+ All Categories
Home > Documents > Process Selection of Mineral Processing

Process Selection of Mineral Processing

Date post: 23-Feb-2016
Category:
Upload: boris
View: 38 times
Download: 3 times
Share this document with a friend
Description:
Process Selection of Mineral Processing. Bandung, 1 November 2012. 1. Company Overview  ANTAM At A Glance  Unit Operation  Exploration Overview  Summary of Development Projects . Company Overview. ANTAM At A Glance *. 65%. Government of Indonesia. 99.98%. - PowerPoint PPT Presentation
Popular Tags:
56
1 Process Selection of Mineral Processing Bandung, 1 November 2012
Transcript
Page 1: Process Selection  of Mineral Processing

Process Selection of Mineral Processing

Bandung, 1 November 2012

Page 2: Process Selection  of Mineral Processing

2

• Company Overview1

• General2

• Case Study3

Page 3: Process Selection  of Mineral Processing

Company Overview ANTAM At A Glance Unit Operation Exploration Overview Summary of Development Projects

1

Page 4: Process Selection  of Mineral Processing

4

Company OverviewANTAM At A Glance*

75%

99.98%

99.15% 100%

50%

99.98%99.5%

99.5%

80% 99.5%

PT Gag Nikel (Indonesia)

Asia Pacific Nickel

Pty., Ltd. (Australia)

PT Antam Resourcindo (Indonesia)

PT Borneo Edo International (Indonesia)

PT Mega Citra Utama

(Indonesia)

PT Abuki Jaya Stainless Indonesia

(Indonesia)

Agriculture Company

Gold Mine & Processing

Plant

MiningOperator

Subsidiaries

PT Indonesia Chemical Alumina

(Indonesia)

99.5%

Bauxite & Alumina Based Company

99,5%

Public

65%

35%

Precious Metals Based CompanyCGA Processing

Plant

PT Feni Haltim (Indonesia)

Nickel Based Company

PT Dwimitra Enggang

Khatulistiwa (Indonesia)

FeNi Processing Plant

99.98%

PT Borneo Edo International

Agro(Indonesia)

99.98%25%

PT International Mineral Capital

(Indonesia)

Investment Company

99.5%

Coal BasedCompany

PT Meratus Jaya Iron &

Steel Indonesia (Indonesia)

Iron, Steel &Stainless Steel

34%

Sponge Iron Processing

Plant

Antam is a vertically integrated, export-oriented, diversified mining and metals company

We undertake all activities from exploration, excavation, processing through to marketing

Operations spread throughout the mineral-rich Indonesian archipelago

Possess large holdings of high quality reserves and resources

Many licensed exploration areas and joint venture projects

*Does not include Antam’s minority joint ventures

PT Citra Tobindo Sukses Perkasa

(Indonesia)

PT Indonesia Coal Resources

(Indonesia)

Government of Indonesia

Coal Mining Operator

PT Cibaliung Sumberdaya (Indonesia)

Page 5: Process Selection  of Mineral Processing

5

Summary of Development Projects (CAPEX Plan)

Bauxite processing into CGACapacity : 300,000 tonnes of CGA pa

Completion : 2014Project Cost : US$450 millionANTAM Share: 80%Partner : Showadenkko KK (JPN)

Iron making smelterCapacity : 315,000 tonnes product pa

Completion : 2012Project Cost : US$150 millionANTAM Share : 34%

Capacity : 12,000 ton ni pa (10% Ni \ in product) Completion : 2016

Cost : US$398 million (incl. 4x25 MW CFPP)ANTAM Share : 100% Processing plant through PT AJSI

Ferronickel smelterCapacity : 27,000 tonnes Ni pa

Completion : 2015Project Cost : US$ 1.6 billionANTAM Share : 100%

Nickel

Bauxite

Iron

Bauxite processing into SGACapacity : 1.2 mmt of SGA pa

Completion : 2015Project Cost : US$1.0 billionANTAM Share : 100%Partner : -

SGA Mempawah Project

CGA Tayan Project Nickel Mandiodo Project

FeNi Halmahera ProjectSouth Kalimantan Sponge IronProject (MJIS)

ANTAM’s development projects are driven by a requirement to build downstream process capabilities in order to comply with new Indonesian mining laws

NickelCapacity : 10,000 ton Ni pa (increase)

Completion : 2014Cost : US$ 486 millionANTAM Share : 100%

Modernization & Optimation Pomalaa (MOP-PP)

Company Overview

Page 6: Process Selection  of Mineral Processing

2 General Definition Factors in Process Selection

Page 7: Process Selection  of Mineral Processing

7

Definition

Process selection:the systematic development of the optimum metal extraction route for a particular ore using the most appropriate technology

The goals: Optimize project economics, principally a function of metal/mineral

recovery, throughput rate, capital and processing cost. Develop a process that satisfies all of the project requirements, including

environmental considerations.

Page 8: Process Selection  of Mineral Processing

8

Factors in Process Selection

1. Geological2. Mineralogical3. Metallurgical4. Environmental5. Geographical6. Economic and Political

Page 9: Process Selection  of Mineral Processing

9

(1) Geological FactorThe grade and reserve of economic minerals in an orebody determine the type and scale of process technology that can be applied.The process selected must be able to cope with ore type variations that are inevitable, even after blending, such as ore hardness, mineral composition, alteration, degree of fracturing and clay content.

(2) Mineralogical The mineralogical properties of an ore determine its response to the various process options and indicate the potential environmental impact of its treatment.The mineralogical characteristics are determined from the ore composition and textural properties. Such date is used in conjunction with metallurgical testwork results and information from other similar orebodies for process selection and flowsheet development.

Page 10: Process Selection  of Mineral Processing

10

(3) Metallurgical The metallurgical response of an ore to a proposed treatment scheme directly determines the economics of the process, or combination of processes used.

The factors to be considered in the evaluation are: Recovery of valuable minerals. Quality of product, and the need for further processing. Treatment rate. Capital cost. Operating cost. Environmental impact. Technical risk.

The factor 1-3 affect the revenues generated by the project, items 2-6 affects process costs, and 7 is the level of uncertainly associated with a process.

Page 11: Process Selection  of Mineral Processing

11

(4) EnvironmentalProcess selection must be considered the environmental impact that each unit process has on the following: water quality, air quality, land degradation, visual impact, noise, flora and fauna, rare and endangered species, and cultural resources.

These are affected by the following aspects of chemical extraction processes: the types and amount of wasted produces (solids, liquids, and gases) the short and long term stability of waste products alteration of minerals and metal by the process the process water balance and the need for discharge the method of waste disposal and treatment

Page 12: Process Selection  of Mineral Processing

12

(5) Geographical The location of the orebody and the proposed treatment facility may have an important effect on process selection.The main factors include:

climate (rainfall, temperature ranges) water supply topography infrastructure availability of equipment, reagents and supplies communications, political environmental availability of skilled and unskilled labor sites of archaeological or religious importance

(6) Economic and Political Economic and political factors which may affect process selection are many and varied. The most important of these are

the price of the metals tax rates structures and the prevailing economic and political climate, both locally and worldwide.

Page 13: Process Selection  of Mineral Processing

3 Case Study Nickel Gold

Page 14: Process Selection  of Mineral Processing

NICKEL

Page 15: Process Selection  of Mineral Processing

15

Classification of Nickel Ore

Classification of nickel ore from a metallurgical perspective

SULPHIDE ORES 36% 64%

Technical Paper, Nickel Production from Low Iron laterites Ore, RA Bergman, Toronto, 2003

Sulphide ores respond to concentration

process. Sulphide ores mined at

1% nickel can be readily concentrated to

10% nickel.

OXIDE ORES

High Magnesia Ore processed (Saprolites)

by smelting.High Iron, Low Magnesia ore

(Limonite) recovered by selective reduction.

Page 16: Process Selection  of Mineral Processing

16

Nickel Mineralogy

Sumber: “Ullmann's Encyclopedia of Industrial Chemistry “, Derek G. E. Kerfoot, Sherritt Gordon Limited, Fort Saskatchewan, Alberta, Canada, 2000

Page 17: Process Selection  of Mineral Processing

17

Laterite Profile

Sumber: “Nickel Extraction Technology Developments”, Roman Berezowsky, 2004, “Mineral Processing and Technology for Sustainable Mining”, Darma Ambiar

Page 18: Process Selection  of Mineral Processing

18

Sulphides Ore Processing

Sumber : NICKEL MINE CAPACITIES AND COSTSSpeech to International Stainless Steel Forum, 2nd Annual Meeting & Conference, Madrid10th-12th May 1998 Adrian Gardner, Brook Hunt

Page 19: Process Selection  of Mineral Processing

19

Laterite Ore Processing

Sumber : NICKEL MINE CAPACITIES AND COSTSSpeech to International Stainless Steel Forum, 2nd Annual Meeting & Conference, Madrid10th-12th May 1998 Adrian Gardner, Brook Hunt

Page 20: Process Selection  of Mineral Processing

20

Differences in Processing

20

Sumber : NICKEL MINE CAPACITIES AND COSTSSpeech to International Stainless Steel Forum, 2nd Annual Meeting &Conference, Madrid 10th-12th May 1998 Adrian Gardner, Brook Hunt

Page 21: Process Selection  of Mineral Processing

21

World Nickel Processing

Page 22: Process Selection  of Mineral Processing

22

Process Flowsheet

Page 23: Process Selection  of Mineral Processing

23

Flowsheet

PAMCO PT INCO

Page 24: Process Selection  of Mineral Processing

24

Flowsheet

FalconbridgeNippon Yakin

Page 25: Process Selection  of Mineral Processing

25

Flowsheet

Cuba - Caron Process

Page 26: Process Selection  of Mineral Processing

26Sumber : Murrin Murrin Process Flowsheet, Motteram, Ryan dan Weizenbach (1997)

Flowsheet

Murrin Murrin - PAL

Page 27: Process Selection  of Mineral Processing

GOLD

Page 28: Process Selection  of Mineral Processing

28

Classification of Gold Ore

Classification of gold ore from a metallurgical perspective

yielding acceptable recovery with the use of significantly higher chemical additions,

mainly associated with base-metal mineralization

Those that is difficult to treat and give gold

recoveries of less than 90%, in some cases much less than 50%

Complex

Refractoryyielding over 90%

recovery under conventional and

relatively straightforward flowsheet selection

Free Milling

Page 29: Process Selection  of Mineral Processing

29

Classification of Gold Ore

Metode pengolahan bijih emas (rute proses) sangat bergantung pada tipe bijih emas yang akan diolah.

Terkait dengan proses pengolahannya, tipe bijih emas secara umum dapat diklasifikasikan sebagai bijih free, free milling dan refractory.

Tipe yang pertama dan kedua relatif mudah untuk diolah dengan recoveri >90%,

Bijih refractory adalah bijih yang sulit diolah (“difficult to treat”) dengan recovery <90%, bahkan seringkali < 50% bila digunakan proses sianidasi konvensional.

Page 30: Process Selection  of Mineral Processing

30

Classification of Gold Ore

Bijih free milling: Partikel-partikel emas dapat dibebaskan dengan cara

penggerusan (milling/grinding) umumnya hingga -200 mesh (74 m) ukuran partikel emas tidak terlalu halus.

Bijih free milling umumnya merupakan bijih-bijih oksida (mineral-mineral utamanya adalah oksida, terutama silika/SiO2).

Bijih free milling lebih mudah diolah rute proses: peremukan penggerusan leaching recovery.

Page 31: Process Selection  of Mineral Processing

31

Foto mikro emas tipe free dan free milling

b. Free gold dlm mineral kuarsa (free milling)a. Free gold

Page 32: Process Selection  of Mineral Processing

32

Classification of Gold Ore

Tipe-Tipe Bijih Refractory: Emas terjebak (terinklusi) di dalam mineral-mineral sulfida seperti

pyrite (FeS2), arsenopyrite (FeAsS) yang bersifat non-porous. Partikel emas berukuran sangat halus dan sulit diliberasi dengan milling biasa.

Bijih mengandung komponen-komponen yang reaktif (seperti pyrrhotite, arsenopyrite, marcasite) yang mengkonsumsi secara signifikan sianida dan oksigen yang dibutuhkan untuk reaksi pelarutan emas.

Bijih preg-robbing Bijih emas mengandung material-material karbon, seperti karbon organik dan karbonat yang bersifat mengadsorpsi emas yang sudah ter-leaching.

Page 33: Process Selection  of Mineral Processing

33

Gold Mineralogy

The principal gold minerals in ores are the native metal, Au-Ag tellurides, aurostibite, maldonite, and auricupride (Table A)

Apart from the discrete gold minerals, gold occurs as a trace element in several common sulfide and sulpharsenide minerals (Table B)

Page 34: Process Selection  of Mineral Processing

34

Gold Mineralogy

Generally, placers, quartz vein gold ores, oxidized ores,and silver-rich ores are free-milling. Iron sulfide ores and arsenic sulfide ores host different proportions of free-milling and

refractory gold. Aurostibite (AuSb2), maldonite (Au2Bi), and telluride gold ores are often refractory.Common causes for refractory behavior of gold ores: Locked gold (“Refractory” Ores)

► Psysical locking− Fine-grained gold inclussions in sulfides

► Chemical locking− Gold minerals (tellurides, etc.)− Submicroscopic gold in sulfides

Reactive Gangue Mineralogy (“Complex” Ores)► Leach-robbing ores

− Pyrrhotite− Secondary copper sulfides− As, Sb sulfides

► Preg-robbing ores− Carbonaceous− Clays?

Page 35: Process Selection  of Mineral Processing

35

Liberated and Locked Gold

Photomicrographs showing the mode of occurrence of microscopic gold.

(a) liberated;

(b) and (c), attached to and locked in arsenopyrite (Apy); and

(d) locked in pyrite (Py)

Page 36: Process Selection  of Mineral Processing

36

Hydrometallurgical Extraction of Gold

The basic procedures of hydrometallurgical processes for the extraction gold:1. dissolution of gold into a leach solution2. purification and/or upgrading of the leach solution3. recovery of gold from the purified solution

For refractory ore case, pre-treatment step is essential to enable the gold to be recoveredThe gold is effectively “locked” within the ore (locked in the sense that cyanide solution is unable to access the gold), either physically or chemically.Refractory ore pre-treatment options:

Page 37: Process Selection  of Mineral Processing

37

Process Route

Proses komersial ekstraksi emas dari bijihnya dilakukan dengan:

– Pelindian Sianidasi (Cyanidation Leaching) – Amalgamasi → terbatas pada tambang-tambang rakyat

Penelitian banyak dikembangkan untuk mencari alternatif reagen pelindi (leaching agent) yang lebih ramah lingkungan, yaitu dengan:

– Thiourea – Thiousulfat

Page 38: Process Selection  of Mineral Processing

38

Process Options

Comminution

Concentration

Oxidation

Leaching

Primary Recovery

Secondary Recovery

Tertiary Recovery

By-Product Recycle

Disposal

Ore

Tailings

Crushing

Heap Leaching

Roasting

Milling

Gravity Flotation

Bio-Oxidation Pressure Oxid’n

Tank Leaching In Situ Leaching

CIL / CIP / CIC Merrill-Crowe RIP / RIL / RIC

Electrowinning Cementation

Electrorefining Smelting

Leaching Smelting

CN Detox CN Recovery

Unit Process Options

Page 39: Process Selection  of Mineral Processing

39

Merril Crowe Process

Berkembang sebelum teknologi karbon aktif (pre-1980).

Tidak efektif untuk bijih dengan grade emasnya rendah dengan

kandungan base metals (Cu, Pb, Fe) yang tinggi,

•Serbuk seng merupakan reagen yang terkonsumsi dalam proses

presipitasi emas dan perak. Konsumsi reagen ini merupakan

komponen utama biaya operasi pabrik.

•Sementasi dengan serbuk seng harus dilakukan dalam larutan yang

diklarifikasi (dijernihkan) dan dideaerasi (dihilangkan oksigen

terlarutnya) terlebih dahulu → Perlu thickener, filter, vacuum tower

→peralatan lebih banyak .

Page 40: Process Selection  of Mineral Processing

40

Flowsheet Merril Crowe

Page 41: Process Selection  of Mineral Processing

41

CIL, CIP, CIC Process

CIL → efektif untuk bijih yang cenderung preg-rob. Karbon aktif telah

ditambahkan dalam tangki pelindian. Contoh aplikasi: PT. Antam,

UBPE Pongkor.

•Berbeda dengan Proses Merril-Crowe, proses CIP dan CIL dapat

merecover Au langsung dari lumpur (slurry).

•Secara umum proses CIL mempunyai biaya modal (capital cost)

yang lebih rendah dari CIP karena proses adsorpsi dilakukan

sekaligus dalam tangki pelindian → jumlah tangki yang dibutuhkan

lebih sedikit.

Page 42: Process Selection  of Mineral Processing

42

CIL, CIP, CIC Process

Proses CIP lebih fleksibel daripada CIL. Jumlah tangki adsorpsi bisa

ditambahkan sesuai dengan kebutuhan.

•Tingkat abrasi karbon aktif lebih rendah, sehingga kemungkinan

kehilangan emas akibat partikel karbon yang hancur dapat

diminimalkan

•Ukuran tangki untuk adsorpsi umumnya ¼ hingga 1/10 dari tangki

pelindian.

•CIC → untuk merecoveri emas-perak dari larutan hasil proses heap

leaching atau untuk mengambil kembali emas yang terbawa dalam

tailing cair (solution tailing).

Page 43: Process Selection  of Mineral Processing

43

Flowsheet CIP

Page 44: Process Selection  of Mineral Processing

44

CIP, CIL Vs. Merril Crowe

Proses Merril Crowe memerlukan biaya (cost) yang lebih besar untuk

proses pemisahan solid-likuid dan klarifikasi (thickener, filter,

clarifier) hingga diperoleh filtrat jernih yang siap disementasi.

Pada proses CIP dan CIL pemisahan solid dan liquid dilakukan

dengan metode pengayakan (screening) yang lebih murah.

Kehilangan Au dari proses CCD sekitar 1% dari kadar Au di pregnant

solution (0.03 – 0.05 ppm) karena filtering dan settling yang tidak

baik. Untuk proses CIP dan CIL yang baik, kehilangan Au dapat

ditekan hingga 0.01 ppm.

Dibandingkan Proses Merril-Crowe, CIP dan CIL bisa mengolah bijih

berkadar Au lebih rendah.

Page 45: Process Selection  of Mineral Processing

45

Metode pengolahan bijih sulfida refractory

Untuk pengolahan bijih sulfida refractory, telah diterapkan teknik-

teknik sebagai berikut:

Pre-aerasi, klorinasi

Pemanggangan (roasting) untuk menghilangkan sulfur dari bijih

yang dilepaskan dalam bentuk gas sulfur dioksida (SO2).

Pelindian dengan bantuan bakteri (bioleaching), misalnya

thiobaccilus ferrooxydans

Pelindian pada temperatur dan tekanan tinggi (pressure leaching)

Ultrafine grinding

Flotasi - intensive leaching

Page 46: Process Selection  of Mineral Processing

46

Pre-treatment bijih sulfida refractory dengan roasting

Cukup efektif menghilangkan sulfur dan melepaskan ikatan emas

dari sulfur atau membuat bijih jadi porous karena sulfurnya keluar

menjadi gas SO2.

Bila bijih juga mengandung karbon (C) dan bersifat “double-

refractory”, karbon juga dilepaskan dalam bentuk gas CO2.

Pemanggangan (roasting) dilakukan dengan rotary kiln atau fluidized

bed roaster.

Biaya operasi tinggi, karena pemanggangan dilakukan pada suhu

tinggi (> 800oC). Perlu minyak sebagai bahan bakar.

Masalah lingkungan. Emisi gas SO2 mengotori lingkungan. Perlu

investasi tambahan untuk penangkapan gas SO2.

Page 47: Process Selection  of Mineral Processing

47

Metode pengolahan bijih pregrob

Bijih pregrobbing:

Pemanggangan (roasting) untuk menghilangkan karbon dari bijih

yang dilepaskan dalam bentuk gas karbon dioksida (CO2)

Pretreatment bijih dengan blinding agent, misalnya dengan kerosene

untuk mendeaktivasi material karbon dalam bijih sebelum dilakukan

leaching.

Resin in leach (RIL)

Carbon in leach (CIL)→kurang efektif untuk bijih yang bersifat high

pregrobber.

Page 48: Process Selection  of Mineral Processing

48

Flotasi → Intensive Leaching

Flotasi

Prinsip: Emas yang terjebak atau berikatan dengan mineral-mineral sulfida

seperi pyrite (FeS2), chalcopyrite (CuFeS2), galena (PbS) diapungkan

terlebih dahulu dan dipisahkan dari mineral-mineral lain, terutama silika

(SiO2) yang tidak terapung.

Produk proses flotasi disebut KONSENTRAT.

Kadar emas dalam konsentrat dapat ditingkatkan mulai dari 1,5 gram/ton

hingga > 100 gram/ton.

Selanjutnya konsentrat di-leaching dengan proses intensive leaching.

Seringkali dikombinasi dengan konsentrasi gravitasi (misalnya dengan

knelson, falcon, atau jig) dan prosesnya dikenal dengan “gravity-flotation-

intensive leaching” (GFIL).

Page 49: Process Selection  of Mineral Processing

49

Flotasi → Intensive Leaching

INTENSIVE LEACHING

Berbeda dengan sianidasi biasa, intensive leaching dilakukan dengan

konsentrasi sianida jauh lebih pekat.

Sianidasi biasa dilakukan dengan konsentrasi sianida ± 0,2%.

Intensive leaching dilakukan dengan konsentrasi ± 2%.

Pada proses intensive leaching ditambahkan oksidator tambahan H2O2.

Pada sianidasi biasa hanya diinjeksikan udara.

Intensive leaching dilakukan pada rotating drum. Sianidasi biasa (selain

heap leaching), umumnya dilakukan pada tangki silinder tegak, stasioner

terbuka ke udara dengan pengaduk mekanik.

Page 50: Process Selection  of Mineral Processing

50

Flowsheet Intensive Leaching-Electrowinning dari GEKKO

Page 51: Process Selection  of Mineral Processing

51

Foto Inline Leach Reactor (ILR) GEKKO

Page 52: Process Selection  of Mineral Processing

52

Kelebihan bila bijih dikonsentrasi lebih dahulu

Umpan proses sianidasi adalah konsentrat yang jumlahnya lebih sedikit

Jumlah konsentrat = jumlah umpan / rasio konsentrasi

Misal rasio konsentrasi (RoC) = 10, umpan bijih = 1000 t/hari, maka

konsentrat yang disianidasi = 1000/10 = 100 t/hari

Final tails (solids) = 900 t/hari.

Final tails dari proses konsentrasi dapat langsung ditimbun di tailing storage

facility (TSF).

Final tails proses konsentrasi (flotasi + gravity) tidak kontak dengan sianid

→ apabila tersedia area untuk pemisahan TSF dari proses konsentrasi dan

TSF dari proses sianidasi, kemungkinan dampak lingkungan dapat

diminimalkan.

Page 53: Process Selection  of Mineral Processing

53

RIC → electrowinning

Page 54: Process Selection  of Mineral Processing

54

Kelebihan Ion exchange dibanding karbon aktif

Mempunyai kapasitas adsorpsi dan kinetika adsorpsi yang lebih baik dari

karbon aktif.

Memiliki selektivitas adsorpsi terhadap base metals (Fe, Cu, Pb, Zn) yang

lebih baik

Memiliki ketahanan atrisi yang lebih baik dari karbon aktif.

Resin penukar ion dapat langsung digunakan kembali sesudah proses elusi

tanpa perlu diaktivasi kembali dengan proses pemanasan sebagaimana

karbon aktif, sehingga mengurangi biaya untuk proses pemanasan.

Contoh IX Resin komersial: Minix, Auric.

Page 55: Process Selection  of Mineral Processing

55

Electrowinning Au-Ag

Larutan eluate yang kaya Au dan Ag dari proses elusi (desorpsi)

karbon aktif/resin penukar ion dialirkan ke dalam sel electrowinning.

Emas akan diendapkan pada permukaan katoda yang terbuat dari

baja wool (steel wool) atau steel mesh.

Endapan logam emas-perak bersifat loose (tidak menempel kuat)

pada permukaan katoda dan berbentuk sludge/cake

Proses pengendapan emas di katoda diikuti oleh oksidasi air di

anoda sebagaimana ditunjukkan oleh reaksi elektrokimia sebagai

berikut:

Katoda : Au(CN)2- + e- → Au + 2CN-

Anoda : 2H2O → 4H+ + O2 + 4e-

Page 56: Process Selection  of Mineral Processing

Thanks For Your Attention

56


Recommended