+ All Categories
Home > Documents > PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara...

PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara...

Date post: 05-Jan-2016
Category:
Upload: daniella-stevens
View: 214 times
Download: 0 times
Share this document with a friend
36
PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1 Lecturer: Chara Charalambous
Transcript
Page 1: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

1

PRINCIPLES OF FINANCIAL ANALYSIS

WEEK 5: LECTURE 5TIME VALUE OF

MONEY

Lecturer: Chara Charalambous

Page 2: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 2

Page 3: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 3

LEARNING OUTCOMES1. Understand what is meant by "the time value of

money." 2. Understand the relationship between present

and future value.3. Calculate both the future and present value of:

(a) an amount invested today; (b) a stream of equal cash flows (an annuity)

4. Distinguish between an “ordinary annuity” and an “annuity due.”

5. Use interest factor tables and understand how they provide a shortcut to calculations

Page 4: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 4

Definition of 'Time Value of Money - TVM'

• The idea that money available at the present time is worth more than the same amount in the future due to its possible earning capacity. This core principle of finance means that money can earn interest when invested and so any amount of money is worth more the sooner it is received.

• A dollar received today worth more than a dollar expected to receive in future because the sooner a dollar received the quicker it can be invested to earn a positive return.

The time value of money is the central concept in finance theory.

Page 5: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 5

• Money received sooner rather than later allows one person to use the funds for investment or consumption purposes. This concept is refer to as the TIME VALUE OF MONEY.

Page 6: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 6

Time LinesOne of the most important tools in time value of money analysis is the time line, which is used to help us picture what is happening in a particular situation.

Time 0 is today, Time 1 is one period from today (e.g. one year), Time 2 is two periods from today

TIME:

Page 7: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 7

Time Lines

Here the interest rate if I invest my money for each of the four periods is 5%. A cash outflow is a payment of cash for investments and is made at Time 0: because is money given out of my pocket it has a minus sign. At Time 4 I have a cash inflow : a receipt of cash from an investment. The inflow is unknown to me and I have to find it thus I symbolize it with ? And is a positive amount (+) because I will receive money in my pocket. Note that no cash flows occur at Time 1,2 and 3.

-100Cash outflow: Cash

inflow: + ?

5%

TIME:

Page 8: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 8

Example

• Congratulations!!! You have won a cash prize! You have two payment options: A - Receive $10,000 now OR B - Receive $10,000 in three years. Which option would you choose?

Page 9: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 9

If you're like most people, you would choose to receive the $10,000 now. After all, three years is a long time to wait. Why would any rational person postpone payment into the future when he or she could have the same amount of money now? For most of us, taking the money in the present is just basic natural. So at the most basic level, the time value of money demonstrates that, all things being equal, it is better to have money now rather than later.

Back to our example: by receiving $10,000 today, you are able to increase the future value of your money by investing and gaining interest over a period of time. For Option B, you don't have time on your side, and the payment received in three years would be your future value. To illustrate, we have provided a timeline:

Page 10: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 10

If you are choosing Option A, your future value will be $10,000 plus any interest acquired over the three years. The future value for Option B, on the other hand, would only be $10,000. So how can you calculate exactly how much more Option A is worth, compared to Option B? Let's take a look.

Page 11: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 11

Future Value Basics

• If you choose Option A and invest the total amount at a simple annual rate of 4.5%, the future value of your investment at the end of the first year is $10,450:

• Future value of investment at end of first year: = ($10,000 x 0.045) + $10,000 = $10,450

• Can be written as: $10,000 x [(1 x 0.045) + 1] => => 10,000*(0.045+1)= 10,450

• So the equation for the future value can be written as:

FV= PV(i+1) FV = Future Value PV = Present Value – the money invested-the capital i = the interest rate or r = the rate of return on the money invested

Page 12: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 12

• If the $10,450 left in your investment account at the end of the first year is left untouched and you invested it at 4.5% for another year, how much would you have? To calculate this, you would take the $10,450 and multiply it again by 1.045 (0.045 +1). At the end of two years, you would have $10,920:

• Future value of investment at end of second year: = $10,450 x (1+0.045) = $10,920.25The above calculation, then, is equivalent to the following equation:Future Value = $10,000 x (1+0.045) x (1+0.045)

• The equation can be represented as the following:

Page 13: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 13

• If we were investing our money for 3 years the equation would be: 10,000*(1+0.045) = $11,411.66

• So the equation for the future value can be written as

FV= PV(i+1) FV = Future Value PV = Present Value – the money invested-the capital i = the interest rate n = the number of years or periods I have invested my money

3

n

The process of going from today’s values, or present values (PV), to future values (FV) is called compounding.

Page 14: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 14

Present Value Basics

• If you received $10,000 today, the present value would of course be $10,000 because present value is what your investment gives you now if you were to spend it today. If $10,000 were to be received in a year, the present value of the amount would not be $10,000 because you do not have it in your hand now, in the present. To find the present value of the $10,000 you will receive in the future, you need to pretend that the $10,000 is the total future value of an amount that you invested today. In other words, to find the present value of the future $10,000, we need to find out how much we would have to invest today in order to receive that $10,000 in the future.

• In order to calculate present value, or the amount that we would have to invest today, we are going to use the FV equation but this time the unknown number it will be the PV. So we will follow the steps below :

• Original equation : FV= PV(i+1) => PV = FV (i+1)

n

n

The factor 1 is called the discounting factor (i+1) n

Page 15: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 15

• Let's walk backwards from the $10,000 offered in Option B. Remember, the $10,000 to be received in three years is really the same as the future value of an investment

• So, here is how you can calculate today's present value of the $10,000 expected from a three-year investment earning 4.5%: PV = FV = 10,000 = $8762.97

(i+1) (0.045+1)n 3

Page 16: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 16

• So the present value of a future payment of $10,000 is worth $8,762.97 today if interest rates are 4.5% per year. In other words, choosing Option B is like taking $8,762.97 now and then investing it for three years. The equations above illustrate that Option A is better not only because it offers you money right now but because it offers you $1,237.03 ($10,000 - $8,762.97) more in cash! Furthermore, if you invest the $10,000 that you receive from Option A, your choice gives you a future value that is $1,411.66 ($11,411.66 - $10,000) greater than the future value of Option B.

Page 17: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 17

Interest Tables The Future Value Interest Factor for i and n is defined

as (1 + i), and these factors can be found using a table:

• Period 1% 2% 3% 4% 5% 6%• 1 1.0100 1.0200 1.0300 1.0400 1.0500 1.0600 • 2 1.0201 1.0404 1.0609 1.0816 1.1025 1.1236 • 3 1.0303 1.0612 1.0927 1.1249 1.1576 1.1910 • 4 1.0406 1.0824 1.1255 1.1699 1.2155 1.2625• 5 1.0510 1.1041 1.1593 1.2167 1.2763 1.3382

n

Page 18: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 18

Interest Tables• The Present Value Interest Factor for i and n is

defined as 1/(1 + i), and these factors can be found using a table:

• Period 1% 2% 3% 4% 5% 6% • 1 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 • 2 0.9803 0.9612 0.9426 0.9246 0.9070 0.8900 • 3 0.9706 0.9423 0.9151 0.8890 0.8638 0.8396 • 4 0.9610 0.9238 0.8885 0.8548 0.8227 0.7921• 5 0.9515 0.9057 0.8626 0.8219 0.7835 0.7473

n

Page 19: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 19

Annuity• An annuity represents series of equal payments

(or receipts) occurring for a specified number of equity distant periods.

• Ordinary Annuity: Payments or receipts occur at the end of each period.

• Annuity Due: Payments or receipts occur at the beginning of each period

Page 20: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 20

Examples of Annuities

• Student Loan Payments• Car Loan Payments• Insurance Premiums• Mortgage Payments• Retirement Savings

Page 21: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 21

Parts of an AnnuityParts of an Annuity

0 1 2 3

$100 $100 $100

(Ordinary Annuity)End ofPeriod 1

End ofPeriod 2

Today Equal Cash Flows Each 1 Period Apart

End ofPeriod 3

Page 22: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 22

Parts of an AnnuityParts of an Annuity

0 1 2 3

$100 $100 $100

(Annuity Due)Beginning ofPeriod 1

Beginning ofPeriod 2

Today Equal Cash Flows Each 1 Period Apart

Beginning ofPeriod 3

Page 23: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 23

What is the difference between an ordinary annuity and an annuity due?

Ordinary Annuity

PMT PMTPMT

0 1 2 3i%

PMT PMT

0 1 2 3i%

PMT

Annuity Due

Page 24: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 24

Example 1 :If I deposit $1000 at the end of each year for 3 years in a saving account that pays 7% interest per year, how much will I have at the end of the 3 years?

Page 25: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 25

FVA3 = $1,000(1.07)2 + $1,000(1.07)1 +$1,000(1.07)0= $1,145 +$1070 +$1000= $3,215

Example of anOrdinary Annuity -- FVA

Example of anOrdinary Annuity -- FVA

$1,000 $1,000 $1,000

0 1 2 3 4

$3,215 = FVA3

7%

$1,000

$1,145

Cash flows occur at the end of the period

$1,070

Page 26: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

26

FVA = PMT(1+i) + PMT(1+i) +…+ R(1+i) +PMT(1+i) =>

FVA = PV (1+i) – 1 i

Lecturer: Chara Charalambous

0n-1

n

n

n

n-2 1

Page 27: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 27

Example 2 :If I deposit $1000 at the beginning of each year for 3 years in a saving account that pays 7% interest per year, how much will I have at the end of the 3 years?

Page 28: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

FVAD3 = $1,000(1.07) + $1,000(1.07) + $1,000(1.07) = $1,225 + $1,145 + $1,070 = $3,440

Example of anAnnuity Due -- FVAD

Example of anAnnuity Due -- FVAD

$1,000 $1,000 $1,000 $1,070

0 1 2 3 4

$3,440 = FVAD3

7%

$1,225$1,145

Cash flows occur at the beginning of the period

3 2 1

Page 29: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 29

• FVADn = R(1+i)n + R(1+i)n-1 + ... + R(1+i)2 + R(1+i)1

=> FVA = PV (1+i) – 1 * (1+i) i

n

Page 30: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 30

• Example 3: you are offered a 3-year annuity with payments of $ 1000 at the end of each year. So you have to deposit the payments in a saving account that pays 7% interest per year. How much you have to deposit today?

Page 31: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

PVA3 = $1,000 / (1.07)1 + $1,000 / (1.07)2 +

$1,000 / (1.07)3

= $934.58 + $873.44 + $816.30 = $2,624.32

Example of the Present Value of anOrdinary Annuity

Example of the Present Value of anOrdinary Annuity

$1,000 $1,000 $1,000

0 1 2 3 4

$2,624.32 = PVA3

7%

$934.58$873.44 $816.30

Cash flows occur at the end of the period

Page 32: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 32

PVAn = R/(1+i)1 + R/(1+i)2 + ... + R/(1+i)n =>

PVAn =FV 1-1/(1+i)

i

n

Page 33: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 33

• Example 3: you are offered a 3-year annuity with payments of $ 1000 at the beginning of each year. So you have to deposit the payments in a saving account that pays 7% interest per year. How much you have to deposit today?

Page 34: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

PVADn = $1,000/(1.07)0 + $1,000/(1.07)1 + $1,000/(1.07)2 = $2,808.02

Example of anAnnuity Due -- PVAD

Example of anAnnuity Due -- PVAD

$1,000.00 $1,000 $1,000

0 1 2 3 4

$2,808.02 = PVADn

7%

$ 934.58$ 873.44

Cash flows occur at the beginning of the period

Page 35: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 35

PVAn = R/(1+i)0 + R/(1+i)1 + ... + R/(1+i)n-1 =>

PVAn =FV 1-1/(1+i) * (1+i)

i

n

Page 36: PRINCIPLES OF FINANCIAL ANALYSIS WEEK 5: LECTURE 5 TIME VALUE OF MONEY 1Lecturer: Chara Charalambous.

Lecturer: Chara Charalambous 36

Exercises


Recommended