+ All Categories
Home > Documents > Prinsip dan Persamaan Dasar

Prinsip dan Persamaan Dasar

Date post: 03-Jun-2018
Category:
Upload: revandifitro
View: 224 times
Download: 1 times
Share this document with a friend

of 40

Transcript
  • 8/12/2019 Prinsip dan Persamaan Dasar

    1/40

    FUNDAMENTAL PRINCIPLES AND

    EQUATIONS

    The principle is most important, not the detail.Theodore von Karman, 1954

  • 8/12/2019 Prinsip dan Persamaan Dasar

    2/40

    Fundamental Principles and EquationsVector

    kAjAiAA zyx

    cartesian

    eAeAeAA

    zrr

    cylindrical

    zkyjxir (Position vector)

    zzx

    y

    yxr

    arctan

    22

    Cartesiancylindrical transformation

    eAeAeAA rr

    spherical

    22

    222

    222

    arccos

    arccosarccos

    yx

    x

    zyx

    z

    r

    z

    zyxr

    Cartesianspherical transformation

    ...........(2.6)

    ...........(2.8)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    3/40

    Fundamental Principles and EquationsScalar and Vector

    trTtzrTtzyxTT

    trtzrtzyx

    trptzrptzyxpp

    ,,,,,,,,,

    ,,,,,,,,,

    ,,,,,,,,,

    321

    321

    321

    Scalar field

    kVjViVV zyx

    Vector field

    tzyxVV

    tzyxVV

    tzyxVV

    zz

    yy

    xx

    ,,,

    ,,,

    ,,,

    xyyxzxxzyzzyzyx

    zyx

    zzyyxx

    zyx

    zyx

    BABAkBABAjBABAi

    BBB

    AAA

    kji

    BA

    BABABABA

    kBjBiBB

    kAjAiAA

    Scalar and vector products

    cartesian

    zr

    zr

    zr

    zzrr

    zzrr

    zzrr

    BBBAAA

    eee

    BA

    BABABABA

    eBeBeBB

    eAeAeAA

    cylindrical

    BBB

    AAA

    eee

    BA

    BABABABA

    eBeBeBB

    eAeAeAA

    r

    r

    r

    rr

    rr

    rr

    spherical

    ...........(2.9)

    ...........(2.10)

    ...........(2.11)

    ...........(2.12)

    ...........(2.13)

    ...........(2.14)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    4/40

    Fundamental Principles and EquationsGradient of Scalar Field

    npds

    dp.

    kz

    pj

    y

    pi

    x

    pp

    zyxpp

    ,,

    Cartesian

    ,,,,,, 321 rpzrpzyxpp

    Scalar field

    p

    yx, .3 constp

    .2 constp

    .1 constp

    Isolines of

    Pressure

    321 ppp

    y

    x

    Direction of the

    maximum change

    inpat the point (x,y)

    The gradient of p, at a given point in space is defined

    as a vector such that:

    1. Its magnitude is the maximum rate of change ofpper

    unit length of the coordinate space at the given point.

    2. Its direction is that of the maximum rate of change of p

    at the given point.

    p

    (directional derivativein s direction)

    y

    x

    n

    yx,

    p

    s

    ...........(2.15)

    ...........(2.16)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    5/40

    Fundamental Principles and EquationsGradient of Scalar Field

    zr ez

    p

    e

    p

    rer

    p

    p

    zrpp

    1

    ,,

    Cylindrical

    ep

    re

    p

    re

    r

    pp

    rpp

    r

    sin

    11

    ,,

    Spherical

    ...........(2.17)

    ...........(2.18)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    6/40

    Fundamental Principles and EquationsDivergence of a Vector Field

    z

    V

    y

    V

    x

    VV

    kVjViVzyxVV

    zyx

    zyx

    ,,

    Cartesian

    z

    VV

    rrV

    rrV

    eVeVeVzrVV

    zr

    zzrr

    11

    ,,

    cylindrical

    V

    rV

    rVr

    rrV

    eVeVeVrVV

    r

    rr

    sin

    1sin

    sin

    11

    ,,

    2

    2

    spherical

    Vector field

    ,,,,,, rVzrVzyxVV

    The divergence of a vector is ascalar quantity.

    ...........(2.19)

    ...........(2.20)

    ...........(2.21)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    7/40

    Fundamental Principles and EquationsCurl of a Vector Field

    y

    V

    x

    Vk

    x

    V

    z

    Vj

    z

    V

    y

    Vi

    VVV

    zyx

    kji

    V

    kVjViVV

    xyzxyz

    zyx

    zyx

    ,,,,,, rVzrVzyxVV

    Cartesian

    zr

    zr

    zzrr

    VrVVzr

    eree

    rV

    eVeVeVV

    1

    VrrVVr

    erree

    rV

    eVeVeVV

    r

    r

    rr

    sin

    sin

    sin

    12

    Cylindrical Spherical

    The curl of V is a vector quantity.

    ...........(2.22)

    ...........(2.23) ...........(2.24)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    8/40

    Fundamental Principles and EquationsLine Integrals

    Vector field

    A curve C in space connecting point aand b, dsis elemental length of the curve.

    n is unit vector tangent to the curve.

    ,,,,,, rAzrAzyxAA

    ds

    n

    A

    C

    a

    b

    ds

    C

    A

    Defined the vector ds=nds. Line integralofA along curve C from point ato bis

    b

    aA

    If the curve C is closed, the line integral is given by

    ds

    CA ds

    Counterclockwise direction around Cis considered positive

  • 8/12/2019 Prinsip dan Persamaan Dasar

    9/40

    Fundamental Principles and EquationsSurface Integrals

    S dS

    pn

    C

    Closed surface S

    Volume V

    dS

    nThe three-dimensional surface area S

    is bounded by the closed curve CVolume Venclosed by the closed surface S

    Define a vector elemental area dS=ndS. In term of dS, the surface

    Integral over the surface Scan be difined in three ways

    s

    p dS

    s

    A dS

    s A dS

    = surface integral of a scalarpover the open surface S

    (the result is a vector)

    = surface integral of a vectorAover the open surface S

    (the result is a scalar)

    = surface integral of a vectorAover the open surface S(the result is a vector)

    Closed surface:

    S

    p dS

    S

    A dS

    S A dS

  • 8/12/2019 Prinsip dan Persamaan Dasar

    10/40

    Fundamental Principles and EquationsVolume integral

    V

    dV

    V AdV

    is a scalar field in space, volume integral over the volume V of the quantity is

    = volume integral of a scalar over the

    volume V (the result is a scalar)

    = volume integral of a vector Aover thevolume V (the result is a vector)

    A is a vector field in space, volume integral over the volume V of the quantity A is

    Relation between line, surface and volume integral

    dSds

    SCAA A : vector filed(Stokes theorem)

    VS

    dVAA dS (divergence theorem)

    VS

    pdVp dS (gradient theorem) p: scalar field

    ...........(2.26)

    ...........(2.27)

    ...........(2.25)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    11/40

    Fundamental Principles and EquationsModel of the fluid

    VControl

    volume V

    Control surface S S

    Volume dVVolume dV

    Finite control volume fixed in space

    with the fluid moving throught it

    Finite control volume moving with the fluid

    such that the same fluid particles are always in

    the same control volume

    Finite control volume approach

    Infinitesimal fluid element approach

    Infinitesimal fluid element fixed in space

    with the fluid moving throught it

    Infinitesimal fluid element moving along a

    stream line with the velocity V equal to the

    local flow velocity at each point.

  • 8/12/2019 Prinsip dan Persamaan Dasar

    12/40

    Fundamental Principles and EquationsPhysical Meaning of The Divergence Of Velocity

    n

    V

    tVS

    dS

    V

    Moving control volume, an infinitesimalelement of the surface dSmoving at the

    local velocity V. The change in the volume of

    the control volume V, due to just the

    movement of dSover a time increament t is

    equal to the volume of the long, thin cylinder

    with base area dS and altitude ( ).ntV

    dSVnV tdStV

    Total change in volume of the whole volume: dSV S

    tDV (surface integral)

    Divided by t : SdSVdSV1

    S

    ttDt

    DV

    Divergence theorem dVDt

    DV

    V

    VdSVS

    ...........(2.28)

    ...........(2.29)

    ...........(2.30)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    13/40

    Fundamental Principles and EquationsPhysical Meaning of The Divergence Of Velocity

    V dVDt

    DV

    V

    V

    dVDt

    VD

    V

    V

    is small enough such that divergence of V essentially the same value throught

    V

    Dt

    VD

    V

    Dt

    VD

    V

    1V

    Divergence of Vis physically the time rate of change of the volume of movingfluid element per unit volume.

    V ...........(2.31)

    V V

    ...........(2.32)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    14/40

    Fundamental Principles and EquationsContinuity Equation

    V

    V dt

    Vndt

    A(edge view)

    Consider the fluid element with velocity V

    that pass through area A

    AdtVnvolume

    AdtVnmass

    AVdt

    AdtVm nn Mass flow: nVA

    m

    fluxMass

    Mass flow

    ...........(2.33)

    ...........(2.34) ...........(2.35)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    15/40

    Fundamental Principles and EquationsContinuity Equation

    Physical principle: Mass can be neither created nor destroyed

    dS

    V

    S

    dS

    VdV

    Net mass flow out of control

    Volume through surface S

    Time rate of decrease of mass

    inside control volume V=

    CB

    Elemental mass flow across thew area dS is

    dSV dSVn + outflow and - inflow

    Net mass flow out of the entire control surface Sis S

    B dSV

    The mass contained within the elemental volume dVis dV

    Total mass inside control volume is V

    dV

    The time rate of decrease of mass inside control volume is

    V

    dV

    t

    C

    ...........(2.36)

    ...........(2.37)

    ...........(2.38)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    16/40

    Fundamental Principles and EquationsContinuity Equation

    S

    B dSV

    V

    dVt

    C

    VS

    dVt

    dSV

    B=C

    SV

    dVt

    0dSVThe continuity equation

    in integral form

    Control volume is fixed in space, the limit integration are also fixed, so

    0dSVdSV

    S SVV

    dVt

    dVt

    ...........(2.40)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    17/40

    dVS V

    VdSV Applying the divergence theorem

    Substitusi

    0V dVdVt

    VV

    0V

    dVt

    V

    0V

    t

    The continuity equation

    in partial differential form

    Fundamental Principles and EquationsContinuity Equation

    For steady flow

    0V

    and

    0dSV

    S

    ...........(2.42)

    ...........(2.41)

    ...........(2.43)

    ...........(2.44)

    ...........(2.45)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    18/40

    Fundamental Principles and EquationsMomentum Equation

    VF:lawsecondsNewton' mdtd

    Physical principle Force = time rate of change of momentum

    Force:

    1. Body force: gravity, electromagnetic, acting on the fluid volume.

    2. Surface force: pressure, shear stress, acting on the control surface.

    f net body force per unit mass, the body force on the elemental volume dV, dVf

    V

    dVfforceBody

    dSpressuretodueforcesurfaceelemental p

    S

    pdSforcePressure

    SV

    pdV viscousFdSfF

    ...........(2.47)

    ...........(2.48)

    ...........(2.49)

    ...........(2.50)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    19/40

    Fundamental Principles and EquationsMomentum Equation

    Time rate of change of momentum = G + H

    G: net flow of momentum out of control volume across surface S

    H: time rate of change of momentum due to unsteady fluctuations of flow properties

    inside volume V

    dVt

    V

    S

    VH

    VdSVG

    dV

    tm

    dt

    d

    VS

    VVdSVHGV

    viscous

    FfdS-VdSVV

    dVpdVt

    VSSV

    FV mdt

    d

    Momentum equation in integral form

    ...........(2.54)

    ...........(2.55)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    20/40

    Fundamental Principles and EquationsMomentum Equation

    Gradient theorem

    VS

    pdVpdS

    viscousFf-VdSVV dVpdVdVtVVSV

    substitusi

    (vector eq.)

    kjiV wvu

    viscousxx

    Ff-dSV

    componentthe

    dVdVx

    pudVtu

    x

    VVSV

    (scalar eq.)

    dVuuu VSS VdSVdSV

    Divergence theorem

    ...........(2.56)

    ...........(2.57)

    ...........(2.58)

    ...........(2.59)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    21/40

    Fundamental Principles and EquationsMomentum Equation

    0FfV

    substitusi

    viscousx

    dVx

    pu

    t

    u

    V

    x

    0FfV

    viscousx

    xx

    pu

    t

    u

    viscousxFfV x

    x

    pu

    t

    u

    viscousyFfV y

    y

    pv

    t

    v

    viscouszFfV z

    z

    pw

    t

    w

    Momentum eq. in

    differential form

    Navier-Stokes Eq.

    ...........(2.60)

    ...........(2.61a)

    ...........(2.61b)

    ...........(2.61c)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    22/40

    Fundamental Principles and EquationsMomentum Equation

    For steady, inviscid flow and no body forces, equation become

    SS

    pdS-VdSV

    xpu

    V

    y

    pv

    V

    zpw V

    Euler Equation

    ...........(2.62)

    ...........(2.63a)

    ...........(2.63b)

    ...........(2.63c)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    23/40

    Fundamental Principles and EquationsEnergy Equation

    Physical principle: Energy can be neither created nor destroyed, it can only change in form

    ewg

    B1= rate of heat added to fluid inside control volume from surroundings

    B2= rate of work done on fluid inside control volumeB3=rate of change of energy of fluid as it flows through control volume

    (First law of thermodynamics)

    321 BBB

    V

    QdVqBviscous1

    VS

    WdVpBviscous2

    VfdSV

    2

    VdSV

    2

    V 22

    3 edVe

    tB

    SV

    V

    QdVqviscous

    VS

    WdVpviscous

    VfdSV

    SV

    edVet

    dSV2

    V

    2

    V 22

    ...........(2.76)

    ...........(2.77)

    ...........(2.86)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    24/40

    Fundamental Principles and EquationsEnergy Equation

    ''viscousviscous

    22

    VfVV2

    V

    2

    VWQpqee

    t

    Partial differential form

    For steady, inviscid flow, adiabatic andno body forces, equation become

    VV2

    V2pe

    S

    e dSV2

    V2

    S

    p dSV

    ...........(2.87)

    ...........(2.88)

    ...........(2.89)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    25/40

    Fundamental Principles and EquationsSubstantial Derivative

    Fluid element

    at time t=t1

    1

    2

    i

    j

    k

    y

    x

    z

    Same fluid

    element

    at time t=t2

    V1

    V2

    tzyx

    tzyxww

    tzyxvv

    tzyxuu

    wvu

    ,,,

    ,,,

    ,,,

    ,,,

    field,Density

    wherek,jiVfield,Velocity

    22222

    11111

    isdensity2,point

    isdensity1,point

    tzyx

    tzyx

    ,,,

    ,,,

    sorder term-higherseries,Taylor12

    112

    112

    1

    121

    12

    tt

    tzz

    zyy

    yxx

    x

    Dividing by t2-t1, and ignoring the higher-order terms,

    112

    12

    112

    12

    112

    12

    112

    12

    ttt

    zz

    ztt

    yy

    ytt

    xx

    xtt

    Dt

    D

    tttt

    12

    12

    12

    limit Instantaneous time rate

    Of change of density

    derivativelSubstantia

    Dt

    D

    .........(2.92)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    26/40

    Fundamental Principles and EquationsSubstantial Derivative

    wttzz

    vtt

    yy

    uttxx

    tt

    tt

    tt

    12

    12

    12

    12

    12

    12

    12

    12

    12

    limit

    limit

    limit

    tzw

    yv

    xu

    Dt

    D

    ........(2.93)

    z

    w

    y

    v

    x

    u

    tDt

    D

    Substantial derivative in

    cartesian coordinates

    zyx

    kji

    VtDt

    D

    Local derivative Convective derivative

    z

    Tw

    y

    Tv

    x

    Tu

    t

    TT

    t

    T

    Dt

    DT

    V

    example

    ........(2.94)

    ........(2.95)

    ........(2.96)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    27/40

    Fundamental Principles and EquationsFundamental Equation in Term of the Substantial Derivative

    VVV

    :identityVector

    0V

    t

    ........(2.97)

    0VV

    t

    ........(2.43)

    Continuity eq.

    .....(2.98)

    0V

    Dt

    D.....(2.99)

    Substantial derivative of continuity eq.

    viscousx FfV xxpu

    tu

    ...........(2.61a)

    tu

    t

    u

    t

    u

    uu

    uu

    VV

    VV

    ...........(2.100)

    ...........(2.101)

    Substituting into (2.61a)

    viscousx

    Ff

    VV

    xx

    p

    uu

    t

    u

    t

    u

    viscousx

    FfVV xx

    pu

    tu

    t

    u

    =0 (Continuity eq.)

    viscousx FfV xxp

    ut

    u

    ...........(2.102)

    X componen of momentum eq.

  • 8/12/2019 Prinsip dan Persamaan Dasar

    28/40

    viscousx

    FfV xx

    pu

    t

    u

    Fundamental Principles and EquationsFundamental Equation in Term of the Substantial Derivative

    viscousx

    FfV xx

    pu

    t

    u

    Dt

    Du

    viscousx

    Ff xx

    p

    Dt

    Du

    ...........(2.103)

    ...........(2.104a)

    In similar manner, equations (2.61b) and (2.61c)

    viscousy

    Ff yy

    p

    Dt

    Dv

    viscousz

    Ff zz

    p

    Dt

    Dw

    ...........(2.104b)

    ...........(2.104c)

    Energy equation

    ''

    viscousviscous

    2

    VfVDt

    2V

    WQpq

    eD

    ...........(2.105)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    29/40

    Fundamental Principles and EquationsPathlines and streamlines of a flow

    Element A

    1

    Pathline for element A

    Element A at some

    later time

    Element B at some

    later time

    Element B1

    V

    V

    Pathlines for two different fluid elements

    passing through the same point in space;

    unsteady flow

    Velocity vector

    Streamlines

    Streamlines

    V

    V

    1

    2

    ds

    F(x,y,z)=0

    Streamlines

    Pathlines

    Sme pathline for

    all fluid element

    Going through point 1

    x

    y

    z

    For stedy flow, streamlines and pathlines are the same

  • 8/12/2019 Prinsip dan Persamaan Dasar

    30/40

    Fundamental Principles and EquationsPathlines and streamlines of a flow

    Streamline: f(x,y,z)=0, Streamline equation ?

    kjiV

    kjids

    scoordinateCartesian

    0Vds

    ds.toparallelisV

    ,streamlinetheofelementdirectedabeds

    wvu

    dzdydx

    wvu

    dzdydx

    kji

    Vds

    0k

    ji

    udyvdx

    wdxudzvdzwdy

    ..........(2.106)

    ..........(2.107)

    0

    0

    0

    udyvdx

    wdxudz

    vdzwdy ..........(2.108a)

    ..........(2.108b)

    ..........(2.108c)

    Differential equation for

    the streamline

  • 8/12/2019 Prinsip dan Persamaan Dasar

    31/40

    Fundamental Principles and EquationsPathlines and streamlines of a flow

    xfy

    u

    vV

    u

    v

    dx

    dy

    Streamline in two dimensional

    cartesian space

    Streamltube in three-dimensional

    cartesian space

    u

    v

    dx

    dy ..........(2.109)

    0udyvdx

  • 8/12/2019 Prinsip dan Persamaan Dasar

    32/40

    Fundamental Principles and EquationsKinematic of fluid motion

    Consider a two-dimensional fluid element, a square ABCDfor simplicity. when the fluidflows this element is subject to various forces and as a result undergoes a complex motionand a possible deformation as indicated in the figure, and assumes a shape like A`B`C`D`.It appears that the complex deformation of the element can be split into four basicconstituents :1. Translation2. Linear Deformation3. Rotation

    4. Angular Deformation

  • 8/12/2019 Prinsip dan Persamaan Dasar

    33/40

    Fundamental Principles and EquationsKinematic of fluid motion

    dy

    dyy

    uu

    dxx

    vv

    v

    u

    dx

    A

    B

    C

    Fluid element at time t

    dy

    dx

    tdxx

    v

    tdyy

    u

    1

    B

    A

    C2

    K

    Fluid element at time tt

    x

    y

    tv tincreamenttimeduringmovesAthatdirectionyinDistance

    tdxx

    vv

    tincreamenttimeduringmovesCthatdirectionyinDistance

    tdxx

    v

    tvtdxx

    v

    v

    AtorelativeCofdirectionyinntdisplacemeNet

  • 8/12/2019 Prinsip dan Persamaan Dasar

    34/40

    Fundamental Principles and EquationsKinematic of fluid motion

    tx

    v

    dx

    tdxxv

    2tan

    222angle,smallaissince tan

    ............(2.110)

    tx

    v

    2 ............(2.111)

    Consider lineAB. The x cmponent of the

    velocity at pointAat time tis u.

    dyyuutB

    at timepointofvelocity

    tdyyutiA

    B

    increamentover timetorelative

    ofdirectionxin thentdisplacemenet

    ............(2.112)

    ty

    u

    dy

    tdyxu

    1tan

    anglesmallais-since1

    ty

    u

    1 ............(2.113)

    y

    u

    tdt

    d

    t

    1

    0

    1 limit

    ............(2.114)

    x

    v

    tdt

    d

    t

    2

    0

    2 limit

    ............(2.115)

  • 8/12/2019 Prinsip dan Persamaan Dasar

    35/40

    Fundamental Principles and EquationsKinematic of fluid motion

    definedisplane,inlocityangular ve xy

    y

    u

    x

    v

    dt

    d

    dt

    d

    z

    z

    2

    1

    2

    1 21

    ............(2.116)

    ............(2.117)

    Angular velocity of the fluid element in 3-D space

    kji2

    1

    kji

    y

    u

    x

    v

    x

    w

    z

    u

    z

    v

    y

    w

    zyx

    kji

    2vorticity,

    y

    u

    x

    v

    x

    w

    z

    u

    z

    v

    y

    w

    ............(2.118)

    ............(2.119)

    V ............(2.120)

    Curl of thr velocity

    vorticity

    x

    z

    y

    i

    j

    k

  • 8/12/2019 Prinsip dan Persamaan Dasar

    36/40

    locity.angular vefiniteahaveelementsfluidthat theimpliesthis

    ,rotationalcalledisflowtheflow,ainpointeveryat0V

    locity.angular venohaveelementsfluidthat theimpliesthisal,irrotationcalledisflowtheflow,ainpointeveryat0V

  • 8/12/2019 Prinsip dan Persamaan Dasar

    37/40

  • 8/12/2019 Prinsip dan Persamaan Dasar

    38/40

    kk

    (2.119)eqfromthenplane),y-(xldimensiona-twoisflowtheif

    y

    u

    x

    v,

    0

    0al,irrotationisflowtheif

    y

    u

    x

    v

    ............(2.121)

    ............(2.122)

    Is condition of irrotational for two-dimensional flow

  • 8/12/2019 Prinsip dan Persamaan Dasar

    39/40

    y

    u

    x

    v

    dt

    d

    dt

    d

    dt

    d

    xy

    xy

    (2.115)and(2.114)ngsubstituti

    strainofratetime-Strain

    inchangetheisplanexyin theseenas

    elementfluidtheofstrainthe,definitionBy

    2.28fig.from

    12

    12

    12

    x

    w

    z

    u

    z

    v

    y

    w

    xz

    yz

    planexzandyzIn the

    ............(2.123)

    ............(2.124)

    ............(2.125)

    ............(2.126a)

    ............(2.126b)

    ............(2.126c)

    z

    w

    y

    w

    x

    w

    z

    v

    y

    v

    x

    vzu

    yu

    xu

  • 8/12/2019 Prinsip dan Persamaan Dasar

    40/40


Recommended