+ All Categories
Home > Documents > Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of...

Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of...

Date post: 18-Dec-2015
Category:
View: 215 times
Download: 0 times
Share this document with a friend
Popular Tags:
25
Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville, FL Jan 18, 2007
Transcript
Page 1: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Process Optimization and Development for

ZnO Optoelectronics and Photodiodes

Jon Wright Dept. of Materials Science and Engineering,

Univ. of Florida, Gainesville, FLJan 18, 2007

Page 2: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Outline

• Introduction & Motivation• Background

– Contacts (Ohmic + Schottky)– Ion Implantation (Group V)

• Project Objectives• Methodology• Preliminary Results

– Ir/Au Ohmic Contacts– Surface Treatment Analysis

• Conclusions & Timeline

Page 3: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

ZnO – Basic (Electrical) Properties

• Direct, wide bandgap• High excitonic binding

energy – 60 meV

• Inexpensive growth

• Easily etched– (acids and alkalis)

• Radiation stability

Property Value

Lattice parameters at 300 K (nm)a0: 0.32495

c0: 0.52069

Density (g cm-3) 5.606

Stable phase at 300 K Wurtzite

Melting point (ºC) 1975

Thermal conductivity 0.6, 1-1.2

Linear thermal expansion coefficienta0: 6.5 10-6

c0: 3.0 10-6

Static dielectric constant 8.656

Refractive index 2.008, 2.029

Energy bandgap (eV) Direct, 3.37

Intrinsic carrier concentration (cm-3)

<106 max n-type doping: n ~

1020

max p-type doping: p ~ 1017

Exciton binding energy (meV) 60

Electron effective mass 0.24

Electron Hall mobility, n-type at 300 K (cm2V-

1s-1)200

Hole effective mass 0.59

Hole Hall mobility, p-type at 300 K (cm2V-1s-1) 5 - 50

Page 4: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

ZnO vs. GaN• Bulk ZnO (n-type) commercially

available • Grown on inexpensive substrates at

low temperatures• Lower exciton energy for GaN• Heterojunction by substitution in Zn-

site – Cd ~ 3.0 eV– Mg ~ 4.0 eV

• Nanostructures demonstrated• Ferromagnetism at practical Tc when

doped with transition metals • Obstacle: good quality,

reproducible p-type

GaN ZnOBandgap (eV) 3.4 3.2µe (cm2/V-sec) 220 200µh (cm2/V-sec) 10 5-50me 0.27mo 0.24mo

mh 0.8mo 0.59mo

Exciton binding 28 60energy (meV)

Potential Applications

UV/Blue optoelectronics

Transparent transistors

Nanoscale detectors

Spintronic devices

Page 5: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Motivation

ZnO-based electronic devices

• UV light-emitting diodes• Optoelectronics• Transparent thin-film transistors

– Flat panel displays– Solar cells

• Piezoelectric transducers• Gas-sensors

• Photonic devices– High density data storage

Page 6: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Ohmic contacts to n-ZnO

• Earlier Metallizations– Ti/Au, Zn/Au, Al/Pt

Re/Ti/Au, Ru, Pt/Ga– ρsc 10-3 – 10-7 Ω.cm2

• c-TLM reduces steps• Au ↓ sheet resistance • Surface carrier ↑

annealing– Adv: oxygen loss– Disad: surface degradation

• Surface cleaning ↓ b

• Limited info w/ p-ZnOK. Ip et al. AIP (2004).

Page 7: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Schottky Contacts to ZnO

• Schottky Obstacles– Surface states– Defects @ surface layer– Metal/ZnO intermixing

• Typically Au, Ag, Pd, Pt– Φb ~ 0.6-0.84 eV

– n > 1 (~1-2+)– Poor thermal stability

• High n factor– Tunneling– Interface layer– Surface conductivity– Deep recomb. centers

Element Work Function (eV) Ideal Barrier Height (eV)

B 4.45 0.35

Cr 4.5 0.4

Pt 5.64 1.54

Ti 4.33 0.23

W 4.55 0.45

Zr 4.05 -0.05

1expexp2**

nkT

qV

kT

qTAJ b

Page 8: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

p-type Doping in ZnO

• Several deposition methods– Group V: N, P, As, Sb – all on O sites– MBE requires low temp for high dopant conc.

• Crystal quality poor below 500°C

– Post-deposition annealing results inconsistent

• Hole conc. ~ 1015-1017 cm-3

• Limitations in band edge electroluminescence– Deep traps: non-radiative recombination centers– Low density of holes at junction– Diffusion of carriers away from active region

Page 9: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

p-type Ion Implantation for ZnO

• Dopant beam makes vacancies for acceptors

• Questions:– Correct ion dosage– Limiting residual damage– Maximizing acceptors

• Need for understanding– Damage accumulation– Thermal stability of defects

Page 10: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Project Objectives

The goals of this project are three fold:1. Optimization of Ohmic contacts to ZnO

– Ir, Re, WNx, TiNx, ZrNx, and TaNx

2. Optimization of Schottky contacts to ZnO– Ir, Re, WNx, TiNx, ZrNx, and TaNx

3. Investigation of electrical properties for implanted Group V dopants in ZnO

Aim: Develop processes for ZnO devices– Specifically for UV optoelectronics and LEDs– Realization of p-type ZnO nanowire devices

Page 11: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Why Use These Materials?

• Nitrides have excellent electrical properties– Highly conductive– High melting temperature– Strong bonds lead to low diffusivity probability– Thermally stable – some Nitrides up to 800°C on GaN

• Ir, Re successful novel metallizations for GaN– Superb thermal stability

• Group V elements most promising p-type dopants– Difficulty with shallow acceptor levels due to defect states– Group I elements tend to occupy interstitial sites (act as donors)

Page 12: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Methodology – Ohmic Contacts Processing

• Surface Treatment/Cleaning• Photolithography – c-TLM pattern if possible

[J. Chen thesis]

• Sputter deposit metallization scheme– Novel metallizations include Au overlayer

• Lift-off• Anneal (300°C-1000°C, 1 min, N2 or O2)

Page 13: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Methodology – Schottky Contacts Processing

• Sample Treatment/Cleaning• Photolithography for Ohmic contact (outer ring)

• Sputter deposit Ti/Au (basic Ohmic contact)• Lift-off• RTA anneal 450°C , 30 sec N2 ambient• Schottky photolithography realignment• Sputter deposit metallization scheme

– Novel metallizations include Au overlayer• Lift-off

• Anneal contacts (300°C-1000°C, 1 min, N2 or O2)

Page 14: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Methodology – Contact Measurements

• Electrical Characterization– Contact resistance

• 4-probe TLM measurement• 2-probe C-TLM measurement

– Δ Annealing temperature– Δ Annealing time– Variation in measurement

temperature (RT – 300°C)– Schottky Diode parameter

measurements

• Auger Electron Spectroscopy• Scanning Electron Microscopy• Thermal stability measurements

kT

q

TqA

k bC

exp

**

D

bSC

N

m

*2exp

Page 15: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Methodology – Ion Implantation• N, P, As dopants @ doses 1013-1014

cm-2

• Implantation temp varied RT – 300°C

• Annealed between 600 – 950°C– RTA– PLD chamber, O2 ambient (in-situ)

• Hall measurements used to calculate:– Carrier type– Carrier density– Acceptor ionization energy

• Use of Oxygen to reduce vacancies

• Depth Profiles by AES/SIMS

Page 16: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Ion Implantation → ZnO Nanowires

• Ability to create pn junction is paramount– Acceptor implantation + characterization

• Why Nanowires?– FETs, photodetectors, gas sensors, nano-cantilevers– Allow investigation of carrier transport properties (1-D)– Surface quality, ambient environment critical to character of device

• ZnO nanorods (d ~130 nm) grown by MBE– p-type nanowires by injection of acceptors– Contacts on wires using p-type Ohmic metals

• Nanowire pn junctions– Masked implantation OR focused ion beam– Determination of EA, ρ – activation kinetics

Page 17: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Prelim Research – Ir/Au Ohmic Contacts

0 200 400 600 800 100010-6

10-5

10-4

Annealing Temperature (C)Spec

ific

Con

tact

Resi

stan

ce (

cm2 )

2

4

6

810 S

heet Resistan

ce (square)

Page 18: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Ir/Au Contacts – AES Profiles

0 100 200 300 400 500 600 700 800 0

10

20

30

40

50

60

70

80

90

100

Sputter Depth (Å )

C

O

Ir Au

Zn

Ato

mic

Con

cent

ratio

n (%

)

As-Deposited

Only slight intermixing btw Au and Ir layers until 800°C(+)

0 100 200 300 400 500 600 700 800 0

10

20

30

40

50

60

70

80

90

100 1000 C Anneal

Sputter Depth (Å ) A

tom

ic C

once

ntra

tion

(%)

C

O

Ir Au

Zn

Page 19: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Ir/Au Contacts – Thermal Stability

0 3 6 9 12 15 18 21 24 27 302x10-4

2.5x10-4

3x10-4

3.5x10-4

4x10-4

4.5x10-4

5x10-4

Days Annealed @ 350CSpec

ific

Con

tact

Res

ista

nce (

cm2 )

20

40

60

80100S

heet R

esistance (/sq

uare)

30 Days

Pre-anneal

No change to Rsh after 30 days

Page 20: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Ir/Au Contacts – N2 vs. O2 Anneal

Resistance increased w/ O2 anneal – IrO2 layer

0 200 400 600 8001E-4

1E-3

0.01

0.1

1

Spe

cific

Con

tact

Res

ista

nce

( c

m2 )

Annealing Temperature (C)

Nitrogen Anneal Oxygen Anneal

0 200 400 600 800101

102

103

104

105

She

et R

esis

tanc

e (

/squ

are)

Annealing Temperature (C)

Nitrogen Anneal Oxygen Anneal

Page 21: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Ir/Au Contacts – N2 vs. O2 Anneal

0 100 200 300 400 500 600 700 800 0

10

20

30

40

50

60

70

80

90

100 N2 Anneal

Sputter Depth (Å )

Ato

mic

Con

cent

rati

on (

%)

C

O

Ir Au

Zn

Sputter Depth (Å )

0 100 200 300 400 500 600 700 800 900 1000 0

10

20

30

40

50

60

70

80

90

100

O2 Anneal

Ato

mic

Con

cent

ratio

n (%

)

C

O

Au Ir

Zn

AES can not detect IrO2 layer, however more interdiffusion of Ir w/ N2 anneal

Page 22: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Prelim Research – Surface Treatment

1.5 2.0 2.5 3.0 3.50

1

2

3

4

5

6

7

Inte

nsi

ty (a.u

.)

Energy (eV)

AsDep Anneal Ozone H3PO4 O2 BCl3 Ar

Page 23: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Surface Treatment – IV Character

All treatments result in Ohmic contacts except for Oxygen plasma.

Surface Treatment Rsh ρsc

(Ohm/□) (Ohm cm2)

Argon 66.17459 0.0040942

Ozone 51.29278 0.0019744

Oxygen 102.2857 0.1094889

BCl3 45.55315 0.0016784

Anneal 57.57407 0.0028027

H3PO4 57.96292 0.0016462

As-Dep (LTLM) 51.39528 0.0005177

Page 24: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Investigation TimelinePlan 2005 2006 2007 2008 2009

  Fall Spring Summer Fall Spring Summer Fall Spring Summer Fall Spring

Literature Review                      

Fabrication (Ohmic & Schottky)                      

Measurements of Contact Resistance                      

Measurements of Contact Intermixing & Second Phases                      

Thermal Stability Measurements of ZnO Contacts                      

Long-term Aging Studies                      

Ion Implantation (Doping)                      

Thermal Stability Measurements for Annealed ZnO                      

Activation Study for Different Acceptor Dopants                      

Diffusivity Measurements                      

Oral qualifier & defense                      

Dissertation & defense                      

Page 25: Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,

Acknowledgements

• Advisory Committee– Prof. S.J. Pearton (Chair)– Prof. C.R. Abernathy– Prof. D.P. Norton– Prof. R. Singh– Prof. F. Ren

• Contributors– Dr. L. Stafford, Dr. B.P. Gila, L.F. Voss, R.

Khanna, H-T. Wang, S. Jang


Recommended