+ All Categories
Home > Documents > Principle of Virtual Work - Penn Engineeringmeam535/fall03/slides/Virtual Work.pdf · MEAM 535...

Principle of Virtual Work - Penn Engineeringmeam535/fall03/slides/Virtual Work.pdf · MEAM 535...

Date post: 22-Mar-2020
Category:
Upload: others
View: 18 times
Download: 4 times
Share this document with a friend
24
MEAM 535 University of Pennsylvania 1 Principle of Virtual Work Aristotle Galileo (1594) Bernoulli (1717) Lagrange (1788)
Transcript

MEAM 535

University of Pennsylvania 1

Principle of Virtual Work

AristotleGalileo (1594)Bernoulli (1717)Lagrange (1788)

MEAM 535

University of Pennsylvania 2

Virtual WorkKey Ideas

Virtual displacementSmallConsistent with constraintsOccurring without passage of time

Applied forces (and moments)Ignore constraint forces

Static equilibriumZero acceleration, orZero mass

O

rPi

Fi(a)

e2

e1

e3

[ ]∑=

δ⋅=δN

i

Pai

iW1

)( rF n generalized coordinates, qj

∑= =

δ

∂∂⋅=δ ∑

n

jj

N

i j

Pa

i qq

Wi

1 1

)( rF

MEAM 535

University of Pennsylvania 3

ExampleB

P

r

l

θφ

m F

G=τ/2rQ

x

Applied forcesF acting at PG acting at Q

Constraint forces?

Single degree of freedomGeneralized coordinate, θ

Motion of particles P and Q can be describedby the generalized coordinate θ

MEAM 535

University of Pennsylvania 4

Static Equilibrium Implies Zero Virtual Work is DoneForces

Forces that do workApplied ForcesExternal Forces

Forces that do no workConstraint forces Fi

(a)

Ri

[ ] 0)( =+ ia

i RF

Implies sum of all forces on each particle equals zero

[ ] 01

)( =+∑=

N

ii

ai RF [ ] 0.

1

)( =δ+∑=

i

N

ii

ai rRF

Static Equilibrium

MEAM 535

University of Pennsylvania 5

The Key Idea

Constraint forces do zero virtual work!

[ ] 0.1

)( =δ+∑=

i

N

ii

ai rRF

0

Why?

MEAM 535

University of Pennsylvania 6

Constraints: Two Particles Connected by Rigid Massless Rod

(x1 , y1)

(x2 , y2)e

F1 R1

F2

F1

R2

F2

(x1 – x2)2 +(y1 – y2)2 = r2

R1 = -R2 = αe( )( ) ( )( ) 021212121 =δ−δ−+δ−δ− yyyyxxxx

( ) ( )[ ] ( ) ( )[ ] 02

22121

1

12121 =

δδ

−−−

δδ

−−yx

yyxxyx

yyxx

( ) 021 =δ−δ⋅ rre ( )0

.....

21

212211

=δ−δα=δα−δα=δ+δ

rrerererRrR

MEAM 535

University of Pennsylvania 7

Rigid Body: A System of Particles

A rigid body is a system of infinite particles.

The distance between any pair of particles stays constant through its motion.

Each pair of particles can be considered as connected by a massless, rigid rod.

The internal forces associated with this distance constraint areconstraint forces.

The internal forces do no virtual work!

MEAM 535

University of Pennsylvania 8

Contact Constraints and Normal Contact ForcesRigid body A rolls and slides on rigid body B

A

B

P1

P2

n

contactnormal

AvP2 .n = BvP1 .n

O

r1

r1

Contact Kinematics CvP2 .n = CvP1 .nδr2 .n = δr1 .n

Contact Forces

N1 = -N2 = αn

N2 N1

T1

T2

( )0

.....

21

212211

=−=−=+

rrnrnrnrNrN

δδαδαδαδδ

C

MEAM 535

University of Pennsylvania 9

Normal and Tangential Contact Forces

1. Normal contact forcesNormal contact forces are constraint forces Equivalently, normal forces do no virtual work

2. Tangential contact forcesIf A rolls on B (equivalently B rolls on A)

then, tangential contact forces are constraint forcesIn general (sliding with friction), tangential forces will contribute to virtual work

AvP2 = BvP1

AvP2 = BvP1

( )0

.....

21

212211

≠δ−δβ=δβ−δβ=δ+δ

rrtrtrtrTrT

N2 N1

T1

T2

t

MEAM 535

University of Pennsylvania 10

StatementA system of N particles (P1, P2,…, PN) is in static equilibrium if and only if the virtual work done by all the applied (active) forces though any (arbitrary) virtual displacement is zero.

A holonomic system of N particles is in static equilibrium if and only if all the generalized (active) forces are zero.

Only “applied” or “active” forces contribute to the generalized forceThe jth generalized force is given by

01 1

)( =∑= =

δ

∂∂⋅=δ ∑

n

jj

N

i j

Pa

i qq

WirF

=

=

∂∂⋅=

∂∂⋅=

N

i j

Pa

i

N

i j

Pa

ij

q

qQ

i

i

1

)(

1

)(

&

&rF

rFWhy?

MEAM 535

University of Pennsylvania 11

Velocity PartialsIn any frame A

Define the jth velocity partial

The jth generalized force is

( )

dtdq

qdtdq

qdtdq

qt

dtd

tqqq

n

n

PPPP

PPA

nPP

iiii

ii

ii

∂∂

++∂∂

+∂∂

+∂∂

=

=

=

rrrr

rv

rr

K

K

2

2

1

1

21 ,,,,

nPn

PPP

PA qqqt

iiii

i &K&& vvvrv ++++∂∂

= 2211

j

P

j

PPj qq

iii

&

&

∂∂

=∂∂

=rrv

n speeds

[ ]∑=

⋅=N

i

Pj

aij

iQ1

)( vF

a1

a3

a2

O

A

Pi

rPi dtd i

iPA

PA rv =

MEAM 535

University of Pennsylvania 12

Example Illustrating Partial VelocitiesThree Degree-of-Freedom Robot Arm

REFERENCE POINT

l1

l2

l3θ3

θ2

θ1

φ(x,y)

x

y

( ) ( )( ) ( )

( )321

321321211

321321211

sinsinsincoscoscos

θ+θ+θ=φθ+θ+θ+θ+θ+θ=θ+θ+θ+θ+θ+θ=

lllylllx

( ) ( )( ) ( )

( )321

123321312212111

123321312212111

θ+θ+θ=φ

θ+θ+θ+θ+θ+θ=

θ+θ+θ−θ+θ−θ−=

&&&&

&&&&&&&

&&&&&&&

clclclyslslslx

33

22

11

θ=

θ=

θ=

&

&

&

uuu

differentiating

MEAM 535

University of Pennsylvania 13

Example (continued)Equations relating the joint velocities and the end effector velocities

The three partial velocities of the point P (omitting leading superscript A) are columns of the “Jacobian” matrix

( ) ( )( ) ( ) 123321312212111

123321312212111

clclcly

slslslx

θ+θ+θ+θ+θ+θ=

θ+θ+θ−θ+θ−θ−=&&&&&&&

&&&&&&&

REFERENCE POINT

l1

l2

l3θ3

θ2

θ1

φ(x,y)

x

y

P1v

P2v

P3v

P

in matrix form

( ) ( )( ) ( )

+++

−+−++−=

3

2

1

12331233122123312211

12331233122123312211

uuu

clclclclclclslslslslslsl

yx&

&

P1v P

2v P3v

MEAM 535

University of Pennsylvania 14

Example 1Generalized speed:

u=dθ/dtVelocities

Generalized Active ForcesF = -Fa1

No friction, gravity

B

P( )11 cos

sin avφφ+θ

−=RPA

φφ=θθφφ−θθ−=

φ=θφ+θ=&&&&& coscos;sinsin

sinsin;coscoslrlrx

lrlrx

θφθ

=φ &&coscos

lr

r

l

θφ

m F

G=2τ/rQ

( )211 cossin2

aav θ+θ−−=rQA

( )21 cossin2 aaG θ+θ−τ

=r

QPQ 111 vGvF ⋅+⋅=( )φ

φ+θ+τ=

cossin

1FRQ

x

MEAM 535

University of Pennsylvania 15

Example 2

Chθ

φ

2l

O

P

Q

C

P

Q

AssumptionsNo friction at the wallGravity (center of mass is at midpoint, C)Massless string, OP

homogeneous rod, length 3l

l

MEAM 535

University of Pennsylvania 16

Equivalent System of Forces

Fi

iFj

O

rjri

A system of forces acting on a rigid body can be replaced by

A resultant force F

A moment about a convenient reference point O

∑=

=r

ii

1FF

∑=

×=r

iiiO

1FrM

C'O

C

F

OM

A couple is a set of forces whose resultant force is zero, but the resultant moment is non zero.

MEAM 535

University of Pennsylvania 17

Resultant Moment Depends on Reference PointResultant force is independent of origin (reference point)

Resultant moment is dependent on the origin

F

OM

F

O

∑=

×+=r

i

POOP

1FrMM

O

MP

P

MEAM 535

University of Pennsylvania 18

Generalized Forces for Rigid BodiesGeneralized force Velocity partials

But,

Velocity partials can be rewritten

nPn

PPP

PA qqqt

iiii

i &K&& vvvrv ++++∂∂

= 2211

[ ]∑=

⋅=N

i

Pj

aij

iQ1

)( vF

iBAPAPA i ρ×ω+= vv

Pi

Fj

Pj

ri rj

Pρi

ρj

[ ]

( )

[ ]j

n

j j

iBAPA

OPBAOP

jn

j j

PAPPA

qq

tt

qqt

iii

&&

&&

∑∂

ρ×ω+∂+

×∂ω∂

+∂

∂=

∑∂

∂+

∂∂

=

=

=

1

1

v

rr

vrv

Fi

O

MEAM 535

University of Pennsylvania 19

Generalized Forces for Rigid BodiesGeneralized force Velocity partials

Angular velocity partial

Generalized force can be rewritten

( )

iBj

APj

Aj

iBA

j

PAPj

Aqq

i

ρ×ω+=

∂ρ×ω∂

+∂∂

=

v

vv&&

[ ] ( )[ ]∑ ρ×ω⋅+∑ ⋅===

N

ii

Bj

Ai

N

i

PjijQ

11FvF

( )[ ]∑ ω⋅×ρ=

N

i

Bj

Aii

1F

Bj

AP

PjjQ ω⋅+⋅= MvF

( )j

BABj

Aq&∂ω∂

[ ]∑=

⋅=N

i

Pj

aij

iQ1

)( vF

Pi

Fj

Pj

ri rj

Pρi

ρj

Fi

O

MEAM 535

University of Pennsylvania 20

ExampleGeneralized speed:

u=dθ/dtVelocities

Generalized Active Forces-Fa1

τa3

rl

θ φm

τF

B

P

( )11

31

cossin av

a

φφ+θ

−=

=ωRPA

BA

( )φ

φ+θ+τ=

cossin

1FRQ

φφ=θθφφ−θθ−=

φ=θφ+θ=&&&&& coscos;sinsin

sinsin;coscoslrlrx

lrlrx

θφθ

=φ &&coscos

lr

x

MEAM 535

University of Pennsylvania 21

ExampleGeneralized coordinates

(θ1, θ2)Generalized speeds

(u1, u2)Velocity Partials

Generalized forces

l1

l2

θ1

θ2τ2

τ1

PMz

(Fx, Fy)

C2

C1

y

x

Pj

ACj

ACj

ABj

ABj

A vvv ,,,, 2121 ωω

dtd

u jj

θ=

( )( ) 22

121

32122

21323231

Bj

Az

Pj

Ayx

Cj

A

Cj

ABj

ABj

Aj

MFFgm

gmQ

ω⋅+⋅++⋅−

⋅−ω⋅τ+ω⋅τ−τ=

avaava

vaaaa

MEAM 535

University of Pennsylvania 22

Example (continued)

l1

l2

θ1

θ2τ2

τ1

P

Mz

(Fx, Fy)C2

C1

y

x

Generalized forces

Velocities

Generalized Forces

( )( ) 22

121

32122

21323231

Bj

Az

Pj

Ayx

Cj

A

Cj

ABj

ABj

Aj

MFFgm

gmQ

ω⋅+⋅++⋅−

⋅−ω⋅τ+ω⋅τ−τ=

avaava

vaaaa

( ) ,, 3213121 aa uuu BABA +=ω=ω

( )( ) ( )( )( ) ( )( )212121122121111

21212112221

121111

12111121

2

1

uucslucsl

uucslucsl

ucsl

PA

CA

CA

++−++−=

++−++−=

+−=

aaaav

aaaav

aav

( ) ( )( ) z

yx

Mclclgmcglm

clclFslslFQ

++−−

+++−τ=

12221

11211121

122111221111

( ) ( ) ( ) zyx MclgmclFslFQ +−+−τ= 12221

212212222

MEAM 535

University of Pennsylvania 23

Conservative Holonomic SystemsAll applied forces are conservativeOrThere exists a scalar potential function such that all applied forces are given by:

The virtual work done by the applied forces is:

( )tqqq na

i ,,, 21)( Kφ∇−=F

∑= =

δ

∂∂⋅=δ ∑

n

jj

N

i j

Pa

i qq

Wi

1 1

)( rF

∂∂∂∂∂∂

∂φ∂

∂φ∂

∂φ∂

−=∂∂⋅

j

i

j

i

j

i

iiij

Pa

i

qzqyqx

zyxq

irF )(

jj q

Q∂φ∂

−=

δφδ∂φ∂

−=δ −=∑=

n

jj

jq

qW

1

MEAM 535

University of Pennsylvania 24

StatementA conservative, holonomic system of N particles (P1, P2,…, PN) is in static equilibrium if and only if the change in potential energy though any (arbitrary) virtual displacement is zero.

0=δφ


Recommended