+ All Categories
Home > Documents > Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Date post: 25-Dec-2015
Category:
Upload: laurel-sparks
View: 218 times
Download: 0 times
Share this document with a friend
34
Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method
Transcript
Page 1: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Problem Based Learning

DkIT First Year Comparison

PBL to Traditional Teaching Method

Page 2: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Our Customers – Survey of DkIT Graduate Employers. What our customers want from us? Who are our customers.

The employers What our customers want – DkIT survey(2003)

Team work Problem solving skills Quality systems Technical Skills

Page 3: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

The Problem

Our students were having great problems with Physics.

Our overall retention was not good. We were not delivering students with the

correct skill set to the employers.

Page 4: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

An Answer

PBL

Page 5: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Standard of Student All qualified applicants (AQA) on Certificate

courses Standard of student intake much higher in the

past, however introduction of new degree courses has increased standard.

Two choices in order to maintain\improve retention rate:

1. Dumbing down.2. Student centred learning (PBL)

Page 6: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.
Page 7: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.
Page 8: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.
Page 9: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.
Page 10: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

The Implementation Staff training in PBL techniques All physics teaching on Science courses

changed to PBL beginning Sept 2003 Student numbers:

03/04 = 48 07/08 = 67 04/05 = 52 08/09 = 68 05/06 = 54 09/10 = 74 06/07 = 64

Page 11: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Problem Duration Each session ideally lasts 2 hours. Problems last 2, 4, or 6 hours. Students take other subjects – NON PBL,

but forms of student centered learning now used in some subjects.

Fully integrated tutorial and Lab sessions.

20 problems cover total syllabus.

Page 12: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Physical Conditions Only one dedicated Physics PBL laboratory 4 workbenches ( 6 students max per bench) 5/6 students per PBL group. (Ideal) 5 networked computers installed, plus printer,

in lab. Extensive library of Physics books in the lab. Whiteboard, E-Beam system, and networked

computer, for each PBL workbench.

Page 13: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.
Page 14: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.
Page 15: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

P.B.L The Process Summarised!

Page 16: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Setting the Climate:1 Assign roles for the problem.

2 Make or review the team ground

rules.

3 Members contribute constructively

towards resolving the

problem and maintaining an

effective working team using the PBL

process.

Page 17: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Encountering a New Problem:

1 Consider the problem as

presented.

2 Rewrite the problem as you

understand it.

3 Clarify:> The kernel of the problem.

> What you are expected to produce.

Page 18: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Using the Four Columns:

Ideas/Hypotheses

Facts / -Information

LearningIssues

ActionPlan

Brainstormabout ideasto resolveproblem

Clarify thefacts given inthe problem.Collateinformationobtainedthrough ideageneration

List what needsto be learned inorder toresolve theproblem.Identify keylearning issues.

Plan whoneeds to dowhat bywhen inorder toresolve theproblem

Page 19: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Self Directed Learning:

1 Everyone follows up on the key

learning issues. 2 Other learning issues are

followed up by individuals as

assigned in the action plan.

3 Library, computer searches,

resource people, other resources.

Page 20: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Assessment Strategy 3 Phases:

Attendance mandatory. Phase 1:

Tutor assess process. Tutor assess product. Marks Pro-rated on attendance.

Phase 2: Self Assessment of process, Tutor assess process and product,

Pro-rated. Phase 3:

Peer Assessment.

Page 21: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.
Page 22: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.
Page 23: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Analysis of Physics results ( including Autumn repeats)

2002/03 Traditional

2003/04 PBL begins

2004/05

2005/06

2006/07

2007/08

2008/09

2009/10

Number Registered

59 48 52 54 64 67 68 74

Sat Sem 1 Exam 52 60 58 60 67Pass Sem 1 Exam 47 52 47 57 59Average Mark % 54.8 51.6 48.0 62.7 55.3Pass Rate % 90 87 81 95 88Sat Sem 2 Exam 43 37 41 41 55 49 59 61Pass Sem 2 Exam 29 34 40 37 48 41 52 60Average Mark % 40.0 51.6 57.9 57.3 53.3 52.5 56.7 60.0Pass Rate % 67 92 98 90 87 84 88 98Retention rate % (Physics only)

49 71 77 69 75 61 76 81

Page 24: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

02/03 Physics Exam Results – Christmas, Easter, & Summer

Test Results - Traditional 2002 - 2003

0.0

10.0

20.0

30.0

40.0

50.0

<10 <20 <30 <40 <50 <60 <70 <80 <90<10

0

Examination Score

% o

f Stu

dent

s

Christmas

Easter Test

Summer

Page 25: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

03/04 Physics Exam Results -Christmas, Easter, & Summer

<10 <20 <30 <40 <50 <60 <70 <80 <90 <100

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

Test Results PBL 2003 - 2004

Christmas PBL

Easter PBL

Summer PBL

Examination Score

% o

f St

uden

ts

Page 26: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Key Points Christmas, Easter and Final exam marks showed a

significant improvement Summer pass rate (including Continuous Assessment)

increased from 67% to 92 % (average) using PBL Retention Rate ( as applied to Physics) increased from

49% to 71 % (average) using PBL

Page 27: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Student Comments A survey of the students was conducted. Some

of their comments: “As I am repeating the subject this year I can

honestly say this method is by far a better way of teaching than lecture based learning.”

“For a person who has never done physics before I find it very interesting and it’s a change from long classes.”

“It stays in your head because you have to find the information yourself.”

“PBL should be carried out in every subject.”

Page 28: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Disadvantages of PBL

Very resource intensive Room must be suitable for group

work Initial equipment costs can be high Staff – student ratio must be low Producing good problems is very

time consuming

Page 29: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Advantages of PBL for students

Deeper understanding of subject Problem solving skills Team working skills Increase of self esteem Increase of self confidence Leadership skills Research skills

Page 30: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Advantages of PBL for staff

Facilitator role Increased interaction with students Increased motivation due to

student interest Team teaching skills More relaxed environment It`s fun

Page 31: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Oh Rats ! You are at the wheel of your brand new Ford Mondeo,

with your engine idling, waiting for your friend to come out of the shop. Suddenly, 40 metres ahead of you, a rat starts crossing the road. All else is forgotten, except that you want to kill that rat. (You absolutely hate rats).

The road is 10 metres wide. Can you hit the rat before it finishes crossing the road ?

Accept it as a curious fact that this particular rat is blind and deaf, and moves at a steady speed of 2 m / s.

Page 32: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

Bet you can`t weigh an atom ! Last night you were bragging to your friend about this

wonderful new PBL physics course and that you feel that you could tackle any problem.

Your friend says to you that on the farm they use “ Bluestone” which she thinks contains a metal of some sort.

“So what” you said “I bet you can`t weigh the metal atom in it” she said

with a twinkle in her eye. You just can`t resist a challenge. The electric charge on an electron = 1.60 x 10-19 C

Page 33: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

THE MAGICIAN

The year is 1255, and you are an apprentice alchemist in the Transylvanian School of Magic. The grand wizard John the Just, and his two warlocks ,Tony the Great and Henry the Wise, have provided you with a magic spell to remove any accumulated metal from an electrode used in the secret art of electrolysis.

In the ongoing task of trying to turn ordinary metals into gold, the archmage Ted the White has run out of iron metal.

You have been ordered by the grand wizard to produce 5g of iron metal for use by Ted the White, but he also wants to know how long he will have to wait if you start work immediately.

Looking around your laboratory, you find that you have all the necessary equipment for the electrolysis process.

There is also a very large bottle of iron ( III ) sulphate, and a battery capable of producing an electric current of 0.8 A in the electrolysis of this solution.( The battery was a present from an alien time traveller, called Marty, on his way back to the future)

Marty also forgot his notebook, which contains the following information :Molar mass of iron = 55.85 gElectric charge on an electron = 1.6 x 10-19 CAvogadros number = 6.02 x 1023 mol-1

Page 34: Problem Based Learning DkIT First Year Comparison PBL to Traditional Teaching Method.

• QUEEN BREDAS BATH• It is the year 3042, and you have been transported from your homeland by the CAO to the kingdom of Studentia, ruled by

the overlord, Dennis the Destroyer. The overlord has sent you to the province of Science, to be a slave to its ruler, the Barbarian Queen Breda. The only way to earn your freedom is to carry out your duties to the complete satisfaction of the Queen.

• The weather in Studentia at this time of year is dry and settled, with the temperature being about 10oC throughout the day.

• Your first task is to prepare Queen Bredas ceremonial bath, which, according to tradition, must be at body temperature.• The traditional way of preparing the bath is to carry the sacred hot and cold water in ceremonial shells which are filled

from the Volcanic spring and the Glacier spring, which are both close to the ceremonial mound which contains the ceremonial bath. As this is your very first task, you decide to sneak out at night to look at each spring.

• At the Glacier spring, there are lots of small icebergs which have broken off from the glacier, and are floating around in the small pool. Beside the spring are the blue shells used to carry the sacred cold water. There are three sizes of 10 litres, 5 litres, and 1 litre. The shells are made from a special insulating material, which ensures that the temperature of the water in the shell remains constant.

• The ceremonial mound containing the bath, is a short walk away from the Glacier spring, and it takes you about 1 minute to get there. You decide to take a closer look, and find that the mound appears to be made of bark chips, but they are very soft. The bath itself is round, made of metal, and has a brown colour with streaks of green. You estimate the dimensions of the bath to be :

• Diameter = 1.5 m• Depth = 0.6 m• Thickness of the bath material = 5 mm • As you leave the ceremonial mound, you take a 30 second walk to the Volcanic spring, where there are lots of hot rocks

falling into the lake, and the water is constantly on the boil. The red shells used to carry the sacred hot water are beside the lake. These shells are made of the same special insulating material, and there are the same three sizes as the blue shells.

• On the way back to your sleeping quarters, you realise that a plan is needed in order to make sure that Queen Breda is satisfied with her bath in the morning, which is scheduled to take place at 11.00 am


Recommended