+ All Categories
Home > Documents > Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How...

Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How...

Date post: 26-Dec-2015
Category:
Upload: barnaby-matthews
View: 218 times
Download: 0 times
Share this document with a friend
Popular Tags:
68
Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia H ow safe is our food? Using The Results of a Risk Assessment in Food Safety Risk Management
Transcript
Page 2: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

HACCP is appliedat this level

Operational level

Food safetyassurance

Government level

Food control system

• Determine the policy

• Set public health goals

• Set standards

• Based on risk analysis

• Adjust inspection systems to verify FSO/PO are met

• Design control measures from farm to fork

• Responsible for hazard controlGAPs/GHPs/GMPs

HACCP

PH goalsStandards

Policy

MRA is a used as a tool at this level

FSO, PO

PC

Page 3: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

ALOP

•GAP •GMP •GHP •HACCP •Code of practicle

Public health burden??

Safety by design

Performance Objectives

Food Safety Objectives

Page 4: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

RISK COMPARISON

Page 5: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Growth pattern of a child with frequent episodes of diarrhoea

Page 6: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Presentation Topics

• Risk assessment of Listeria monocytogenes in Raw Vegetable

• Raw Vegetables Consumption as A Potential Risk Factor for Campylobacteriosis in Malaysia

• Biofilm formation and persistence of Salmonella• Malaysia Fishery Products Export to

the EU & Issues Encountered – An example of a collaborative work between University and the relevant authority

Page 7: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

What is the hysteria about Listeria?

• Listeria is a Gram positive, facultative anaerobic, psychrotrophic, rod shaped bacterium

• Listeria is a hardy bacterium- grows across a broad pH (4.3-9.8) and temperature (0.5 -45oC) range, and up to 20% salt tolerance

• Incidence of listeriosis varies between 0.1 to 11.3 per 1,000,000 in different countries

• Listeriosis has an average case-fatality rate of 20-30% despite adequate antimicrobial treatment

• Life-threatening illness in three clinical syndromes: maternofetal listeriosis or neonatal listeriosis, blood stream infection, and meningoencephalitis

• Listeria monocytogenes is widely distributed in soil and water• Can enter the VBNC state and pose problem in routine plating detection methods

Page 8: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

What is the hysteria about Listeria?

Incidence of listeriosis per 100,000 of the population in North America, Europe and New Zealand from 1996 to 2005

Country Cases per 100,000 of the population

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

US CanadaGermanyFranceUnited KingdomEurope AveNew Zealand

0.50.1-0.40.20.1-

0.30.2-0.40.20.10.5

0.30.2-0.40.20.2-

0.20.3-0.40.20.2-

0.30.2-0.40.20.20.5

0.20.20.30.40.30.20.6

0.20.20.30.40.30.2-

0.20.20.30.30.40.2-

0.30.20.40.40.40.2-

0.30.20.60.40.40.30.7

Source: Denny & MaLaughlin, 2008; Fenton et al., 2001; Goulet et al., 2008; Health Canada, 2000; Lake et al., 2002; Vugia et al., 2008

Page 9: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

What is the hysteria about Listeria?

Prevalence of Listeria monocytogenes within processing facilities within North America and Europe

Facility

Cheese processing 8%Milk processing 3%Ice cream 6%Beef processing 28-92%Poultry processing 13.3%Fish processing 12.8%Domestic refrigerators 20%

Taken from Kornacki & Gutler, 2007

Page 10: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Key Questions

• To what extent does the consumption of raw vegetables contribute to Listeria monocytogenes infections in humans in Malaysia?

No raw vegetables consumption vs. Raw vegetables consumption

O% 100%

•What should be done to intervene?

Page 11: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

The different steps of the infectious process at the cellular level: Left panels. Electron micrographs describing the various steps of entry, lysis of the vacuole, intracellular movement, cell-to-cell spread and lysis of the two-membrane vacuole (Cossart and Lecuit, 1998). Right panel. Schematic

representation of the infectious process with the proteins involved: internalin, InlB, PI-PLC, ActA, and lecithinase (adapted from (Tilney and Portnoy, 1989)). The infectious process by L. monocytogenes at the cell and tissue levels L. monocytogenes is an invasive bacterium which induces its own

entry into cells. Internalization results from the tight apposition of the plasma membrane over the entering bacterium. This process, also called “the zipper mechanism” appears different from the “trigger mechanism” used by bacteria such as Salmonella and Shigella during which dramatic

membrane ruffles rich in filamentous F-actin engulf the bacterium in a process similar to macropinocytosis. Listeria is then present in vacuole that is lysed in less than thirty minutes. When free in the cytosol, Listeria starts to replicate while inducing the recruitment and the polymerisation of

cellular actin. Actin polymerisation only occurs at one pole of the bacterial body and allows the bacterium to propel itself inside the cytosol. From time to time, bacteria reach the plasma membrane where they induce the formation of long protrusions containing a bacterium at their tips. These

protrusions can invaginate in a neighboring cell and give rise to a two-membrane vacuole that the bacterium lyses to get access to a second infected cell and by doing so disseminate into tissues by a direct cell-to-cell process (Tilney and Portnoy, 1989).

Page 12: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

The Recipe For Risk

A person must ingest cheese that is contaminated with Listeria monocytogenes in the order of 100-1000 cells

The immunocompromised person that ingests these bacteria must become sick – invade gastro-intestinal epithelium, become bloodborne and associated with monocytes, then subsequently the liver, spleen and lymphatic system and then to the nervous system and placenta barrier

Page 13: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

FLOWCHART OF SAMPLING, MPN-PLATING AND MPN-PCR FOR LISTERIA MONOCYTOGENES

MPN 9-TUBES DILUTIONS

Incubate (30oC, 48 h, aerobic condition)

Contaminated sample

Sample & broth (pre-enrichment)1:10 RATIO

Pre-enrichment 4 hours, 30°C

MPN-PLATING of turbid tubes MPN-PCR of turbid tubes

Presumptive Listeria colonies are black centered on PALCAM Agar (selective agar)

VBNC

Page 14: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Detection of Listeria monocytogenes using polymerase chain reaction

Page 15: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Estimated mean intake(g/day/person)

Central Zone 3.27

Urban 3.02

Rural 4.59

Men 3.62

Women 3.78

Malays 4.41

Chinese 1.74

Indian 1.72

Whole Malaysia 3.7

Estimated mean intake (g/day/person) of raw vegetables as ulam in Malaysia according to area, gender and race (Source: MOH, 2008)

Consumption data

Page 16: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Schematic representation of the model framework for retail-to-table risk assessment of L. monocytogenes in raw vegetables.

Dose of L. monocytogenes in a meal

No. of cells

Prevalence

Risk assessment model structure

Page 17: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Exposure Assessment

Prevalence• The distribution for the prevalence of L.

monocytogenes in Japanese parsley, wild parsley, winged bean and Indian pennywort was estimated from the data collected in this study. The prevalence was described by pert distribution assuming a minimum and maximum prevalence accordingly:

Pr = RiskPert( min, max, most likely ) where min and max are minimum and maximum

of the prevalence data, respectively.

Page 18: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Exposure Assessment

Concentration• The distribution of concentration of L.

monocytogenes in contaminated raw vegatables was estimated from the data collected in this study and was assumed to follow a lognormal distribution:

Cr = RiskPert (min, most likely, max)

Page 19: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Exposure Assessment

Log reduction of washing practice• Log reduction of washing practice was estimated from the

data collected in the kitchen simulation study performed in the laboratory.

• The correlation coefficient between initial microbial load on the raw vegetable and log reduction was determined by using StatTools (Palisade Corporation).

• The distributions of microbial load on vegetable before washing and log reduction of washing were fitted to the data collected in the study and the correlation between both inputs was defined with the resulted correlation coefficient with @Risk 5.5.

Page 20: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Risk Characterization

• The output of exposure assessment was combined with the dose response function for hazard characterization to estimate the yearly risk from L. monocytogenes.

• The probability of illness per person per year was described by the equation:

Pill:year = 1 – ( 1 – Pill )365

where Pill is the probability of illness person per day.

Page 21: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Prevalence and MPN count in log10 MPN/g of Listeria monocytogenes in four types of raw vegetables purchased from wet markets and hypermarkets

Sample Location Prevalencelog10 MPN/g

min max mean SD

Indian pennywort (pegaga)

Wet markets 2/16a 0.125 0.97 3.04 2.01 1.46

Hypermarkets 3/16 0.188 0.56 1.97 1.11 0.76

5/32 0.156 0.56 3.04 1.47 1.03

Japanese parsley (selom)

Wet markets 8/16 0.500 0.48 2.46 1.39 0.69

Hypermarkets 1/16 0.063 NAb NA NA NA

9/32 0.281 0.48 2.46 1.29 0.72

Winged bean (kacang botol)

Wet markets 1/16 0.063 NA NA NA NA

Hypermarkets 4/16 0.250 1.04 1.20 1.13 0.08

5/16 0.313 1.04 1.20 1.12 0.08

Wild parsley (ulam raja)

Wet markets 4/16 0.250 0.48 1.18 0.75 0.31

Hypermarkets NDc ND ND ND ND ND

4/16 0.250 0.48 1.18 0.75 0.31

a Numerator: number of positive samples; denominator: total number of samples tested.b NA: Not applicablec ND: Not done

Page 22: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

5.0% 90.0% 5.0%

0.1025 0.2036

0.0

60

.08

0.1

00

.12

0.1

40

.16

0.1

80

.20

0.2

20

.24

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

prevalence / IP

prevalence / IP

Minimum 0.0762Maximum 0.2364Mean 0.1522Std Dev 0.0308Values 30000

Mea

n =

0.1

522

5.0% 90.0% 5.0%

0.125 0.458

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

prevalence / JP

prevalence / JP

Minimum 0.0217Maximum 0.5485Mean 0.2938Std Dev 0.1014Values 30000

Mea

n =

0.2

938

5.0% 90.0% 5.0%

0.1250 0.2923

0.0

00

.05

0.1

00

.15

0.2

00

.25

0.3

00

.35

0

1

2

3

4

5

6

7

8

prevalence / WB

prevalence / WB

Minimum 0.0252Maximum 0.3097Mean 0.2205Std Dev 0.0515Values 30000

Mea

n =

0.2

205

5.0% 90.0% 5.0%

0.1412 0.3587

0.0

50

.10

0.1

50

.20

0.2

50

.30

0.3

50

.40

0.4

5

0

1

2

3

4

5

6

prevalence / WP

prevalence / WP

Minimum 0.0772Maximum 0.4216Mean 0.2500Std Dev 0.0661Values 30000

Mea

n =

0.2

500

(a) (b)

(c) (d)

Figure 2: Distribution of prevalence of L. monocytogenes in (a) Indian pennywort, pegaga; (b) Japanese parsley, selom; (c) winged bean, kacang botol; and (d) wild parsley, ulam raja.

Distribution of prevalence of L. monocytogenes in (a) Indian pennywort, pegaga; (b) Japanese parsley, selom; (c) winged bean, kacang botol; and (d) wild parsley, ulam raja.

Page 23: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Distribution of concentration of L. monocytogenes in retail Indian pennywort, Japanese parsley, winged bean and wild parsley.

Page 24: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07After washing / IP

After washing / IP

Minimum -0.6065Maximum 2.9349Mean 1.3062Std Dev 0.4917Values 30000

Concentration / IP

Minimum 0.5674Maximum 2.9776Mean 1.5800Std Dev 0.4612Values 30000

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0After washing / JP

After washing / JP

Minimum -0.6240Maximum 2.4156Mean 1.0762Std Dev 0.4092Values 30000

Concentration / JP

Minimum 0.4944Maximum 2.4116Mean 1.3500Std Dev 0.3714Values 30000-0

.6-0

.4-0

.20.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45After washing / WB

After washing / WB

Minimum -0.5172Maximum 1.2783Mean 0.8462Std Dev 0.1752Values 30000

Concentration / WB

Minimum 1.0422Maximum 1.1981Mean 1.1200Std Dev 0.0302Values 30000

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14After washing / WP

After washing / WP

Minimum -0.9214Maximum 1.1030Mean 0.5028Std Dev 0.2170Values 30000

Concentration / WP

Minimum 0.4829Maximum 1.0932Mean 0.7750Std Dev 0.1289Values 29850 / 30000Filtered 150

Distribution of microbial load before and after washing of vegetable with tap water. (a) Indian pennywort; (b) Japanese parsley; (c) winged bean; and (d) wild parsley.

(b)

(d)

(a)

(c)

Page 25: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Raw vegetables (ulam-ulaman) consumption in Malaysia based on estimated mean intake (g/day/person) a

Estimated mean intake(g/day/person) F(x)b

Indian 1.72 0.1

Chinese 1.74 0.2

Urban 3.02 0.3

Central Zone 3.27 0.4

Men 3.62 0.5

Whole country 3.7 0.6

Women 3.78 0.7

Malays 4.41 0.8

Rural 4.59 0.9

a The distribution for the mean intake was described by the following cumulative distribution RiskCummul (1.0,5.5,{1.72,1.74,3.02,3.27,3.62,3.7,3.78,4.41,4.59},{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9})/ F(x) is the cumulative probability(Vose, 1996), i.e. F(x) = i / (n+1), where i is the rank of the observed data point and n is the total number of data points.

Page 26: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

The probability of illness per person (high-risk population and low-risk population) per year due to consumption of raw vegetables.

  High-risk population Low-risk population

Indian pennywort Japanese parsley winged bean wild parsley Indian pennywort

Japanese parsley winged bean wild parsley

Minimum 8.78E-11 1.15E-11 2.74E-11 3.69E-12 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Maximum 5.55E-04 9.87E-04 3.14E-06 2.39E-06 2.18E-07 5.19E-08 1.65E-10 1.26E-10

Mean 1.38E-05 5.34E-06 2.70E-07 6.93E-08 9.91E-10 2.80E-10 1.42E-11 3.63E-12

Std Dev. 4.59E-05 2.01E-05 2.92E-07 1.04E-07 4.91E-09 1.05E-09 1.53E-11 5.45E-12

Variance 2.11E-09 4.03E-10 8.51E-14 1.08E-14 2.41E-17 1.11E-18 2.34E-22 2.97E-23

Median 9.03E-07 5.78E-07 1.74E-07 3.47E-08 4.83E-11 3.04E-11 9.16E-12 1.82E-12

5% Perc 1.69E-08 1.55E-08 1.61E-08 2.68E-09 8.92E-13 8.10E-13 8.51E-13 1.22E-13

95% Perc 7.01E-05 2.35E-05 8.51E-07 2.55E-07 4.06E-09 1.23E-09 4.47E-11 1.34E-11

Page 27: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Raw Vegetables Consumption as A Potential Risk Factor for

Campylobacteriosis in Malaysia

Page 28: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

OUR FINDINGS• We found presence

of campylobacters especially C. jejuni in farm and retail vegetables.

• The prevalence and concentration of C. jejuni in freshly-harvested vegetables are lower compare to retail raw vegetables.

0

10

20

30

40

50

60

1 2 3

Pre

vale

nce

(%)

0

0.5

1

1.5

2

2.5

Num

bers

of

C. j

ejun

i o

n ra

w v

eget

able

s (lo

g M

PN

/g)

Prevalence

1Q

median

3QFARMS WET MARKET SUPERMARKETS

Page 29: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Field study: vegetable farms

Irrigation waterPrevalence: non detected

Freshly-harvested vegetablesPrevalence:18.8% (3.0-150.0 MPN/g) Aged manure3.0% (9.1 MPN/g) composted manure

SoilPrevalence: 30.4% (3.0-9.1 MPN/g) Aged manure2.7% (6.1 MPN/g) composted manure

Poultry ManurePrevalence:57.1% (3.0-9.3 MPN/g) Aged manureNon detected composted manure

Page 30: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Raw Vegetables

Soil?

poultry manure?

Irrigation water?

workers?

animals? FARM LEVEL

RETAIL LEVEL

vehicles?

containers?

workers?

Raw Vegetables

workers?

containers?

Washing water?

Environmental?Poultry?Other animals?

Cross-contamination from poultry? Meat? Water?

Spraying water?

Contact with meat?

Raw Vegetables

Holding timeHolding temperature

KITCHEN

Cook

NO RISK

Consume raw/ salad

RISK?How to reduce?Washing rate of reductionBlanching rate of reduction

Page 31: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Simulation of cross-contamination and decontamination of C. jejuni during handling of raw vegetables

The simulation was designed to simulate the real preparation of salad in a household kitchen starting from washing of vegetables in tap water; cutting the vegetable on cutting board; followed by slicing cucumber and blanching (heating in hot water) the vegetables in 85oC water.

Vegetables naturally contaminated with C. jejuni were used throughout the simulation to attain realistic quantitative data.

The mean of the percent transfer rate for C. jejuni from vegetable to wash water was 30.1% - 38.2% ; wash water to cucumber was 26.3% - 47.2%; vegetables to cutting board was 1.6% - 10.3%; and cutting board to cucumber was 22.6% - 73.3%.

The data suggest the wash water and plastic cutting board as potential risk factors in C. jejuni transmission to consumers.

Washing of the vegetables with tap water had a 0.4 log10 reduction of C. jejuni attached to the vegetables (MPN/g); while rapid blanching reduced the number of C. jejuni to an undetectable level.

Page 32: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Retail-to-Fork Model: a simple deterministic risk assessment

Retail raw vegetables

* Consumption * Washing

* Blanching

* Consumption

* Consumption

*Washing: wash in a bucket of tap water (30oC) for about 20 min. The log reduction rate is 0.36 log MPN/g.*Blanching: blanching was done by dipping raw vegetables in 85oC hot water for 10 sec. The removal efficiency is 0.95.* Locals consume 3.7g (mean) of raw vegetables per serving (MOH Food Consumption in Malaysia, 2007).* the dose-response model for C. jejuni was adapted from a report by Joint FAO/WHO Expert Consultation on Risk Assessment of Microbiological Hazards in Foods (FAO/WHO 2002).

Page 33: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 10

Ris

k es

timat

es (

num

ber

of il

lnes

ses/

100

000

se

rvin

gs)

Wet Market

Supermarkets Retails

WW W WB WW W WB WW W WB

WW: Consume without washingW : Consume after washingWB: Consume after washing and blanching

Page 34: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

0

500

1000

1500

2000

2500

3000

0.1 0.3 0.5 0.7 0.9

Prevalence (%)

Ris

k e

stim

ate

s (

num

ber

of illnesses/ 100

000 s

erv

ings)

w ithout w ashing

w ashing

w ashing and blanching

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of C. jejuni in raw vegetables (log MPN/g)

Ris

k es

timat

es (

num

ber

of il

lnes

es/1

00

000

serv

ings

)

Page 35: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

• The presented risk model is just a preliminary risk assessment aimed to demonstrate the risk of Campylobacteriosis via raw vegetables consumption.

• Washing as proposed in this study has a certain efficiency in reducing the risk. However, washing methods with higher reduction efficiency (1 log reduction) are able to reduce the risk by 80%.

• Other washing practices like wash under running tap water, wash and soak in salt water, etc. might have higher log reduction rate.

Page 36: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Biofilm formation and persistence of Salmonella

Page 37: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

• Salmonella clones can persist in many locations for many years

• Persistence not due to resistance against – heat– disinfection– dry conditions

Page 38: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

I can’t go with the flow anymore I’m thinking of

joining a biofilm

BIOFILM

Page 39: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Bacteria on surfaces

AdhesionMicrocolonies

Structures

Matrix

Page 40: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Photo from ASM Microbe Library

Two weeks old biofilm in an industrial condencer

Page 41: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Inorganic surfaces

Liquid-air interface (pellicle)

Salmonella biofilm

Page 42: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Organic surface

Close up

Under magnifying glass

SEM

Page 43: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Salmonella biofilm production

20°C 28°C 37°C

LB brothLB broth wo/salt

0,0

0,5

1,0

1,5

2,0

2,5

Amount of biofilm as indicated by OD595

Page 44: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Biofilm formation at room temperature on different surfaces

Serovar Glass SteelPoly-

styrene

Poly-ethylen

e AgarLiquid-air interfase

Agona Biofilm - Biofilm - Biofilm Biofilm

Typhimurium Biofilm - Biofilm - Biofilm Biofilm

Typhimurium Biofilm Biofilm Biofilm - Biofilm Biofilm

Typhimurium Biofilm Biofilm Biofilm - Biofilm Biofilm

Typhimurium Biofilm Biofilm Biofilm - Biofilm Biofilm

Typhimurium Biofilm Biofilm Biofilm - Biofilm -

Typhimurium Biofilm Biofilm Biofilm Biofilm Biofilm -

Typhimurium Biofilm Biofilm Biofilm Biofilm Biofilm -

Typhimurium Biofilm Biofilm Biofilm Biofilm Biofilm Biofilm

Senftenberg Biofilm Biofilm Biofilm Biofilm Biofilm Biofilm

Senftenberg Biofilm Biofilm Biofilm Biofilm Biofilm Biofilm

Senftenberg Biofilm Biofilm Biofilm Biofilm Biofilm Biofilm

Agona Biofilm Biofilm Biofilm Biofilm Biofilm Biofilm

Agona Biofilm Biofilm Biofilm Biofilm Biofilm Biofilm

Agona Biofilm Biofilm Biofilm Biofilm Biofilm Biofilm

Agona Biofilm Biofilm Biofilm Biofilm Biofilm Biofilm

Agona Biofilm Biofilm Biofilm Biofilm Biofilm Biofilm

Agona Biofilm Biofilm Biofilm Biofilm Biofilm Biofilm

Page 45: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Correlation between persistence and biofilm forming abilities at room temperature

Persistent strains

Presumed non- persistent strains

Amount biofilm produced in 48 hours

Page 46: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Correlation between persistance and pellicle

formation at room temperature

0

20

40

60

80

100

1 2 3 4 5 6

No of days

% i

sola

tes

wit

h p

elli

cle

PesistentPresumed non-persistent

Page 47: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Long time persistence in biofilm

2

10

Lg cfu

4 months dessication

and nutrient depletion

8

6

4

Page 48: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Effect of disinfection on salmoella in biofilm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

TP-99 Aco HygieneUltra Des

Aco HygieneDes GA

Sekumatic P3 Alcodes Oxy Des Oxysan ZS Klorin Virkon S

Lo

g10

red

uc

tio

n

Page 49: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Malaysia Fishery Products Export to the EU & Issues Encountered

Page 50: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Malaysia Fishery Export

• Malaysia fishery products export is valued at RM 2260 million per year

• About 50% of Malaysia fishery products are exported to the European Union

(EU) and United States of America (USA)

Department of Fishery Malaysia. Annual Fisheries Statistic 2004 Export / Import (Volume 2). Cawangan Pengutipan Data, Bahagian Pengurusan Maklumat Perikanan, Jabatan Perikanan Malaysia, 2004.

Department of Fishery Malaysia. Annual Fisheries Statistics (Volume 1). Cawangan Pengutipan Data, Bahagian Pengurusan Maklumat Perikanan, Jabatan Perikanan Malaysia, 2006.

Page 51: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Fishery Products Exported to EU

• Shrimp & Prawn (frozen, cooked)• Squid, Cuttlefish & Octopus (frozen, cooked)• Anchovy & Fish (prepared or preserved)

• Anchovy (dried)• Mackerel (dried, salted, in oil)• Catfish fillets (dried, salted, smoked)• Queen fish (salted, dried)• Scad (Selar) (salted)

• Fish (frozen, cooked)• Farmed barramundi • Eviscerated farmed eel• Tuna (steak, strip meat, lion, cube, ground Meat)

• Shell fish (frozen)

Frozen HOSO Prawn

Frozen BarramundiDry Anchovy Mackerel in Oil Smoked Catfish Fillets Dried Salted Queen FishSalted Scad (Selar)

Frozen Squid

Frozen Octopus

Page 52: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

EU Import Requirements

• EU import requirements for fishery products:

EUROPA The Food Veterinary Office (FVO) –General guidance on EU import andtransit rules for live animals and animalproducts from third countries. Retrieved 23 January, 2010 from http://ec.europa.eu/food/international/trade/guide_thirdcountries2006_en.pdf

Page 53: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Food and Veterinary Office (FVO) Audits

Page 54: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

EUROPA The Food Veterinary Office (FVO) –Third Country Establishments List - Malaysia. Retrieved 25 September, 2010https://sanco.ec.europa.eu/traces/output/FFP_MY_en.pdf

Third Country Approval List

Adobe Acrobat Document

Page 55: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

2005

2010

2008

Mission Report 2005 (DG/SANCO/2005 – MR Final)

Mission Report 2008 (DG (SANCO)/2008-7679-MR-FINAL)

Mission Report 2010(DG (SANCO)/2010-8532-MR-FINAL)

EUROPA The Food Veterinary Office (FVO) – Final Report (DG/SANCO/2005 – MR Final). Retrieved 1 October, 2008 from http://ec.europa.eu/food/fvo/ir_search_en.cfmEUROPA The Food Veterinary Office (FVO) – Final Report (DG (SANCO)/2008-7679-MR-FINAL). Retrieved 1 October, 2008 from http://ec.europa.eu/food/fvo/ir_search_en.cfm

EUROPA The Food Veterinary Office (FVO) – Final Report (DG (SANCO)/2009-8319-MR-FINAL). Retrieved 25 September, 2010 from http://ec.europa.eu/food/fvo/ir_search_en.cfm

EUROPA The Food Veterinary Office (FVO) – Final Report (DG (SANCO)/2010-8532-MR-FINAL). Retrieved 25 September, 2010 from http://ec.europa.eu/food/fvo/ir_search_en.cfm

Audit Reports from FVO

2009

Mission Report 2010(DG (SANCO)/2010-8532-MR-FINAL)

Page 56: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Summary

020406080

100

Mar, 05 May, 08 Jun, 08 May, 09 Dec, 09 Sep, 10

No. of Malaysia Fishery Establishments with MOH HACCP & EU Registration Number for the export of fishery products to EU

77

9

EUROPA The Food Veterinary Office (FVO) – Third Country Establishments (Fishery Products).,Retrieved 15 April, 2008 from https://sanco.ec.europa.eu/traces/output/FFP_MY_en.pdfEUROPA The Food Veterinary Office (FVO) – Third Country Establishments (Fishery Products), Retrieved 23 December, 2009 from https://sanco.ec.europa.eu/traces/output/FFP_MY_en.pdfEUROPA The Food Veterinary Office (FVO) – Third Country Establishments (Fishery Products) , Retrieved 25 September, 2010 from https://sanco.ec.europa.eu/traces/output/FFP_MY_en.pdf

52

6

17

Page 57: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Border Inspections

Page 58: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Border Inspections

EUROPA, EU Import Conditions for Seafood & Other Fishery Products, Retrieved 28 August, 2010 from http://ec.europa.eu/food/international/trade/im_cond_fish_en.pdf

Page 59: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

What if Non Compliance?

EUROPA, EU Import Conditions for Seafood & Other Fishery Products, Retrieved 28 August, 2010 from http://ec.europa.eu/food/international/trade/im_cond_fish_en.pdf

Page 60: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Rapid Alert for System Food & Feed

EUROPA, Rapid Alert System for Food and Feed, Retrieved 28 August, 2010 from http://ec.europa.eu/food/food/rapidalert/index_en.htm

Page 61: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Notification Types

EUROPA, Rapid Alert System for Food and Feed – annual Report 2008, Retrieved 28 August, 2010 from http://ec.europa.eu/food/food/rapidalert/report2008_en.pdf

Page 62: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

RASFF Portal

EUROPA, RASFF Portal, Retrieved 28 August, 2010 from https://webgate.ec.europa.eu/rasff-window/portal/

Page 63: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Breakdown of NCs 2004 - 2010

Page 64: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Breakdown of NCs 2004 - 2010

Page 65: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Breakdown of Microbiological NCs

Page 66: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Fishery Products Rejected 2004 - 2010

Page 67: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Fishery Products Rejected 2004 - 2010

Page 68: Professor Dr. Son Radu Centre of Excellence for Food Safety Research Universiti Putra Malaysia How safe is our food? Using The Results of a Risk Assessment.

Thank You


Recommended