 44111 -5598.6 678.4 -140.6 692.8 -12913

    Fx Min 2.3b 1.00 2680.8 -52172 52241 1147.8 -577.1 23.4 577.6 -12812

    Fy Max 6.4b 1.00 -35516 11103 37211 -1222.0 184.9 352.6 398.2 -12812

    Fy Min 6.4b 1.00 39772 18414 43828 775.9 320.0 -422.2 529.8 -12754

    Fxy Max 2.3b 1.00 8613.3 43262 44111 -5598.6 678.4 -140.6 692.8 -12913

    Fxy Min 6.4a 1.00 -146.6 -4017.2 4019.9 -0.68 0.016 -0.019 0.025 -12875

    Fz Max 6.4b 1.00 -8585.0 12210 14926 264.5 204.8 77.7 219.0 -12665

    Fz Min 1.2aa 1.00 5361.8 34557 34971 944.7 378.9 -41.9 381.2 -12991

    Table 2: Operational loads

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 7 of 19

    3.3 MAXIMUM NO GAPPING LOADS

    The next table presents the maximum no gapping loads without turbulence according to GL2003

    requirements.

    Safety factor INCLUDED in this table. The loads have already been increased by their corresponding

    safety factor.

    Load case S.F.

    Included in loads

    Mx (kNm) My (kNm) Mxy (kNm) Mz (kNm) Fx (kN) Fy (kN) Fxy (kN) Fz (kN)

    Mx Max dlc4.1c 1.00 8142.8 25226 26507 -1549.8 273.3 -55.1 278.8 -12858

    Mx Min dlc4.1c 1.00 -5148.7 15935 16746 799.4 260.2 49.3 264.8 -12824

    My Max dlc1.0b 1.00 5197.6 58271 58502 463.3 515.7 -23.2 516.2 -12911

    My Min dlc4.1b 1.00 657.9 -33139 33146 -696.6 -245.8 -0.03 245.8 -12850

    Mxy Max dlc1.0b 1.00 5228.3 58271 58505 462.4 516.6 -24.9 517.2 -12910

    Mxy Min dlc4.1a 1.00 199.6 74.6 213.1 84.5 26.9 -2.92 27.1 -12876

    Mz Max dlc4.1c 1.00 1526.2 1497.9 2138.4 1230.4 69.9 -9.96 70.6 -12816

    Mz Min dlc4.1c 1.00 2777.7 -14924 15181 -2930.2 -53.4 -20.9 57.3 -12807

    Fx Max dlc1.0b 1.00 5228.3 58271 58505 462.4 516.6 -24.9 517.2 -12910

    Fx Min dlc4.1b 1.00 672.2 -33044 33051 -683.3 -246.9 -0.58 246.9 -12850

    Fy Max dlc4.1c 1.00 -5125.2 16618 17390 698.7 267.3 50.2 272 -12822

    Fy Min dlc4.1c 1.00 8132 24933 26225 -1581.9 267.3 -55.2 272.9 -12859

    Fxy Max dlc1.0b 1.00 5228.3 58271 58505 462.4 516.6 -24.9 517.2 -12910

    Fxy Min dlc4.1b 1.00 -52.9 -4373.5 4373.8 -27.5 -0.092 0.14 0.17 -12865

    Fz Max dlc4.1c 1.00 -1714.6 5468.8 5731.3 -978 118.6 11.8 119.1 -12792

    Fz Min dlc1.0b 1.00 1405.5 55075 55093 741.7 479.8 13.3 480 -12925

    Table 3: No Gapping Load Cases.

    With these loads, gap between foundation and ground is not allowed.

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 8 of 19

    3.4 FATIGUE LOADS

    3.4.1 RAINFLOW-COUNTS

    A rainflow-count calculation has been performed in order to provide necessary data. It is used for

    fatigue calculations purposes.

    The presentation of these data is supplied as Markov matrix in ".txt" files (ASCII format)-one file for

    every load component-, where range, mean and number of occurrences are illustrated. The designer

    MUST ask for the corresponding files to Acciona Windpower if hes going to carry out a fatigue

    analysis.

    Only the fatigue load cases are taken into account (dlc1.2, dlc2.3, dlc4.1, dlc6.4). The occurrence of

    each load case is described by Weibull wind probability distribution. An EXAMPLE can be seen below

    in example table 5.1

    CYCLE MEAN CYCLE RANGE NUMBER OF CYCLES AT THESE RANGE AND MEAN

    Number of cycles [.] against Cycle range [kN]

    Cycle mean [kN] .......... 525 875 1225 1575 ..........

    -3675 .......... .......... .......... .......... .......... ..........

    -3325 .......... .......... .......... .......... .......... ..........

    -2975 .......... 0 0 0 0 ..........

    -2625 .......... 969.266 0 0 0 ..........

    -2275 .......... 0 0 0 0 ..........

    -1925 .......... 209.266 0 0 0 ..........

    -1575 .......... 30.5546 0 0 0 ..........

    -1225 .......... 1030.38 0 30.5546 0 ..........

    -875 .......... 91.6638 969.266 0 0 ..........

    -525 .......... 6591.55 999.821 0 0 ..........

    -175 .......... 4116.89 1326.69 969.266 0 ..........

    175 .......... 6622.11 1209.09 178.711 0 ..........

    525 .......... 5652.84 3955.53 0 0 ..........

    875 .......... 13498.6 3265.22 3524.97 0 ..........

    1225 .......... 161617 7432.59 969.266 0 ..........

    1575 .......... 2.15E+06 914102 763520 152459 ..........

    1925 .......... 3.82E+06 919683 304771 2167.73 ..........

    .......... .......... .......... .......... .......... .......... ..........

    .......... .......... .......... .......... .......... .......... ..........

    .......... .......... .......... .......... .......... .......... ..........

    Table 4: Example table of Rainflow Count for My (kNm).

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 9 of 19

    Time

    Range

    Figure 3: Range and mean definition

    3.4.2 DAMAGE EQUIVALENT LOADS

    Damage equivalent loads are used to equate the fatigue damage represented by RFCC data to that

    caused by a single stress range repeating at a single frequency. The method is based on the Miners

    rule. The damage equivalent stress is given by the following formula:

    m i

    m

    i

    NN

    nLL

    where LN is the equivalent stress for N cycles

    Li is the stress range bin i.

    ni is the number of rain flow cycles at stress range bin i.

    m is the negative inverse of the slope on the materials Whler curve (m is also

    referred to as the S-N curve slope).

    N is the number of cycle repetitions in the turbine lifetime.

    The S-N curve slope (m) used here is 4 (steel), and 9 (composite), and its constant for every number of

    cycles -there is no knee number-.

    The stress Li depends upon the geometry of the structure considered. It is assumed that stress is

    proportional to load, therefore it is quite acceptable to use load instead of stress in the above equation.

    Mean

    Load

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 10 of 19

    For simplicity, Li and ni have been derived from the one-dimensional table with no correction to account

    for the fatigue damage due to mean stresses.

    The equivalent loads (in kNm and kN) are presented overleaf for each load component assuming 107

    cycles in the turbine lifetime of 20 years. The values are given separately for each wind speed case as

    well as the integrated load. The value for each case represents the relative damage due to that

    particular case. This has the advantage of allowing the damage due to each case to be compared.

    Inv

    ers

    e

    SN

    S

    lop

    e

    dlc

    1.2

    a

    dlc

    1.2

    b

    dlc

    1.2

    c

    dlc

    1.2

    d

    dlc

    1.2

    e

    dlc

    1.2

    f

    dlc

    1.2

    g

    dlc

    1.2

    h

    dlc

    1.2

    i

    dlc

    1.2

    j

    dlc

    1.2

    k

    .......

    dlc

    6.4

    a

    dlc

    6.4

    b

    dlc

    6.4

    c

    dlc

    6.4

    d

    To

    tal

    3 451 450 449 932 977 799 760 887 796 1249 1143 ...... 273 3914 2937 1280 6452

    4 500 504 500 969 1020 828 807 938 835 1290 1178 ...... 245 4853 4296 2331 6484

    5 545 552 547 1013 1068 864 869 1002 884 1347 1228 ...... 247 5651 5502 3408 6973

    6 585 595 589 1056 1115 900 938 1071 935 1409 1282 ...... 259 6349 6573 4448 7598

    7 622 634 627 1097 1161 935 1008 1139 986 1472 1336 ...... 272 6968 7530 5427 8262

    8 656 669 662 1135 1204 970 1075 1205 1033 1533 1390 ...... 286 7521 8393 6340 8927

    9 688 700 693 1169 1244 1002 1139 1267 1078 1591 1441 ...... 298 8017 9176 7186 9575

    10 717 729 723 1201 1282 1033 1196 1325 1120 1646 1490 ...... 310 8464 9891 7969 10197

    Table 5: Lifetime rainflow cycle counts table definition

    Tables 6 to 11 present the lifetime rainflow cycle counts from which the damage equivalent loads have

    been derived at tower base:

    m i

    m

    i

    N

    nLMean

    Load Case LN

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 11 of 19

    Inve

    rse

    SN

    Slo

    pe

    [-]

    dlc

    1.2

    a

    dlc

    1.2

    aa

    dlc

    1.2

    ab

    dlc

    1.2

    ac

    dlc

    1.2

    ad

    dlc

    1.2

    ae

    dlc

    1.2

    af

    dlc

    1.2

    ag

    dlc

    1.2

    b

    dlc

    1.2

    c

    dlc

    1.2

    d

    dlc

    1.2

    e

    dlc

    1.2

    f

    dlc

    1.2

    g

    dlc

    1.2

    h

    dlc

    1.2

    i

    dlc

    1.2

    j

    dlc

    1.2

    k

    dlc

    1.2

    l

    dlc

    1.2

    m

    dlc

    1.2

    n

    dlc

    1.2

    o

    dlc

    1.2

    p

    dlc

    1.2

    q

    dlc

    1.2

    r

    dlc

    1.2

    s

    dlc

    1.2

    t

    dlc

    1.2

    u

    dlc

    1.2

    v

    dlc

    1.2

    w

    dlc

    1.2

    x

    dlc

    1.2

    y

    dlc

    1.2

    z

    dlc

    2.3

    a

    dlc

    2.3

    b

    dlc

    4.1

    a

    dlc

    4.1

    b

    dlc

    4.1

    c

    dlc

    6.4

    a

    dlc

    6.4

    b

    To

    tal

    3 2021 3924 3812 3770 3762 4119 4188 3998 2037 1933 2466 2453 2376 3253 3315 3347 4209 4012 4275 5050 4690 4459 4898 4862 4870 4632 4704 4724 4171 4385 4505 4063 3958 793 1586 624 412 692 867 10361 14881

    4 2152 5175 5396 5342 5317 6314 6457 6197 2222 2084 2618 2584 2522 3377 3473 3495 4458 4227 4487 5467 5069 4814 5455 5452 5523 5354 5456 5501 5137 5420 5597 5371 5223 1712 3278 847 795 1370 841 15138 16487

    5 2304 6312 6804 6741 6706 8358 8592 8326 2438 2257 2795 2732 2705 3549 3698 3682 4749 4485 4740 5885 5436 5157 5981 6032 6176 5990 6120 6188 5993 6328 6574 6534 6347 2756 5191 1026 1207 2102 875 19314 19741

    6 2469 7357 8054 7982 7945 10243 10581 10363 2671 2440 2979 2878 2900 3732 3953 3879 5044 4747 5000 6291 5776 5475 6482 6614 6827 6569 6719 6802 6777 7140 7461 7573 7355 3810 7155 1172 1610 2819 924 22974 23137

    7 2641 8320 9165 9086 9056 11986 12428 12290 2906 2626 3162 3017 3097 3910 4216 4075 5326 4998 5254 6682 6085 5767 6959 7192 7466 7103 7266 7352 7507 7874 8268 8504 8261 4818 9074 1293 1988 3491 976 26220 26292

    8 2812 9207 10157 10074 10054 13600 14139 14088 3131 2806 3339 3146 3288 4077 4473 4265 5588 5232 5495 7055 6367 6033 7408 7753 8074 7596 7765 7846 8190 8539 9003 9336 9076 5758 10896 1394 2334 4104 1026 29130 29166

    9 2975 10018 11045 10961 10953 15093 15718 15747 3338 2975 3506 3266 3467 4231 4714 4444 5827 5446 5721 7406 6624 6275 7828 8282 8639 8052 8218 8289 8824 9142 9670 10080 9810 6623 12595 1480 2647 4659 1073 31763 31782

    10 3127 10760 11844 11761 11765 16471 17168 17264 3524 3129 3660 3376 3632 4371 4935 4611 6044 5639 5931 7733 6857 6495 8215 8770 9155 8470 8630 8687 9407 9689 10276 10745 10471 7415 14164 1553 2929 5158 1118 34161 34171

    Table 6: Lifetime Weighted Equivalent Loads: Tower Mx, Tower station height= 0m (1.E+07 cycles)

    Inve

    rse

    SN

    Slo

    pe

    [-]

    dlc

    1.2

    a

    dlc

    1.2

    aa

    dlc

    1.2

    ab

    dlc

    1.2

    ac

    dlc

    1.2

    ad

    dlc

    1.2

    ae

    dlc

    1.2

    af

    dlc

    1.2

    ag

    dlc

    1.2

    b

    dlc

    1.2

    c

    dlc

    1.2

    d

    dlc

    1.2

    e

    dlc

    1.2

    f

    dlc

    1.2

    g

    dlc

    1.2

    h

    dlc

    1.2

    i

    dlc

    1.2

    j

    dlc

    1.2

    k

    dlc

    1.2

    l

    dlc

    1.2

    m

    dlc

    1.2

    n

    dlc

    1.2

    o

    dlc

    1.2

    p

    dlc

    1.2

    q

    dlc

    1.2

    r

    dlc

    1.2

    s

    dlc

    1.2

    t

    dlc

    1.2

    u

    dlc

    1.2

    v

    dlc

    1.2

    w

    dlc

    1.2

    x

    dlc

    1.2

    y

    dlc

    1.2

    z

    dlc

    2.3

    a

    dlc

    2.3

    b

    dlc

    4.1

    a

    dlc

    4.1

    b

    dlc

    4.1

    c

    dlc

    6.4

    a

    dlc

    6.4

    b

    To

    tal

    3 10591 8272 7488 7352 7391 6842 6561 6534 10552 10533 11507 11519 11484 14498 14641 14556 13555 13618 13695 12990 13085 12549 11857 11991 12091 10378 10326 10338 9443 9193 9173 8822 8532 3147 4353 5273 4256 2895 997 4676 36005

    4 12507 10851 10481 10269 10287 10309 9877 9843 12351 12248 13645 13436 13419 18393 18630 18755 16713 16893 16827 15713 15798 14954 14737 14790 14857 12512 12484 12592 11657 11302 11233 11699 11234 7726 8812 8154 9151 5451 839 6897 34068

    5 14946 13139 13148 12869 12831 13487 12937 12879 14658 14432 16116 15727 15748 22427 22728 23023 20058 20362 20128 18479 18610 17416 17814 17753 17763 14588 14606 14862 13665 13212 13045 14284 13654 13268 13604 10899 14502 8176 756 8918 35120

    6 17389 15163 15509 15172 15051 16349 15726 15623 16999 16660 18453 17955 17999 26018 26375 26783 23105 23499 23136 20927 21154 19626 20736 20554 20490 16510 16579 17015 15494 14946 14634 16580 15811 19029 18294 13337 19713 10860 706 10774 36883

    7 19577 16954 17603 17215 16991 18920 18264 18105 19117 18690 20507 19945 19996 29085 29500 29981 25757 26218 25766 23016 23368 21538 23374 23084 22936 18243 18361 18989 17163 16520 16034 18606 17728 24621 22708 15442 24547 13389 672 12496 38793

    8 21466 18544 19465 19031 18695 21231 20577 20357 20953 20460 22272 21670 21720 31690 32159 32693 28045 28557 28042 24798 25282 23185 25710 25331 25095 19789 19953 20769 18686 17949 17275 20391 19429 29868 26790 17248 28935 15713 648 14099 40745

    9 23083 19961 21127 20651 20200 23318 22688 22408 22528 21986 23788 23158 23201 33912 34432 35005 30020 30575 30014 26330 26948 24613 27765 27315 26996 21165 21369 22363 20072 19246 18384 21966 20941 34712 30540 18800 32883 17822 629 15586 42766

    10 24472 21231 22616 22102 21536 25208 24619 24283 23883 23301 25096 24444 24480 35824 36387 36993 31734 32324 31728 27662 28406 25861 29572 29066 28671 22389 22631 23789 21333 20421 19382 23360 22289 39146 33977 20144 36427 19724 615 16961 44912

    Table 7: Lifetime Weighted Equivalent Loads: Tower My, Tower station height= 0m (1.E+07 cycles)

    Inve

    rse

    SN

    Slo

    pe

    [-]

    dlc

    1.2

    a

    dlc

    1.2

    aa

    dlc

    1.2

    ab

    dlc

    1.2

    ac

    dlc

    1.2

    ad

    dlc

    1.2

    ae

    dlc

    1.2

    af

    dlc

    1.2

    ag

    dlc

    1.2

    b

    dlc

    1.2

    c

    dlc

    1.2

    d

    dlc

    1.2

    e

    dlc

    1.2

    f

    dlc

    1.2

    g

    dlc

    1.2

    h

    dlc

    1.2

    i

    dlc

    1.2

    j

    dlc

    1.2

    k

    dlc

    1.2

    l

    dlc

    1.2

    m

    dlc

    1.2

    n

    dlc

    1.2

    o

    dlc

    1.2

    p

    dlc

    1.2

    q

    dlc

    1.2

    r

    dlc

    1.2

    s

    dlc

    1.2

    t

    dlc

    1.2

    u

    dlc

    1.2

    v

    dlc

    1.2

    w

    dlc

    1.2

    x

    dlc

    1.2

    y

    dlc

    1.2

    z

    dlc

    2.3

    a

    dlc

    2.3

    b

    dlc

    4.1

    a

    dlc

    4.1

    b

    dlc

    4.1

    c

    dlc

    6.4

    a

    dlc

    6.4

    b

    To

    tal

    3 926 1263 1047 1035 1037 858 859 866 949 955 1049 1063 1049 1399 1398 1344 1731 1683 1667 1805 1837 1824 1755 1771 1781 1649 1629 1632 1404 1434 1449 1264 1257 115 553 58.1 78.5 289 134 462 4591

    4 975 1648 1481 1456 1454 1296 1292 1300 1002 1000 1097 1111 1092 1479 1479 1410 1816 1762 1729 1961 2005 2006 1946 1962 1987 1921 1889 1883 1699 1740 1765 1669 1652 229 1167 90.8 163 500 109 651 3997

    5 1037 2001 1899 1857 1850 1717 1704 1713 1068 1055 1165 1177 1155 1590 1591 1509 1937 1880 1827 2155 2210 2227 2147 2157 2198 2190 2144 2126 1964 2015 2053 2053 2021 356 1859 122 257 718 97.0 827 3883

    6 1103 2327 2297 2235 2221 2110 2086 2096 1139 1113 1237 1248 1224 1706 1710 1620 2068 2010 1936 2362 2424 2457 2346 2346 2401 2449 2390 2357 2204 2267 2314 2417 2366 483 2556 149 349 931 89.5 992 3958

    7 1168 2626 2669 2586 2564 2472 2436 2446 1209 1171 1306 1318 1295 1817 1825 1731 2198 2139 2043 2563 2630 2676 2535 2523 2589 2690 2620 2571 2422 2496 2550 2757 2686 606 3221 173 435 1134 84.6 1144 4134

    8 1229 2898 3012 2910 2878 2801 2753 2762 1276 1227 1370 1383 1362 1918 1931 1836 2318 2259 2143 2749 2821 2876 2709 2685 2759 2909 2830 2766 2619 2704 2761 3070 2978 723 3841 193 512 1323 81.0 1283 4391

    9 1286 3145 3327 3207 3164 3100 3039 3046 1337 1278 1427 1443 1424 2008 2029 1933 2428 2368 2234 2918 2993 3056 2867 2833 2912 3106 3019 2941 2798 2894 2951 3357 3245 831 4412 211 582 1496 78.3 1410 4718

    10 1338 3369 3615 3478 3425 3372 3298 3302 1393 1326 1477 1498 1480 2089 2117 2022 2527 2465 2315 3070 3148 3216 3010 2966 3050 3282 3188 3097 2961 3068 3123 3618 3488 930 4935 226 645 1653 76.3 1525 5096

    Table 8: Lifetime Weighted Equivalent Loads: Tower Mz, Tower station height= 0m (1.E+07 cycles)

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 12 of 19

    Inve

    rse

    SN

    Slo

    pe

    [-]

    dlc

    1.2

    a

    dlc

    1.2

    aa

    dlc

    1.2

    ab

    dlc

    1.2

    ac

    dlc

    1.2

    ad

    dlc

    1.2

    ae

    dlc

    1.2

    af

    dlc

    1.2

    ag

    dlc

    1.2

    b

    dlc

    1.2

    c

    dlc

    1.2

    d

    dlc

    1.2

    e

    dlc

    1.2

    f

    dlc

    1.2

    g

    dlc

    1.2

    h

    dlc

    1.2

    i

    dlc

    1.2

    j

    dlc

    1.2

    k

    dlc

    1.2

    l

    dlc

    1.2

    m

    dlc

    1.2

    n

    dlc

    1.2

    o

    dlc

    1.2

    p

    dlc

    1.2

    q

    dlc

    1.2

    r

    dlc

    1.2

    s

    dlc

    1.2

    t

    dlc

    1.2

    u

    dlc

    1.2

    v

    dlc

    1.2

    w

    dlc

    1.2

    x

    dlc

    1.2

    y

    dlc

    1.2

    z

    dlc

    2.3

    a

    dlc

    2.3

    b

    dlc

    4.1

    a

    dlc

    4.1

    b

    dlc

    4.1

    c

    dlc

    6.4

    a

    dlc

    6.4

    b

    To

    tal

    3 149 138 122 121 122 107 103 102 148 147 157 158 158 192 196 195 197 199 199 204 206 202 190 195 196 176 176 177 162 161 160 147 143 28.5 59.7 47.9 35.7 32.9 10.8 56.6 544

    4 157 167 159 158 159 152 146 143 156 155 165 163 162 204 208 209 206 206 207 210 211 208 201 206 208 191 191 193 184 183 180 180 174 68.2 118 72.1 76.5 58.1 9.01 83.2 446

    5 173 191 191 190 191 192 184 180 171 170 182 176 175 228 231 237 226 223 225 223 224 220 217 221 225 205 206 209 204 203 199 210 201 117 181 95.1 121 82.9 8.24 108 418

    6 193 213 218 219 220 227 218 213 189 189 202 192 190 255 257 268 251 246 246 238 239 235 234 240 244 220 222 227 222 221 214 236 225 167 242 116 165 106 8.01 133 414

    7 213 232 243 245 245 259 250 243 208 208 221 208 206 280 283 297 275 269 268 253 256 250 252 259 264 233 236 244 239 237 229 260 247 216 300 134 205 127 8.17 156 422

    8 232 249 265 269 268 288 280 269 226 227 239 222 221 303 305 323 298 290 288 268 272 264 270 277 283 246 250 260 254 253 241 282 266 262 352 150 242 147 8.56 179 435

    9 248 264 284 290 289 314 308 293 243 243 255 236 234 324 325 345 318 309 305 281 286 276 286 295 301 258 263 275 268 267 252 302 284 305 401 163 275 164 9.02 200 454

    10 263 278 301 310 308 337 334 314 257 257 269 248 247 341 342 364 336 325 321 293 300 288 302 311 318 270 275 288 281 281 263 321 300 344 445 175 305 180 9.46 219 478

    Table 9: Lifetime Weighted Equivalent Loads: Tower Fx, Tower station height= 0m (1.E+07 cycles)

    Inve

    rse

    SN

    Slo

    pe

    [-]

    dlc

    1.2

    a

    dlc

    1.2

    aa

    dlc

    1.2

    ab

    dlc

    1.2

    ac

    dlc

    1.2

    ad

    dlc

    1.2

    ae

    dlc

    1.2

    af

    dlc

    1.2

    ag

    dlc

    1.2

    b

    dlc

    1.2

    c

    dlc

    1.2

    d

    dlc

    1.2

    e

    dlc

    1.2

    f

    dlc

    1.2

    g

    dlc

    1.2

    h

    dlc

    1.2

    i

    dlc

    1.2

    j

    dlc

    1.2

    k

    dlc

    1.2

    l

    dlc

    1.2

    m

    dlc

    1.2

    n

    dlc

    1.2

    o

    dlc

    1.2

    p

    dlc

    1.2

    q

    dlc

    1.2

    r

    dlc

    1.2

    s

    dlc

    1.2

    t

    dlc

    1.2

    u

    dlc

    1.2

    v

    dlc

    1.2

    w

    dlc

    1.2

    x

    dlc

    1.2

    y

    dlc

    1.2

    z

    dlc

    2.3

    a

    dlc

    2.3

    b

    dlc

    4.1

    a

    dlc

    4.1

    b

    dlc

    4.1

    c

    dlc

    6.4

    a

    dlc

    6.4

    b

    To

    tal

    3 28.5 59.6 52.1 52.2 52.6 52.8 54.3 53.2 29.5 25.2 34.4 34.1 33.4 52.4 51.1 48.9 63.3 63.2 66.6 74.1 70.4 66.4 74.0 72.1 72.0 70.7 71.5 72.5 63.7 66.4 69.2 59.6 59.6 15.0 20.9 6.36 3.81 6.57 10.3 110 204

    4 30.9 73.9 70.2 70.6 71.1 77.9 80.4 78.6 32.4 26.5 35.2 34.7 33.8 53.0 50.9 48.6 63.4 63.3 66.3 76.6 72.4 68.1 78.9 76.7 77.1 77.7 78.8 80.0 73.9 77.3 80.9 74.3 74.0 32.5 42.3 8.75 6.85 12.4 9.80 159 194

    5 33.6 86.5 86.4 87.2 87.6 101 105 103 35.7 28.3 36.6 35.9 35.0 54.8 52.0 49.7 65.1 65.2 67.6 80.4 75.6 70.8 84.3 81.6 82.7 84.3 85.6 87.1 82.9 86.9 91.5 87.4 86.6 52.3 66.3 10.7 9.89 18.4 9.88 202 214

    6 36.4 98.0 101 102 103 122 127 126 38.8 30.1 38.2 37.2 36.4 57.0 53.6 51.2 67.4 67.7 69.3 84.7 79.1 73.7 90.0 86.5 88.4 90.5 92.0 93.8 91.1 95.7 101 99.4 98.0 72.5 90.7 12.5 12.7 24.3 10.1 239 244

    7 38.9 109 114 116 116 142 147 147 41.6 31.9 39.8 38.5 37.9 59.2 55.5 53.0 70.0 70.7 71.2 89.3 82.6 76.6 95.9 91.3 93.9 96.3 97.9 100 98.6 104 111 110 108 91.8 115 13.9 15.3 29.8 10.4 271 274

    8 41.2 118 126 129 129 160 166 167 44.1 33.7 41.3 39.7 39.4 61.3 57.3 54.7 72.7 73.7 73.1 94.0 86.0 79.5 102 95.9 99.2 102 104 106 106 111 120 120 118 110 137 15.2 17.6 34.8 10.7 300 301

    9 43.3 127 137 140 140 177 184 185 46.3 35.3 42.7 40.8 40.8 63.3 59.1 56.4 75.3 76.8 75.0 98.5 89.4 82.3 107 100 104 107 109 111 112 118 129 129 126 126 158 16.3 19.7 39.3 11.0 326 327

    10 45.2 136 147 151 151 192 200 203 48.2 36.8 44.0 41.8 42.2 65.1 60.9 57.9 77.8 79.7 76.8 103 92.5 84.9 113 105 109 112 114 116 118 124 137 137 133 142 178 17.3 21.6 43.4 11.4 349 350

    Table 10: Lifetime Weighted Equivalent Loads: Tower Fy, Tower station height= 0m (1.E+07 cycles)

    Inve

    rse

    SN

    Slo

    pe

    [-]

    dlc

    1.2

    a

    dlc

    1.2

    aa

    dlc

    1.2

    ab

    dlc

    1.2

    ac

    dlc

    1.2

    ad

    dlc

    1.2

    ae

    dlc

    1.2

    af

    dlc

    1.2

    ag

    dlc

    1.2

    b

    dlc

    1.2

    c

    dlc

    1.2

    d

    dlc

    1.2

    e

    dlc

    1.2

    f

    dlc

    1.2

    g

    dlc

    1.2

    h

    dlc

    1.2

    i

    dlc

    1.2

    j

    dlc

    1.2

    k

    dlc

    1.2

    l

    dlc

    1.2

    m

    dlc

    1.2

    n

    dlc

    1.2

    o

    dlc

    1.2

    p

    dlc

    1.2

    q

    dlc

    1.2

    r

    dlc

    1.2

    s

    dlc

    1.2

    t

    dlc

    1.2

    u

    dlc

    1.2

    v

    dlc

    1.2

    w

    dlc

    1.2

    x

    dlc

    1.2

    y

    dlc

    1.2

    z

    dlc

    2.3

    a

    dlc

    2.3

    b

    dlc

    4.1

    a

    dlc

    4.1

    b

    dlc

    4.1

    c

    dlc

    6.4

    a

    dlc

    6.4

    b

    To

    tal

    3 24.6 47.6 37.8 36.7 35.8 32.9 31.4 30.4 24.9 20.2 28.3 28.5 28.6 49.6 46.6 41.2 60.1 57.2 61.2 66.1 63.8 61.6 65.9 64.9 64.2 61.9 62.7 63.0 52.6 53.9 54.6 46.4 46.7 3.84 9.50 4.91 3.60 4.41 3.76 21.4 164

    4 27.3 57.7 48.9 47.4 46.3 45.8 43.7 42.2 27.6 20.6 28.4 28.3 28.6 49.4 45.7 40.0 58.7 55.9 59.7 66.4 63.5 61.8 68.3 66.9 66.2 66.4 67.4 67.4 59.9 61.2 61.8 55.9 56.3 8.33 19.9 8.01 7.66 8.68 3.24 33.7 134

    5 30.3 66.6 58.6 56.8 55.6 57.0 54.6 52.8 30.5 21.8 29.4 29.1 29.6 51.0 46.7 40.5 59.7 56.6 60.3 68.6 65.0 63.8 71.6 69.9 69.3 70.9 72.1 71.7 66.5 67.6 68.1 64.1 64.5 13.8 32.3 10.8 12.1 13.3 3.27 45.7 123

    6 33.0 74.8 67.4 65.3 64.2 67.0 64.2 62.5 33.1 23.1 30.7 30.2 31.0 53.1 48.2 41.6 61.5 58.3 61.7 71.8 67.2 66.7 75.0 73.2 72.7 75.0 76.6 75.8 72.5 73.5 73.7 71.5 71.9 19.6 45.3 13.3 16.5 17.9 3.57 57.0 120

    7 35.4 82.5 75.6 73.1 72.0 76.0 72.9 71.3 35.3 24.5 32.1 31.4 32.5 55.3 49.9 43.1 63.8 60.4 63.3 75.5 69.9 70.0 78.6 76.6 76.2 79.0 81.0 79.6 78.0 78.8 78.9 78.4 78.6 25.3 58.2 15.4 20.5 22.2 3.91 67.2 120

    8 37.4 89.9 83.1 80.3 79.3 84.0 80.7 79.3 37.2 25.7 33.6 32.6 34.0 57.6 51.6 44.7 66.2 62.6 64.9 79.5 72.7 73.6 82.0 80.1 79.7 82.8 85.1 83.3 83.0 83.7 83.8 84.9 84.9 30.7 70.4 17.2 24.2 26.1 4.23 76.5 121

    9 39.2 96.8 90.2 86.9 86.0 91.3 87.8 86.8 38.9 26.9 35.0 33.9 35.5 59.7 53.2 46.3 68.6 64.9 66.6 83.4 75.6 77.1 85.4 83.5 83.1 86.3 89.1 86.8 87.6 88.2 88.2 91.0 90.8 35.6 81.7 18.8 27.5 29.7 4.50 84.8 124

    10 40.7 103 96.7 93.0 92.2 97.9 94.3 93.5 40.3 27.9 36.4 35.0 36.9 61.8 54.7 47.8 70.9 67.1 68.1 87.3 78.5 80.6 88.5 86.8 86.2 89.6 92.8 90.0 91.8 92.4 92.3 96.7 96.2 40.2 92.1 20.1 30.5 32.9 4.73 92.3 127

    Table 11: Lifetime Weighted Equivalent Loads: Tower Fz, Tower station height= 0m (1.E+07 cycles)

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 13 of 19

    4 REQUIREMENTS OF THE SOIL FOR THE FOUNDATION

    It must be ensured that foundation soil properties comply with the assumptions made in the

    static and dynamic calculations for the towers design. This requirement is given for an ordinary

    slab foundation.

    For sites where they have poor soil conditions, the use of pile foundations could be an option.

    In connection with the settlement analysis it should be distinguished between immediate elastic

    and time dependent consolidation settlements. Calculations should provide information on the

    tolerance or variability in the settlement calculation. In this way, each soil layer contributing to

    the foundation settlement and stiffness must be thoroughly investigated. The depth to be

    investigated should at least equal the largest base dimension of the structure. The soil borings

    are to extend to at least this depth.

    4.1 SETTLEMENT

    To ensure the suitable behavior of the tower during operation, a maximum foundation inclination

    of 3mm/m is permissible. This value refers to the uneven settling due to constant load (dead

    weight) and not to an inclination during operation as a result of the external moments. The

    inclination occurring due to dead weight must be demonstrated by means of an adequate

    analysis.

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 14 of 19

    4.2 SOIL DYNAMICS REQUIREMENTS

    Particular attention needs to be paid to the requirements with regard to soil dynamics, since the

    wind turbines are structures that are subject to strong dynamic loads and stresses. It must be

    taken into account that the load excitation is not a static event but a dynamic one (excitation

    frequencies

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 15 of 19

    5 DESIGN CONDITIONS

    The foundation design to develop will take into account the following conditions:

    5.1 CONNECTION TOWER-FOUNDATION

    Acciona Windpower will design the connection between the foundation and the tower. The

    designer must request to AW the foundation assembly requirements.

    In case of the concrete tower, the connection between the tower and the foundation is done

    through several corrugated sheaths and a system of prestressing tendons as shown in next

    figure.

    Next plot shows the distribution of the External Prestressing tendons and the anchor system

    used.

    Figure 4: Detail of the anchoring prestressing tendons at the tower foundation.

    This drawing is contained in DI0021 of Acciona Windpower and it is attached as an annex in

    this report. See Annex A at the end of the report.

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 16 of 19

    The designer of the foundation must take into account the forces due to the anchoring of the

    prestressing cable. The foundation have to be design to resist 6 punctual loads of 3333 kN

    each. These loads consist of 6 prestressing groups, as shown in the previous figure.

    5.2 GENERAL FOUNDATION REQUIREMENTS

    The requirements for the foundation are collected in General Document DG200336 of Acciona

    Windpower. This General Document includes the design of a General Foundation, Concrete

    Ground Floor, selected backfill and preassembly slabs for concrete tower erection.

    The design could vary depending on the particular soil.

    Figure 5: Scheme of the Backfill, according to DG200336

    The previous issues are civil work competences. Their correct implementation following AWs

    indications is needed for erecting the concrete tower.

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 17 of 19

    5.3 EARTHING SYSTEM

    The earthing system consists of two parts: the general earthing system and the earthing system

    for each wind turbine, which is connected to the general system.

    The final topology of an earthing system depends on the location of the W.F., since it depends

    on the characteristics of the ground (electric resistivity, homogeneity, stratification, etc.) and on

    the current regulation where the wind turbine is assembled.

    The designer must include on the foundation drawings the earthing system sketch according to

    AW specifications and drawings.

    After all, the earthing system resistance must be less than 10;

    The AW documents show an example of the earthing system execution. the earthing system

    configuration depends on the current and local regulation where the wind turbine is assembled.

    The earthing system for each wind turbine must be connected to the general earthing system of

    the wind farm with 50mm2 copper.

    The foundation drawings will have to take into account the holes for the wind farm general

    wiring installation.

    5.4 FLOOD LEVEL

    In order to avoid the water accumulation over the tower base level or into the pedestal catchpit,

    the design and the construction of the foundation, of the assembly platform and of the site

    access must assure that the flood level is under the top pedestal level. For it, the designer must

    study the flood risk and design the drainage necessary of the different elements (foundation,

    assembly platform and site access).

  • CALCULATION REPORT Doc.: LC_FL_2CTP1

    Rev.: E

    LOAD CALCULATION-FOUNDATION LOADS AW 116/3000 IEC-IIA TH120

    AW56.7

    Page: 18 of 19

    ANNEX A. DI0021 TH120 FOR TURBINE AW3000. TH

    CONNECTION WITH FOUNDATION

  • DOCUMENTOS GENERALES

    GENERAL DOCUMENTATION

    Doc.: DG200297

    Rev.: D

    REQUERIMIENTOS TCNICOS DE LA CIMENTACIN AW3000

    AW3000 FOUNDATION TECHNICAL REQUIREMENTS P. 1 / 12

    Rev Fecha Date

    Descripcin de la revisin Description of the revision

    A A" 24/02/12 Elaboracin / First edition

    B 10/08/12 Modificaciones generales. Se ha concretado ms en las acometidas elctricas / General modifications. Electrical connections has been specified more

    C 08/10/13 Modificado material hormign del pedestal y valor capacidad portante del terreno / Pedestal concrete material and soil requirement value modified.

    D 21/11/13 Se elimina referencia a los LC_FLs / Reference to LC_FLs removed

    E

    Realizado / Done Revisado / Reviewed Aprobado / Approved

    En caso de duda prevalecer la versin en castellano/ In case of doubt, the Spanish version shall prevail. 2013 ACCIONA WINDPOWER S.A. Todos los derechos reservados / All rights reserved

    AW3000

    19-11-2013 21-11-2013 22-11-2013

  • DOCUMENTOS GENERALES

    GENERAL DOCUMENTATION

    Doc.: DG200297

    Rev.: D

    REQUERIMIENTOS TCNICOS DE LA CIMENTACIN AW3000

    AW3000 FOUNDATION TECHNICAL REQUIREMENTS P. 2 / 12

    1. INTRODUCCIN

    En el presente documento se describen las

    caractersticas generales de la cimentacin para la

    mquina AW3000 y se indican especificaciones

    tcnicas requeridas por Acciona Windpower para

    realizar su diseo.

    2. GENERALIDADES

    Existen distintos modelos de aerogenerador

    AW3000 en funcin de la clase del emplazamiento

    y el tipo de torre y su altura. Estos parmetros

    definen inicialmente el diseo de la cimentacin de

    la turbina, sin embargo existen otros muchos

    aspectos a tener en cuenta relacionados con las

    caractersticas particulares encontradas en campo.

    En el presente documento se pretende aportar una

    descripcin tcnica general para la cimentacin de

    la mquina AW3000.

    3. TIPOS DE ZAPATAS

    Las turbinas elicas se encuentran sujetas a

    fuertes cargas dinmicas y estticas, y la zapata es

    el elemento fundamental que sirve de soporte

    estructural para toda la mquina. Evita el vuelco y

    el hundimiento, recibiendo todas las cargas desde

    la torre realizando el soporte mecnico.

    El aerogenerador AW3000 puede ir montado

    sobre 2 tipos de torres distintas: de acero o de

    hormign. De esta forma, para que la torre y la

    cimentacin trabajen de manera solidaria debe de

    adaptarse la zapata a cada tipo de estructura.

    1. INTRODUCTION

    This document provides a general overview of the

    foundation characteristics for the AW3000 and

    references certain technical specifications from

    Acciona Windpower required for designing the

    applicable foundation.

    2. GENERAL INFORMATION

    Acciona Windpower offers the AW3000 with

    different hub heights and rotor options, and the

    foundation design will vary according to these

    different product variants. In addition, the design

    will be further defined by the actual site conditions

    of each turbine. The intent of this document is to

    provide a general technical description of the

    foundations for the AW3000 platform.

    3. FOUNDATION TYPES

    Wind turbines are exposed to high dynamic and

    static loads, and the principal means of support for

    the machine is the foundation. It avoids overturning

    or subsidence, as it is the mechanical support for all

    the loads coming from the tower.

    The AW3000 wind turbine can be assembled on

    two different types of towers: steel or concrete.

    Correspondingly, there are two different foundation

    types for each of these options:

  • DOCUMENTOS GENERALES

    GENERAL DOCUMENTATION

    Doc.: DG200297

    Rev.: D

    REQUERIMIENTOS TCNICOS DE LA CIMENTACIN AW3000

    AW3000 FOUNDATION TECHNICAL REQUIREMENTS P. 3 / 12

    Existen por lo tanto 2 tipos de zapatas para los 2

    tipos de torres posibles:

    3.1. Zapata para la torre de acero

    La unin de la torre a la cimentacin se realiza

    mediante una corona formada por una doble hilera

    concntrica de pernos, embebida en una zapata de

    hormign armado. Dicha doble hilera de pernos

    sobresale por la parte superior de la zapata para

    atornillarla al primer tramo de torre.

    De manera general la zapata ser de forma

    octogonal, y el esquema de la misma junto con la

    armadura cortante correspondiente a la torre de

    acero se muestran a continuacin:

    3.1. Steel tower slab

    The union of the tower to the foundation is

    achieved by means of a ring with two concentric

    rows of studs, which is embedded inside a

    reinforced concrete slab. That double ring of studs

    protrudes from the upper side of the slab to tension

    to the tower.

    Generally, the slab will be octagonal, and a

    generic diagram of the slab with the shear

    reinforcement related to the steel tower is shown

    below:

    Zapata para torre de acero / Slab for Steel tower

    En estas zapatas generalmente nos encontramos

    con ms armadura y menos hormign de lo que

    hay en las zapatas para torres de hormign. Para la

    nivelacin con el primer tramo de la torre, el

    mortero de nivelacin es sustituido por la brida

    superior de la cimentacin. As mismo, el carrete de

    There is typically more steel and less concrete than

    the concrete tower foundation. For the leveling with

    the first tower section, the grout is replaced with the

    upper foundation flange. Similarly, the foundation

    stud ring of the slab is shown below:

  • DOCUMENTOS GENERALES

    GENERAL DOCUMENTATION

    Doc.: DG200297

    Rev.: D

    REQUERIMIENTOS TCNICOS DE LA CIMENTACIN AW3000

    AW3000 FOUNDATION TECHNICAL REQUIREMENTS P. 4 / 12

    pernos localizado en la zapata se muestra a

    continuacin:

    3.2. Zapata para la torre de hormign

    La torre de hormign es una estructura

    compuesta por elementos prefabricados llamados

    dovelas. Estas se unen a la cimentacin mediante

    la introduccin de las barras que sobresalen de las

    dovelas del primer tramo en unas vainas

    localizadas en la zapata. Posteriormente se

    rellenan dichas vainas con mortero y se procede a

    la realizacin del anillo de cimentacin, ambos con

    mortero de alta resistencia, para su unin final.

    De la zapata tambin sobresalen las barras para

    realizar el post-tensado de la torre una vez estn la

    torre y la nacelle montadas.

    El esquema general de la zapata correspondiente

    a la torre de hormign y el de la unin torre-zapata

    en las vainas puede verse en las siguientes figuras:

    3.2. Concrete tower slab

    The concrete tower is a structure consisting of

    precast concrete elements called keystones. These

    first section keystones are joined to the foundation by

    inserting its outstanding bars into the slab sheaths.

    These sheaths are filled with mortar. For the final

    assembly, the foundation mortar is created.

    Also, 6 groups of four bolts protrude from the slab

    for the tower post-tensioning once the tower and the

    nacelle are assembled.

    A generic diagram of the slab for concrete tower

    and the tower-slab union at the sheath is shown in

    the following pictures:

  • DOCUMENTOS GENERALES

    GENERAL DOCUMENTATION

    Doc.: DG200297

    Rev.: D

    REQUERIMIENTOS TCNICOS DE LA CIMENTACIN AW3000

    AW3000 FOUNDATION TECHNICAL REQUIREMENTS P. 5 / 12

    Zapata para torre de hormign con detalle de las vainas y los pernos post-tensado / Slab for concrete tower with the sheaths and post

    tension anchoring bolts detailed

    El premontaje de la torre se realiza en una serie

    de losas donde se irn dejando los tramos para su

    levantamiento. Las losas se podran colocar de 2

    maneras: radialmente alrededor de la torre, o en

    lnea recta una tras otra. A continuacin se muestra

    un esquema general del relleno y las losas de

    premontaje:

    The keystone pre-assembly takes place next to the

    wind turbine foundation on concrete slabs as shown

    in the diagrams below. The slabs could be placed by

    2 ways: radially around the tower, or in line.

  • DOCUMENTOS GENERALES

    GENERAL DOCUMENTATION

    Doc.: DG200297

    Rev.: D

    REQUERIMIENTOS TCNICOS DE LA CIMENTACIN AW3000

    AW3000 FOUNDATION TECHNICAL REQUIREMENTS P. 6 / 12

    4. PUESTA A TIERRA

    El diseo de la puesta a tierra del aerogenerador

    AW3000 debe asegurar la proteccin completa de

    la mquina. Para dicha proteccin existen dos

    partes en el sistema de red de tierras: una toma de

    red general para todo el parque elico (a travs de

    un cable de cobre desnudo de 50 mm2), y la toma

    de tierras de cada turbina en particular que ir

    unida a la red general.

    Los sistemas de proteccin contra rayos y puesta

    a tierra estn diseados y certificados conforme a

    la norma Germanicher Lloyd Guideline for the

    classification of Windturbines (Edition 2003 with

    suplement 2004) Rules and Guidelines IV

    Industrial Services, Part 1. En el documento

    DG200233 se ha hace una explicacin ms

    detallada de los requerimientos de proteccin

    contra rayos y puesta a tierra.

    4. GROUNDING

    The AW3000 grounding design should assure the

    complete protection of the machine from Electrical

    Over-Voltages. This target is achieved by using a

    general grounding grid for the collection system (with

    a copper cable of 50 mm2), and an individual

    grounding grid for each wind turbine, which should all

    be connected to the collection system grounding grid.

    The grounding system is designed and certified

    according to Germanicher Lloyd Gudeline for the

    classification of Windturbines (Edition 2003 with

    suplement 2004) Rules and Guidelines IV Industrial

    Services, Part 1. A more detailed explanation of the

    lightning and grounding requirements can be found in

    specification DG200233.

  • DOCUMENTOS GENERALES

    GENERAL DOCUMENTATION

    Doc.: DG200297

    Rev.: D

    REQUERIMIENTOS TCNICOS DE LA CIMENTACIN AW3000

    AW3000 FOUNDATION TECHNICAL REQUIREMENTS P. 7 / 12

    La puesta a tierra depende de la resistividad del

    terreno y puede verse afectada por normativas

    locales. A modo de ejemplo, el sistema se

    compone de un primer rombo de pletinas de acero

    galvanizado que se coloca antes de empezar a

    poner la armadura y la corona de pernos (en el

    caso de la torre de acero) y del que sobresalen

    prolongaciones centrales por encima de la parte

    superior de la zapata y que van unidas al sistema

    de tierras de la torre y de la red general del parque.

    The grounding system depends on soil resistivity

    and can be affected by local regulations. As an

    example, this system below consists in a rhombus

    with galvanized steel flanges, that is installed before

    laying the mesh reinforcement and the bolt crown (for

    steel tower), with central extensions above the higher

    side of the slab and connected to the general

    grounding grid and the tower grounding grid.

    La otra parte de la puesta a tierra consiste en una

    serie de anillos de cobre al nivel de la parte

    superior de la zapata una vez est ya hormigonada,

    y alrededor de la acera sobre la superficie de la

    zahorra a 1 metro del aerogenerador. De esta

    manera se garantiza la equipotencialidad en la

    zona de influencia de la turbina.

    The other part of the grounding system are

    concentric rings on the top side of the slab after

    ending the concreting, and around the graded

    aggregate surface of 1 meter from the turbine tower.

    Thus, the equipotentiality on the turbine influence

    zone is secured.

  • DOCUMENTOS GENERALES

    GENERAL DOCUMENTATION

    Doc.: DG200297

    Rev.: D

    REQUERIMIENTOS TCNICOS DE LA CIMENTACIN AW3000

    AW3000 FOUNDATION TECHNICAL REQUIREMENTS P. 8 / 12

    Se debe garantizar que este sistema de tierras

    posea una resistencia mnima igual o inferior a 10

    . En la siguiente figura se muestra una vista en

    planta del sistema:

    It must be assured that the grounding termination

    shall have an equal or lower resistance than 10 . In

    the figure below the grounding system can be seen:

    5. ACOMETIDAS ELCTRICAS

    Es importante en el diseo de la cimentacin

    tener en cuenta la distribucin de los cables de

    potencia y de control de la mquina. La red de

    cables para la conexin elctrica ir introducida a

    travs del interior de la zapata para acabar

    sobresaliendo por la arqueta inferior de la torre. En

    5. ELECTRICAL CONNECTIONS

    It is important to take into account the layout of the

    control and power cables for the foundation design.

    Cable grid for electrical connection will be guided

    through the foundation to the central collection box.

    A more detailed explanation of the electrical

    interfaces can be found in specification DG200311.

  • DOCUMENTOS GENERALES

    GENERAL DOCUMENTATION

    Doc.: DG200297

    Rev.: D

    REQUERIMIENTOS TCNICOS DE LA CIMENTACIN AW3000

    AW3000 FOUNDATION TECHNICAL REQUIREMENTS P. 9 / 12

    el documento DG200311 se hace una explicacin

    ms detallada del interfaz elctrico.

    La turbina puede ir conectada a travs de 3

    cables unipolares o uno tripolar, y en funcin del

    tipo de torre los cables y los tubos que los

    contienen pueden variar.

    En el caso de emplear cables unipolares, el de

    mayor tamao es de 630mm2 seccin, e ir a

    travs de la zapata de la siguiente manera:

    Torre de hormign

    Los 3 cables unipolares conducidos a

    travs de un tubo de 200mm de dimetro.

    Torre de acero

    Los 3 unipolares irn cada uno en 3

    tubos de 90mm de dimetro, y debern

    atravesar el carrete de pernos por el

    mismo par de pernos para evitar campos

    elctricos inducidos.

    En el caso de emplear cable tripolar, el cable

    ms grande considerado constar de 3x400 mm2

    de seccin, con un radio de curvatura muy grande

    de 2000mm aprox.

    En este caso ser necesario un diseo especial

    de la cimentacin debido a que la acometida

    elctrica a travs de la zapata es ms complicada.

    Torre de hormign

    El tripolar 3x400mm2

    ir a travs de un tubo

    de 200mm de dimetro. El acceso del tubo

    debera hacerse por debajo de la zapata

    debido al radio de curvatura del cable.

    The turbine can be connected with three-conductor

    cable or just one single-conductor cable, and the

    different tower types can accommodate the cables of

    varying size as follows.

    In case of single-conductor cables, the largest

    considered has 630mm2 of section and will be

    guided by the slab:

    Concrete tower

    The 3 single-conductor cables will be

    guided with 1 conduit of 200mm diameter.

    Steel tower

    The 3 single-conductor cables will be

    guided with 3 conduits of 90mm diameter,

    and will get into the stud ring between the

    same couple of bolts to prevent the induction

    of magnetic fields.

    In case of three-conductor type cable, the

    largest considered is 3x400mm2 of section, with a big

    bending radius of 2000mm approx.

    A special foundation design will be necessary,

    because the electrical connection through the

    foundation is more complicated.

    Concrete tower

    The 3x400mm2

    cable will be guide with 1

    conduit of 200mm diameter. The conduit should

    be guided from the bottom because of the big

    bending radius.

  • DOCUMENTOS GENERALES

    GENERAL DOCUMENTATION

    Doc.: DG200297

    Rev.: D

    REQUERIMIENTOS TCNICOS DE LA CIMENTACIN AW3000

    AW3000 FOUNDATION TECHNICAL REQUIREMENTS P. 10 / 12

    Torre de acero

    En este caso, no hay suficiente espacio

    entre los pernos del carrete de la zapata

    como para que pueda pasar el cable a

    travs de ellos. As que hay 2 opciones:

    - Intruducir el cable tripolar a travs

    de un tubo de 200m de dimetro

    por debajo de la zapata.

    - Introducir el tubo normalmente a

    travs de la zapata y bifurcar el

    cable antes de llegar al carrete de

    pernos.

    Estas dimensiones de tubos son vlidas tambin

    para los cables equivalentes de la mtrica AWG.

    Steel tower

    In this case, the steel tower wind

    generators have less space between

    foundation studs, and the conduit does not fit

    between them. So there are 2 options:

    - Guide the three-conductor cable with 1

    conduit of 200mm from the slab bottom.

    - Guide the conduit through the

    foundation and divide the three-

    conductor before the stud ring.

    These conduit dimensions are valid for the

    equivalent cables of AWG metric.

    Los cables de toma de tierras y de potencia de la

    mquina irn en un tritubo de 50mm de dimetro.

    En emplazamientos donde se den condiciones de

    inundacin, debido a que la cota del terreno

    circundante es mayor, los tubos irn sellados para

    impedir el acceso del agua a los mismos.

    6. CARACTERSTICAS DE LOS MATERIALES

    La zapata debe ser capaz de soportar las cargas

    estticas y dinmicas calculadas en el diseo de la

    torre al igual que el terreno debe de poder soportar

    toda la estructura. En funcin de esto, se disea la

    zapata de unas dimensiones y con unos materiales

    determinados.

    Los requerimientos de cargas de Acciona

    Windpower para la cimentacin vienen

    The grounding and the power cables will be guided

    with three conduits of 50mm of diameter.

    In locations with a high flooding probability, due to

    the higher elevation of the terrain all around, the

    conduits need to be sealed to prevent water access.

    6. MATERIAL CHARACTERISTICS

    The slab must be able to support the static and

    dynamic loads estimated during the tower design and

    the soil must be able to support the structure.

    Consequently, the slab is designed with specific

    materials and dimensions particular to the site.

    Acciona Windpower's foundation loads requirements are

    specified in the corresponding foundation load reports.

  • DOCUMENTOS GENERALES

    GENERAL DOCUMENTATION

    Doc.: DG200297

    Rev.: D

    REQUERIMIENTOS TCNICOS DE LA CIMENTACIN AW3000

    AW3000 FOUNDATION TECHNICAL REQUIREMENTS P. 11 / 12

    especificados en los correspondientes informes de

    cargas de cimentacin.

    6.1 Materiales de la zapata

    Los materiales de los que se compone la

    zapata de la mquina AW3000 deben tener

    de manera general las siguientes

    caractersticas (tanto para la torre de acero

    como para la de hormign):

    6.1 Slab materials

    The slab materials for AW3000 shall have

    the following characteristics (for steel tower

    and concrete tower):

    Hormign / Concrete:

    Hormign del pedestal / Pedestal concrete HA-30/F/40/IIa

    Hormign de zapatas / Slab concrete HA-30/F/40/IIa

    Hormign de limpieza / Cleaning concrete HL-150/C/TM

    Acero / Steel:

    Acero pasivo / Reinforcing steel B-500S

    Acero chapas / Plate steel

    Brida superior para montaje / Upper flange (assembly template) S355 JR

    Brida inferior / Lower flange

    6.2 Caractersticas del terreno

    Al igual que la zapata, es importante

    cerciorarse de que el terreno es capaz de

    resistir el conjunto de cargas transmitidas

    al mismo. Para ello inicialmente se debe

    realizar un estudio geotcnico donde se

    detalle fundamentalmente los aspectos que

    se detallan debajo. En el caso de que

    Acciona Windpower disee una

    cimentacin para el cliente, el documento

    DG200076 explica estos requerimientos

    con mayor detalle:

    - Referencia al marco geolgico

    6.2 Soil characteristics

    It is important to ensure that the soil is able

    to support the full loads transmitted from the

    tower. A geotechnical study is required

    taking into consideration the following

    aspects. In the case of Acciona Windpower

    designing a foundation for a customer, the

    specification DG200076 explains these

    requirements in more detail:

    - Reference to the geological conditions

  • DOCUMENTOS GENERALES

    GENERAL DOCUMENTATION

    Doc.: DG200297

    Rev.: D

    REQUERIMIENTOS TCNICOS DE LA CIMENTACIN AW3000

    AW3000 FOUNDATION TECHNICAL REQUIREMENTS P. 12 / 12

    - Las caractersticas geotcnicas

    - Condiciones hidrogeolgicas

    - Condiciones de inundacin

    - Estabilidad del terreno en el entorno

    - Estudios ssmicos

    - Agresividad del terreno al hormign

    - Resistividad

    - Capacidad portante del terreno

    Se establece como norma general una

    capacidad portante de 3kg/cm2. Y por otro

    lado debe poseer una resistencia elctrica

    mxima de 10 para proteger a la

    mquina.

    En lugares donde las condiciones del

    terreno sean muy pobres (zonas

    inundables), el empleo de cimentacin

    pilotada puede subsanar problemas.

    - Geotechnical characteristics

    - Hydro-geological conditions

    - Flood level conditions

    - Slope stability analysis

    - Seismic studies

    - Aggressiveness

    - Resistivity

    - Soil-bearing capacity

    The general soil requirement must be

    3kg/cm2. And also, the soil must have a

    maximum resistivity of 10 to ensure the

    protection of the turbine.

    When the characteristics of the soil are too

    poor to provide the necessary stiffness (as at

    flooded areas) soil remediation, aggregate

    piers, or piles may be required.

  • INSTALLATION / INSTALACIN :

    A 1 A 2 A 3 Ref Proveedor Ref PDM

    1YAW BEARING GREASE/ GRASA

    RODAMIENTO YAWShell Rhodina BBZ 01-05-14 02-10-08

    YAW BEARING / Rodamiento

    Yaw

    2BLADE BEARING GREASE /

    GRASA RODAMIENTO PALAKluberplex Bem 41-141. 01-05-14

    BLADE BEARING /

    Rodamiento Pala

    3

    LOW SHAFT BEARING AND

    PITCH CYLINDER COUPLING

    GREASE / GRASA RODAMIENTO

    EJE LENTO Y RTULA CILINDRO

    PITCH

    LGWM 1. Shell 01-05-14 22-03-06

    LOW SPEED SHAFT AND

    PITCH CYLINDER COUPLING

    / Eje Lento y Rtula cilindro

    Pitch

    4 YAW PINION GEAR GREASE /

    GRASA DIENTES CORONA YAWCEPLATTYN BL. 01-05-14 03-04-09

    YAW PINION GEAR /

    Dientes Corona Yaw

    5GEARBOX OIL / ACEITE

    MULTIPLICADORAMOBILGEAR SHC XMP. 01-05-14 02-01-06 GEARBOX / Multiplicadora

    6 SILICONE / SILICONA SIKAFLEX 11FC+ 01-02-08 SIKA, S.A. - 01-05-14 01-09-04SEALING + STICKING /

    Sellado + PegadoNO N.A.

    7HYDRAYLIC GROUP OIL /

    ACEITE GRUPO HIDRULICOVESTA HV-32 01-05-14 01-07-03

    HYDRAULIC GROUP / Grupo

    Hidrulico

    8GEAR GREASE / GRASA

    REDUCTORASShell Morlina S4B 01-05-14 Gear / Reductoras

    9

    GENERATOR BEARING GREASE /

    GRASA RODAMIENTO

    GENERADOR

    Beslux Liplex M-1-2S 01-05-14 25-10-05GENERATOR BEARING /

    Rodamiento Generador

    10LITHIUM GREASE (LADDER) /

    GRASA LITIO (ESCALERA)Molykote G4500. 01-05-14 11-04-12

    LADDER PINIONS / Piones

    escalera

    11 AEROSOL SPRAY FT WX2100 Cytonix Corporation 01-05-14 Sensor FT

    12HOIST LUBRIFIANT / SPRAY

    LUBRICANTE POLIPASTOVERKOL CADENAS 01-05-14 01-07-07

    Hoist chain lubrifiant /

    Lubricacin cadena

    polipasto

    13 NITROGEN / NITRGENO 01-05-14ELECTRICAL SYSTEM /

    Sistema elctrico (Celdas)

    14 SOLVENT / DISOLVENTE Disolvente Universal 01-02-08 ALP PINTURAS, S.A. 1263 01-05-14 22-06-09NACELLE & HUB CLEANING

    / Limpieza nacelle y bujeYES / SI X

    HARMFUL /

    NOCIVO

    STORE BETWEEN 5C AND 40C

    / Almacenar entre 5C y 40C

    15ANTIFREEZE /

    ANTICONGELANTEAntifrogen N (Clariant)52.5% v/v. Suministros Buelna 01-05-14 10-04-13 Ground

    Mezcla: 52,5% Antifrogen

    N (Clariant) y 47,5% agua

    destilada

    1012373y

    1012373_2.

    16 PAINT / PINTURA Pintura normalizada Ral Spray 01-02-08 PRODUCTOS QUIMICOS FM 2005L 1950 01-05-14 01-02-12 MARKING PAINT / Pintura

    para sealizacinYES / SI X X

    STORE BETWEEN 5C AND 40C

    / Almacenar entre 5C y 40C

    17 PAINT / PINTURA Zinco Spray Talken 01-02-08 TALKEN COLOR 1950 01-05-14 31-07-12

    PROTECTION MECHANIZED

    SURFACES / Proteccin de

    superficies mecanizadas

    YES / SI X X X N.A.

    18 GLUE / PEGAMENTO LOCTITE 2701 01-05-14 08-10-12

    19 GLUE / PEGAMENTO Loctite 542 01-02-08 LOCTITE - 01-05-14 21-06-12 < 1 L.PIPES SEALING / Sellador

    de tuberasYES / SI

    DAMAGING /

    NOCIVO

    STORE BETWEEN 8C AND 21C

    /Almacenar entre 8C y 21C

    20 GLUE / PEGAMENTO LOCTITE 7850 01-02-08 LOCTITE - 01-05-14 08-07-10 < 1 L.Degreasant /

    DesengrasanteNO N.A.

    21CONCRETE TOWER CABLES GREASE / GRASA TENDONDES TORRES HORMIGNGrease as described on ETA-05/0123 DYWIDAG 01-05-14

    CONCRETE TOWER CABLES

    / Tendones Postesado torres

    hormign

    INVENTORY OF CHEMICAL SUBSTANCES / INVENTARIO DE SUSTANCIAS QUMICAS

    AW 3000

    WIND FARM / PARQUE ELICO

    NCommon Name / Nombre

    comn

    Purchase

    Code /

    Cd.

    Compras

    Trade Name / Nombre comercial

    Mutual Soc.

    eval. Date /

    Fecha eval.

    Mutua

    Flammable /

    InflamableManufacturer / Fabricante N UN

    Registrat

    ion Date

    / Fecha

    alta

    Termina

    tion

    Date /

    Fecha

    baja

    Safety Data

    File (SDF)

    Date / Fecha

    Ficha de

    Datos de

    Seguridad

    Storage place / Lugar

    de almacenamiento

    Toxic /

    Txico

    Corrosive /

    Corrosivo

    Irritant /

    Irritante

    Compress

    ion Gas?

    / Gas a

    presin?

    Storage Safety Remarks /

    Observaciones de seguridad para

    almacenamiento

    Average

    Quantity

    /

    Cantidad

    Media

    Use / Utilizacin

    ACTIVITIES/TECHNOLOGIES

    ACTIVIDADES/TECNOLOGASSafety Yellow

    Sheet (SYS) /

    Hoja Amarilla de

    Seguridad (HAS)

    Hazardous? /

    Peligroso?

  • ALSTOM ECO 110

  • CONFIDENTIAL DOCUMENT

    RENEWABLE POWER WIND

    Alstom Renovables Espaa, S.L.

    Roc Boronat, 78. 08005 Barcelona, Spain

    Phone: +34 932 257 600

    Fax: +34 932 210 939

    www.power.alstom.com

    TECHNICAL DESCRIPTION

    DST-0650 Rev. 02

    TITLE: ECO 100/110 T90 ANCHOR BOLTS FOUNDATION DESCRIPTION

    Author: Checked by: Approved by:

    A. Ortiz C. Freitas J. Boyra

    REVISIONS

    Rev. Date Author

    00 15/03/2013 AO

    01 10/10/2013 AO

    02 19/11/2013 KB

    PROPRIETARY INFORMATION OF ALSTOM

    The information contained herein is ALSTOM proprietary information and has been disclosed in confidence.

    Any use, disclosure or reproduction of this information without ALSTOMs written permission is a violation of

    ALSTOMs right. Unpublished work. ALSTOM 2013. All rights reserved.

    ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation

    or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This

    will depend on the technical and commercial circumstances. It is provided without liability and is subject to change

    without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly

    prohibited.

    Copyright 2013 ALSTOM. All rights reserved. ALSTOM and the logo ALSTOM and its variations are trademarks

    and service trademarks of ALSTOM. Any other names mentioned are the property of their respective owners.

    FRM-0966-EN_R07

  • 2 / 4

    DST-0650 Rev. 02

    ECO 100/110 T90 ANCHOR BOLTS FOUNDATION DESCRIPTION

    Copyright 2013 ALSTOM. All rights reserved.

    CONFIDENTIAL DOCUMENT

    TABLE OF CONTENTS

    1. Aim .................................................................... 2

    2. Scope ................................................................. 2

    3. Foundation description....................................... 3

    1. AIM

    This specification is a technical description of the

    general configuration of the standard foundation of

    ALSTOM wind turbines.

    2. SCOPE

    WTWTWTWT

    50

    Hz

    50

    Hz

    50

    Hz

    50

    Hz

    60

    Hz

    60

    Hz

    60

    Hz

    60

    Hz

    RemarksRemarksRemarksRemarks

    ECO74 --

    ECO80 CII --

    ECO80 CIII --

    ECO80 2.0 --

    ECO86 --

    ECO100 T90m tower with anchor bolts

    ECO110 T90m tower with anchor bolts

    ECO122 --

    HAL150 --

  • 3 ECO 100/110 T90 ANCHOR BOLTS FOUNDATION DESCRIPTION

    DST-0650 Rev. 02

    Copyright 2013 ALSTOM. All rights reserved.

    CONFIDENTIAL DOCUMENT

    3. FOUNDATION DESCRIPTION

    The ALSTOM foundation design is a standard

    foundation design suitable for a range of different

    soils.

    The standard foundation is made of an octagonal slab

    with variable depth of reinforced concrete and an

    octagonal pedestal of reinforced concrete where the

    connection to the tower is made through anchor

    bolts. It is manufactured in situ, below the natural soil

    level and its configuration uses the filling soil weight

    over the slab to contribute to stabilize the wind

    turbine.

    If the foundation design is made by the Client,

    ALSTOM will supply the design requirements such as

    the loads at tower base, connection details or earthing

    system.

    In order to avoid issues during the service life in the

    wind turbine, the foundation shall be able to carry the

    loads at tower base, keep the stiffness at tower base

    and fulfil ALSTOM requirements and local standards.

    Fig. 1- Standard foundation for ECO 100/110 T90m with anchor bolts.

  • 4 / 4

    DST-0650 Rev. 02

    ECO 100/110 T90 ANCHOR BOLTS FOUNDATION DESCRIPTION

    Copyright 2013 ALSTOM. All rights reserved.

    CONFIDENTIAL DOCUMENT

    GENERAL SPECIFICATIONS

    Slab concrete (C30/37) 475 m3

    Pedestal concrete (C40/50) 15 m3

    Levelling concrete (C20/25) 27 m3

    Reinforcement (S500) Approx. 33 000 kg

    Excavation 1 195 m3 1)

    Backfill 710 m3 1)

    ANCHOR BOLTS

    Quantity 2 rows of 76 bolts

    Quality 10.9

    Type M36 ISO 898-1

    Total length 3 000 mm

    HIGH STRENGTH GROUT

    Minimum comp. strength 80 MPa

    EMBEDDED FLANGE

    Interior diameter 3 850 mm

    Exterior diameter 4 530 mm

    Thickness 50 mm

    Quality S355

    TEMPLATE FLANGE

    Interior diameter 3 890 mm

    Exterior diameter 4 490 mm

    Thickness 30 mm

    Quality S355

    Table 1- General specifications. 1) Approximate volume calculated considering a relation 2/1 in slope walls.

    The standard foundation design presented is only

    applicable when the soil fulfils the following

    conditions:

    Maximum characteristic design soil pressure: 250 kN/m2 at point of resultant

    load (no partial safety factors included).

    Maximum characteristic design peak pressure: 312 kN/m2 (no partial safety

    factors included).

    Maximum ground water level up to the bottom of the foundation.

    Minimum dynamic rotational stiffness values in the range indicated in

    foundations loads report.

  • General Tower bolts re-tightening12x750 gr Grease Unimoly Plus

    General Nacelle Frame Re-Tightening I12x750 gr Grease Unimoly Plus

    General Crane inspection 750 ml Brugarolas Beslux Camin 150WR (spray)

    General Nacelle Frame Re-Tightening II12x750 gr Grease Unimoly Plus

    Drive Train Gearbox Oil replacement 385 l Mobilgear SHC XMP 320. Contact with spare parts management

    Drive Train Rotor bearings inspection and greasing25000 gr KLBER ISOFLEX TOPAS L 152.

    Drive Train HSS coupling retightening. KTR RADEX-N 22012x750 gr Grease Unimoly Plus

    Drive Train LSS re-tightening12x750 gr Grease Unimoly Plus

    System Activity Quantity Units

    Type of Grease and oil can change for CCV or DCV.

    More detailed information in preventive manual

  • General Tower bolts re-tightening12x750 gr Grease Unimoly Plus

    System Activity Quantity Units

    Type of Grease and oil can change for CCV or DCV.

    More detailed information in preventive manual

    Drive Train Gearbox General Inspection and oil test12x750 gr Grease Unimoly Plus

    Blades Blade re-tightening12x750 gr Grease Unimoly Plus

    Yaw System Gear oil substitution 11 l MOBIL SHC XMP 320

    Yaw System Yaw re-tightening12x750 gr Grease Unimoly Plus

    Yaw System Gliding track greasing 3 l KLBER Staburags NBU 12 Altemp

    Yaw System Radial guide track greasing 3 l KLBER Staburags NBU 12 Altemp

    Yaw System Yaw crown and pinnions greasing 1000 gr KLBERPLEX AG 11-462

  • General Tower bolts re-tightening12x750 gr Grease Unimoly Plus

    System Activity Quantity Units

    Type of Grease and oil can change for CCV or DCV.

    More detailed information in preventive manual

    Yaw System Brake pads substitution600 gr Lubricant Grease Kluber Duotempi PMY 45

    Park Brake Park brake re-tightening12x750 gr Grease Unimoly Plus

    Hydraulic System Oil inspection200 l Klber-Summit HYSYN FG32 (Qty required 20L)

    Generator Automatic grease feeding system inspection. BEKA-MAX OC-125000

    1000

    gr

    grKlber BEM 41-132 (qty needed 2kg)

    Generator Bearing manual greasing25000

    1000

    gr

    grKlber BEM 41-132 (qty needed 2kg)

    Generator Generator re-tightening12x750 gr Grease Unimoly Plus

    Generator Cooling system. Accumulator pressure inspection 5 l Antifreeze coolant (water-glycol 50-50 mixture) (10 l aprox)

  • General Tower bolts re-tightening12x750 gr Grease Unimoly Plus

    System Activity Quantity Units

    Type of Grease and oil can change for CCV or DCV.

    More detailed information in preventive manual

    Generator Cooling system coolant Substitution 5 l Antifreeze coolant (water-glycol 50-50 mixture)

    Ground Line & Lightning protection Lightning protection inspection 400 ml

    Conductive grease Zn -based. Zorel-Zn grease (spray)

    small brush

    carbon brush

    Ground Line & Lightning protection Earth conductor inspection 400 ml Conductive grease Zn -based. Zorel-Zn grease (spray)

    Pitch System General inspection 750 gr Grease Unimoly plus

    Pitch System Gear oil substitution

    208

    20

    l

    l

    MOBIL SHC XMP 460

    MOBIL SHC XMP 460

    Pitch System Pitch re-tightening12x750 gr Grease Unimoly Plus

    Pitch System Crown grease refill 5

    1

    Kg

    Kg

    KLBERPLEX AG 11-462 Quantity: 1kg aprox. / LPS 3

  • General Tower bolts re-tightening12x750 gr Grease Unimoly Plus

    System Activity Quantity Units

    Type of Grease and oil can change for CCV or DCV.

    More detailed information in preventive manual

    Pitch System Bearing grease refill 170 Kg RHODINA BBZ. Re-greasing: 1560 cm3/blade

    Pitch System Crown and Bearing greasing 5 Kg KLBERPLEX AG 11-462 Quantity: 1kg aprox. / LPS 3

    Transformer Cooling medium 1500 liters MIDEL7131 - biodegradable synthetic ester

    Converter Cooling system coolant replacement50

    -

    l

    -

    Antifreeze coolant (water-glycol 50-50 mixture) (Converteam)

    Monoetylene Glycol (WWSEG) Luzar Organic 42% P/P

  • ENERCON E101

  • Gewichte und Abmessungen Weight and Dimensions

    E-101/BF/97/17/01 WRD/Konstruktion

    WRD/Design

    Erstellt / compiled: Held, M./2011-10-17 Freigegeben / approved: Pollmann, F. / 2011-10-18

    D0160916-1 Seite / page 1 von / of 1

    C

    opyr

    ight

    EN

    ER

    CO

    N G

    mbH

    . Alle

    Rec

    hte

    vorb

    ehal

    ten

    Gesamthhe ab Gelnde 149,50 m

    Total height above TOP Ground

    Nabenhhe ab Gelnde 99,00 m

    Hub height above TOP Ground

    Turmhhe ab Fundamentoberkante 96,69 m

    Tower height above TOP Foundation

    Bauart / Design Stahl / Fertigteilbetonturm

    Steel / precast concrete tower

    Windzone (DIBt) WZ III / WZ4 GK I1

    WTC (IEC 61400-1) WTC IIA1

    Anzahl der Sektionen / Number of sections 3 Stahl / steel

    14 Beton / concrete

    Lnge Doben Dunten Gewicht

    length diamtop diambottom weight

    m m m t

    Sektion 1 / 22,345

    3,218 3,770 ca. 49

    section 1 3,4443

    Sektion 2 / 19,585 3,770 4,300 ca. 50

    section 2

    Sektion 3 / 3,800 4,300 4,390 ca. 23

    section 3

    Betonsektionen / 50,960 4,410 6,802 ca. 730

    concrete sections

    Gesamtgewicht Turm / total weight tower ca. 852

    1 Typenprfung vorhanden / Certification Report available 2 Typenprfung in Arbeit / Certification Report in process

    3 Flanschauendurchmesser / outside flange diameter

  • Aral Degol BG 460

    SAFETY DATA SHEET

    Product name

    Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - Germany

    1.1 Product identifier

    1.3 Details of the supplier of the safety data sheet

    Liquid.Product type

    E-mail address [email protected]

    1.2 Relevant identified uses of the substance or mixture and uses advised against

    SECTION 1: Identification of the substance/mixture and of the company/undertaking

    Product code 456206-DE04

    1.4 Emergency telephone number

    EMERGENCY TELEPHONE NUMBER

    Carechem:+44 (0) 1235 239 670 (24 hours)

    Supplier BP Europa SEGeschftsbereich IndustrieschmierstoffeErkelenzer Strae 20D-41179 MnchengladbachGermany

    Telefon: +49 (0) 2161 909 30Telefax: +49 (0) 2161 909 400

    Aral AGGeschftsbereich Schmierstoffeberseeallee 1D-20457 Hamburg

    Customer Service Center / Environmental Protection / Product Safety: +49 (0)40 639-52288

    SDS no. 456206

    Use of the substance/mixture

    Gear lubricant For specific application advice see appropriate Technical Data Sheet or consult our company representative.

    See sections 11 and 12 for more detailed information on health effects and symptoms and environmental hazards.

    Classification according to Regulation (EC) No. 1272/2008 [CLP/GHS]

    SECTION 2: Hazards identification2.1 Classification of the substance or mixture

    Product definition Mixture

    Classification according to Directive 1999/45/EC [DPD]

    The product is not classified as dangerous according to Directive 1999/45/EC and its amendments.

    2.2 Label elements

    Signal word

    Hazard statements

    Prevention

    Precautionary statements

    Response

    Storage

    Disposal

    No signal word.

    No known significant effects or critical hazards.

    Not applicable.

    Not applicable.

    Not applicable.

    Not applicable.

    Supplemental label elements

    Safety data sheet available on request.

    Not classified.

    Product name

    Version 3

    Aral Degol BG 460 Page: 1/9456206-DE04Product code

    Date of issue 21 March 2014 Format Germany Language ENGLISH

    (Germany)

  • Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - Germany

    SECTION 2: Hazards identification

    Other hazards which do not result in classification

    Defatting to the skin.

    Containers to be fitted with child-resistant fastenings

    Not applicable.

    Tactile warning of danger Not applicable.

    Special packaging requirements

    2.3 Other hazards

    Substance/mixture Mixture

    SECTION 3: Composition/information on ingredients

    This product does not contain any hazardous ingredients at or above regulated thresholds.

    Highly refined base oil (IP 346 DMSO extract < 3%). Proprietary performance additives.

    Do not induce vomiting unless directed to do so by medical personnel. Get medical attention if symptoms occur.

    In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Eyelids should be held away from the eyeball to ensure thorough rinsing. Check for and remove any contact lenses. Get medical attention.

    4.1 Description of first aid measures

    If inhaled, remove to fresh air. Get medical attention if symptoms appear.

    Notes to physician Treatment should in general be symptomatic and directed to relieving any effects.

    Ingestion

    Inhalation

    Eye contact

    Protection of first-aiders No action shall be taken involving any personal risk or without suitable training.

    SECTION 4: First aid measures

    4.2 Most important symptoms and effects, both acute and delayed

    4.3 Indication of any immediate medical attention and special treatment needed

    Skin contact Wash skin thoroughly with soap and water or use recognised skin cleanser. Remove contaminated clothing and shoes. Wash clothing before reuse. Clean shoes thoroughly before reuse. Get medical attention if irritation develops.

    See Section 11 for more detailed information on health effects and symptoms.

    Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training.

    Hazardous combustion products

    Hazards from the substance or mixture

    Combustion products may include the following:carbon oxides (CO, CO2) (carbon monoxide, carbon dioxide)

    In a fire or if heated, a pressure increase will occur and the container may burst.

    Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode. Clothing for fire-fighters (including helmets, protective boots and gloves) conforming to European standard EN 469 will provide a basic level of protection for chemical incidents.

    Special protective equipment for fire-fighters

    In case of fire, use foam, dry chemical or carbon dioxide extinguisher or spray.

    5.1 Extinguishing media

    Do not use water jet.

    Suitable extinguishing media

    Unsuitable extinguishing media

    SECTION 5: Firefighting measures

    5.2 Special hazards arising from the substance or mixture

    5.3 Advice for firefighters

    Special precautions for fire-fighters

    Product name

    Version 3

    Aral Degol BG 460 Page: 2/9456206-DE04Product code

    Date of issue 21 March 2014 Format Germany Language ENGLISH

    (Germany)

  • Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - Germany

    6.2 Environmental precautions

    Stop leak if without risk. Move containers from spill area. Prevent entry into sewers, water courses, basements or confined areas. Contain and collect spillage with non-combustible,absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations. Dispose of via a licensed waste disposal contractor.

    Avoid dispersal of spilt material and runoff and c


Recommended