+ All Categories
Home > Documents > Problem of Salinity in Coastal Aquifers of Tunisia · Problem of Salinity in Coastal Aquifers of...

Problem of Salinity in Coastal Aquifers of Tunisia · Problem of Salinity in Coastal Aquifers of...

Date post: 07-Sep-2018
Category:
Upload: doantruc
View: 214 times
Download: 0 times
Share this document with a friend
47
Problem of Salinity in Coastal Aquifers of Tunisia DR. MOHAMED FETHI BEN HAMOUDA Fulbright Visiting Scholar Division of Earth and Ocean Sciences Duke University, NC, USA CNSTN, Isotope Hydrology and Geochemistry Unit, Tunisia Kelibia Beach, Tunisia University of Hawaii, Manoa Honolulu, April 2, 2015 1
Transcript

Problem of Salinity in Coastal Aquifers of Tunisia

DR. MOHAMED FETHI BEN HAMOUDA

Fulbright Visiting Scholar Division of Earth and Ocean Sciences

Duke University, NC, USA

CNSTN, Isotope Hydrology and Geochemistry Unit, Tunisia

Kelibia Beach, Tunisia

University of Hawaii, Manoa Honolulu, April 2, 2015

1

Agriculture Industry

And Tourism

Population growth

Severe and irregular Climate

Coastal Zones

WR Strategic

Population increasingly urban and

concentrated along the coast

variable availability

WR

Increasing water demand

OVEREXPOITATION

PIEZOMETRIC DROP

INCREASE OF WATER SALINITY 2

3

Seawater

Water Vapeur

Air Pollution

Waste water Mines Drainage Industrial dump

Groundwater Salinisation

Eva

po

rati

on

Surface Water

Marin Evaporites

Sedimentary brines

Primary Secondary

Dilution /mixing

Acid rain

Continental Evaporites

Pumping Irrigation

Dissolution of mines wastes

Geothermal Water

Infiltration, Evaporation Water irrigation return

Magmatic Rocks

Causes of salinisation of aquifers?

Natural and anthropogenic

4

What are the Consequences?

Environment: Loss of biodiversity: replacement by halotolerant species

Human health: inorganic pollutants:

Nitrates, Arsenic, Selenium, Boron and radioactivity

Immigration, exodus to the cities

Loss of fertile soils

Collapse of agricultural

Loss of fresh water: water-quality degradation

Economic and social

5

Geochimical and et Isotopic tools Tracers of salinity

Cations (Ca, Mg, Na, K) Anions (Cl, SO4, Br, NO3)

stable and radioactive Isotopes

18O, 2H, 13C, 3H, 14C

6

Sampling and measurement

Djeffara: 29 Sousse: 30 Côte orientale: 47 El Haouaria :35

Problem of salinity in four coastal aquifers

7

Climate and Hydrology

ETP = 1100, 1750, 1300 mm/a

P= 570, 440, 320, 180 mm/a

Sub humid to Semi arid and arid climate Mediterranean

(30°C )summer Hot (16°C ) Mild winter

• No perennials rivers

• Small rivers carry water

• Intense storm cause surface

runoff

• O. Laya and wadi akarit major wadis reaching the coast

• The wadis discharge into salty lakes

Hydrographic network and

Isohyetes Map of Tunisia

8

Evolution of exploitation

El Haouaria plain

Eastern Coastal

La Nappe profonde de la Côte Orientale0

20

40

60

80

100

120

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

(Nb

de f

ora

ge)

01

23

45

6

(Mm

3)

Nb de forages

Exploitation

La Nappe profonde d'El Haouaria

010

20

30

40

50

60

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

(Nb

de f

ora

ge)

01

23

45

6

(Mm

3)

Nb de forages

Exploitation

2000

2500

3000

3500

4000

4500

19

50

19

52

19

54

19

56

19

58

19

60

19

62

19

64

19

66

19

68

19

70

19

72

19

74

19

76

19

78

19

80

19

82

19

84

19

86

19

88

19

90

19

92

19

94

19

96

19

98

20

00

20

02

Déb

it (

l/s

)

Exploitation of Djeffara aquifer (1950-2003)

Expl-Djeffara 1950-2003 (l/s)

Djeffara-Gabès

Djeffara plain

9

0

2

4

6

8

10

12

14

16

18

juin-72 juin-77 juin-82 juin-87 juin-92 juin-97 juin-02 juin-07

Années

N.P

(m

)

P41

P42

Evolution of piezometry in El Haouaria plain

This decrease ranges from 1 to more than 14 m according to the location of the well

Average: 3.38 m

11 %

-8

-6

-4

-2

0

2

4

juin-72 juin-77 juin-82 juin-87 juin-92 juin-97 juin-02 juin-07

Années

N.P

(m

)

8862

8894

average: 2.83 m

5 %

Continued decline of piezometry 1 to over 11m

20

21

22

23

24

25

26

19

60

19

63

19

66

19

69

19

72

19

75

19

78

19

81

19

84

19

87

19

90

19

93

19

96

NP

(m

)

Métouia 6 (N°IRH )

Reducing artesian pressure Depletion wells Springs dry

10

0

1

2

3

4

5

6

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Années

RS

(m

g/l

)8684 P19 9 892 8315

Temporal evolution of the salinity (g / l) at the Eastern coastal aquifer

Consequences

11

Geological block diagram at the Cap Bon (Ben Hamouda et al, 2011)

Quaternary covers the plain of El Haouaria

Miocene and Oligocene outcrop in Jebel Sidi Abderrahmane

Geological and Hydrogeological setting

Pliocene and Quaternary outcrop near the coast at the Eastern shallow aquifer

12

Hydrogeologic cross section SW-NE (Ben Hamouda et al, 2013)

Shallow unconfined

Deep confined

Hydrogeologic cross section in Djeffara aquifer (Ben Hamouda et al, 2013)

Four aquifers levels

13

Djeffara

Continental Intercalaire

Shallow: Quaternary (Pontien)

Miocene sands

Senonian limestone

Great

Oriental

Erg

14

North-western Sahara Aquifer System NWSAS

2.5 billion 3m in 2000 to 7,8 billion 3m in 2050

15

1200 km

The « Continental Intercalaire » (C.I.) aquifer

0 m

-1 km

-2 km

16

17

18

Plio-quaternary aquifer

Piezometric Maps

Main flow: O-E Alongside wadis and towards the sea

Nabeu

l

Korba

Kelibia

Mer

Méditerranée

Sidi Daoud

Azmour

El

Haouaria

Mer

Méditerranée

Dar

Allouch

0 2 4

Km

Flow south and north toward the center of the plain and moves towards the east and west

Quaternary aquifer

Characterized by a grounwater divide

19

Oued Laya Aquifer

Groundwater flow towards the sea

Groundwater flow towards the sea Groundwater is recharged by rain and runoff and from a vertical leakage (up flow) from Djeffara

Djeffara aquifer

Continental intercalaire Main flowpaths under the Great Oriental Erg

20

21

Salinity map : Eastern Coast

High salinity in Korba Tafelloune

6-8 g/l, 20 to 30 g/l

Plio-quaternary aquifer

10

8

Mer Méditerranée

Kelibia

Nabeul

Korba

Tafelloune

Menzel Horr

Menzel Temime

Béni Khiar

Nabeul

Korba

Kelibia

Mer Méditerranée

El Haouaria plain

High salinity level at Haouaria (depression area) 5-6 g/l

Sidi

Daoud

Azmour

El

Haouaria

Mer

Méditerranée

Dar

Allouch

Quaternary aquifer

Near the coast, Salinity 2 to 3 g/l, littoral barrier

22

Salinity map O. Laya

Salinity varies from 3 to 8 g/l

Salinity map nothern Djeffara

Salinity varies from 2 to 10 g/l

23

Estimation of the mixing with seawater

F sea is fraction of Seawater (0<F<1)

(Barbecot, 1999)

freshsea

freshsample

ClCl

ClClF

using chloride as a conservative tracer

24

Map of Estimation of mixing with seawater (%)

Max of SW is 70 % (13143/2)

Heterogeneity of processus Of salinisation

3 % in the 11829/2

66 % in the 11186/2

H: P 31 & P34, F< 1 % Confirmation absence of Seawater intrusion

the % SW 1 à 30 %

Mer Méditerranée

Kelibia

Nabeul

Korba

25

Mixted chemical profile

Anions: Cl> SO4 et HCO3

Cations: Na> Mg et Ca

Wells whose waters are contaminated by seawater are turning into Ca-chloride

water, different from seawater (NaCl water type).

Na-Cl and Ca-Cl water type

Piper Diagram

26

2 parallel trends

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Na (

meq

/l)

Chloride (meq/l)

marine ratio Halite Djeffara

Sousse Haouaria Côte Orientale

Indicates contribution of Halite dissolution to the mineralisation GW

WRI Ion exchange Na –Ca Clay minerals + O.M

Na/Cl > 1 reflecting Income of Na to GW system

The [Na+]/[Cl-] relationship

Seawater intrusion: Na/Cl<sw

Na is retained and Ca is released

Sea spray Influence on the infiltrated rain water

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

0 10 20 30 40 50 60 70 80 90 100

Br/

Cl

(mo

lar)

Chloride (meq/l)

Seawater

Haouaria

Côte Orientale

Sousse

Relationship not distinctive

The [Br-]/[Cl-] relationship

Br/Cl=sw Seawater intrusion

A distinctive geochemical fingerprint

Brine contamination

27

28

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

SI G

yp

su

m

SO4 (meq/l)

Djeffara

Sousse

Haouaria

Côte Orientale

The SI gypsum / SO4 relationship

Precipitation, disolution and Ion exchange

Water is unsaturated Vs. gypsum and anydrite

Progressive Saturation Vs increase in SO4

29

High salinity linked to the geology : presence of gypsum

XRD Spectrum of gypsum found in the geologic formations

Isotopes Stables (2H, 18O) 1st group: -1 ‰ < 18O < -4 ‰ Probable seawater intrusion

2nd group: -4 ‰ < 18O< -5 ‰ Recharge from rainwater

-60

-50

-40

-30

-20

-10

0

-8 -7 -6 -5 -4 -3 -2 -1 0

d 2

H (

‰)

V-S

MO

W

d18O (‰) V-SMOW

Shallow Eastern Coast

Global meteoric water line GMWL

Local meteoric line of Tunis Carthage

Deep Eastern Coast

Djeffara

Shallow Haouaria

Deep Haouaria

SoussePaleowater

Recent Water

Mixing line with sea water

Old water

3rd group : -4.9 < 18O< -6 Fingerprint of old water.

4th group: Paleowater from CI and Djeffara

Plot of d2H ‰ Vs. d18O ‰ (V-SMOW)

30

31

Old water (100, 400 mg/l)

Seawater (SMOW, 19500)

Recent water (300, 2000 mg/l)

Sal: SWI + Evap.

Sal: WRI + C. Exch

Relation entre Cl- et d18O ‰ (V-SMOW)

1

10

100

1000

10000

100000

-8 -7 -6 -5 -4 -3 -2 -1 0

Ch

lori

des

(m

g/l

)

d18O (V-SMOW)

Shallow Eastern Coast

Deep Eastern Cost

Sea water

Tunis-Carthage rain

Shallow Haouaria

Deep Haouaria

Sousse

Djeffara

Marine pole

Tunis-Carthage rain pole

Old water

Recent water Paleowater

Relation 18O/[Cl-]

Paleowater (1000, 3000 mg/l)

Diss. Halite

Rain water (-4.4 ‰,10)

32

Plot of Tritium Vs Chlorides

0,0

2,0

4,0

6,0

8,0

10,0

12,0

0 500 1000 1500 2000 2500 3000 3500 4000

Chlorures (mg/l)

Tri

tiu

m (

U.T

)

Plio quaternaire

Miocène

Oligocène

Eau ancienne

Eau récente

Eau post-nucléaire

Group post-nuclear

Recharge durind last decade

Group recent water

Group Old water

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 500 1000 1500 2000 2500 3000

Chlorures (mg/l)

Tri

tiu

m (

UT

)

Quaternaire

Pliocène

Eau ancienne

Eau récente

Eau post-nucléaire

Le 3H identify

differents water types :

Low content in Cl Fast infiltration in the rivers

High salinity

3H (<1 UT)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

-8.00 -7.00 -6.00 -5.00 -4.00 -3.00 -2.00

Oxygen-18 )‰(

3H

(T

U)

GAB 4

GAB 10a

GAB 14

GAB 15

GAB 21

all others

10

100

1000

0.1 1 10

Tritium (TU)

MR

T (

years

)

Map of distribution corrected ages in Oued Laya aquifer

(3H et 14C)

indicator of recent recharge

Correlation between tritium and δ18O in Djeffara aquifer

The coastal zone is an area of recent and renewable water. While the area located in S.O is that of older waters that exceeds 5000 years

33

Isotope contents in “deep” groundwaters –

Northern Africa mapping fossil groundwater

34

35

Rr (%)

Recharge

(Api)

Discharge

(Ani)

3H et 14C

(Ani)

Variation of reservoir (∑ Hn) (-5 to -11 %)

Conceptual schema of estimating of renewal rate is a simple model of vertical mixing. The model assumes an uniform isotopic facies throughout the thickness of the aquifer and a constant water storage, that is to say a discharge of water exactly compensated by infiltration of rain

Radioactive isotopes (3H et 14C) modeling of renewal rate

Leduc, (1996, 2000), Favreau, (2000, 2002), Le Gal La Salle, (2001) et Cartwright, (2007)

36

with : An i: Activity in groundwater for the year i Rr: Annual renewal rate of groundwater, An i-1 : Activity in groundwater for the year i -1, Pe : Period of radioisotope (14C or 3H), Api : Activity in rain for the year i.

(1)

(Leduc, 1996) )(1 /2ln

1 i

Pe

ii ApRreAnRrAn

(3H et 14C): Renewal rate estimation

1

1

1

1

/2ln

1 1/)(11i

n

ni

i

n

n

Pe

ii HApRrHeAnRrAn

37

110

100

1000

10000

1950

1960

1970

1980

1990

2000

Tri

tiu

m P

luie

s T

un

is C

art

hage(

UT

)

100

150

200

250

300

14C

Tro

posp

hèr

iqu

e (P

MC

)

Tritium (UT)

Tritium mediane

14C

14C: (Nydal et al, 1996)

Chronic reconstructed and extrapolated from annual levels of 3H in rain and from annual tropospheric levels for 14C since 1950

38

0,1

1

10

100

1000

0,01 0,1 1 10 100

Taux de renouvellement annuel Tr (%)

Tri

tiu

m d

an

s la n

ap

pe (

U.T

)

2001

1980

Annuel Renewal rate estimated from Tritium

0,1

1

10

100

0,01 0,1 1Taux de renouvellement annuel Tr (%)

Tri

tiu

m d

an

s la n

ap

pe (

U.T

)

2001

1980

3H= 4.4 TU (2001) et 20 TU (1980)

Rr = 0.2 % (2001) et 0.3 % (1980)

Lassoued, (1980)

39

The determination of renewal rate of the aquifer to estimate the recharge rate R = T . p . Rr

Avec: R : Recharge in mm/year Rr : renewal rate P : Porosity T : Thikness of the aquifer in m

H: T= 30 m, P= 14% R= 12 mm/y

Leduc, (1996, 2000) et Cartwright, (2007)

C.O: T= 43 m, P= 12% R= 10 en mm/an

40

Salinisation

Hydrochemical isotopic Data

Hydrogeologic information

Origin of salinity

Dissolution Of salts

(Halite+Gypsum)

Seawater Intrusion

1-70 % (CO) < 1% (H)

•Irrigation return flow • Sea spray

Semi Arid Coastal zone

Prevailing wind Mediterranean Sea

Recharge (rain) WRI

Cations exchange

•Piezo drop • Salinity map •Na/Cl Ratio •Br/Cl Ratio •isotopes 18O,2H

Evaporation

Near the salty lake

Thank you !

41

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000195

5196

0196

5197

0197

5198

0198

5199

0199

5200

0200

5201

0201

5202

0202

5203

0203

5204

0204

5205

0205

5206

0206

5

Evolution of the Tunisian population (1000.hab) source : Prévisions Démographiques Nationales, Institut National des Statistiques, Août 2005

42

43

Drinking Water: 300 Mm3

(30 m3/Cap/year) Industrial Water: 100 Mm3 ≈ (10 m3/Cap/year)

Tourist Water: 20 Mm3 ≈ (2 m3/Cap/year)

Agriculture : 2100 Mm3 ≈ (210 m3/Cap/year)

44

• is limited ~ 400 m3 /Cap/year • is non uniformly distributed In space & In time • is largely exploited (~ 80 %)

données : FAO www.fao.org/countryprofiles & INS Tunisie

In Tunisia, from 600 to 1400 m3/year/hab

500

700

900

1100

1300

1500

1960 1970 1980 1990 2000

m3/an/hab

45

Overexploited Aquifers in red (in 2000) source: Annuaires d’exploitation des nappes profondes & phréatiques, DGRE

46

< 1.5 g/L

1.5 to 3 g/L

> 3 g/L

Salinity of shallow aquifers (< 1.5 g/L; 1.5 to 3; > 3 g/L) 47


Recommended