+ All Categories
Home > Documents > Progettazione di circuiti e sistemi VLSI

Progettazione di circuiti e sistemi VLSI

Date post: 21-Jan-2016
Category:
Upload: grady
View: 25 times
Download: 0 times
Share this document with a friend
Description:
Progettazione di circuiti e sistemi VLSI. Anno Accademico 2010-2011 Lezione 9 29.4.2011 Interconnessioni e parassiti. Impact of Interconnect Parasitics. • Reduce Robustness. • Affect Performance Increase delay Increase power dissipation. Classes of Parasitics. • Capacitive. - PowerPoint PPT Presentation
Popular Tags:
39
Interconnessioni e parass iti 1 Progettazione di circuiti e Progettazione di circuiti e sistemi VLSI sistemi VLSI Anno Accademico 2010-2011 Lezione 9 29.4.2011 Interconnessioni e parassiti
Transcript
Page 1: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 1

Progettazione di circuiti e sistemi VLSIProgettazione di circuiti e sistemi VLSI

Anno Accademico 2010-2011

Lezione 9

29.4.2011

Interconnessioni e parassiti

Page 2: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 2

Impact of Interconnect Parasitics

• Reduce Robustness

• Affect Performance• Increase delay• Increase power dissipation

Classes of Parasitics

• Capacitive

• Resistive

• Inductive

Page 3: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 3

INTERCONNECT

Page 4: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 4

Capacitive Cross Talk

X

YVX

CXY

CY

Page 5: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 5

Capacitive Cross TalkDynamic Node

3 x 1 m overlap: 0.19 V disturbance

CY

CXY

VDD

PDN

CLK

CLK

In1

In2

In3

Y

X

2.5 V

0 V

Page 6: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 6

Capacitive Cross TalkDriven Node

XY = RY(CXY+CY)

Keep time-constant smaller than rise time

0

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

010.80.6

t (nsec)

0.40.2

X

YVXRY

CXY

CY

tr↑

Page 7: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 7

Dealing with Capacitive Cross Talk

• Avoid floating nodes• Protect sensitive nodes• Make rise and fall times as large as possible• Differential signaling• Do not run wires together for a long distance• Use shielding wires• Use shielding layers

Page 8: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 8

Shielding

GND

GND

Shieldingwire

Substrate (GND )

Shieldinglayer

VDD

Page 9: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 9

Cross Talk and Performance

Cc

- When neighboring lines switch in opposite direction of victim line, delay increases

DELAY DEPENDENT UPON ACTIVITY IN NEIGHBORING WIRES

Miller EffectMiller Effect

- Both terminals of capacitor are switched in opposite directions (0 Vdd, Vdd 0)

- Effective voltage is doubled and additional charge is needed (from Q=CV)

Page 10: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 10

Structured Predictable Interconnect

S

S SV V S

G

S

SV

G

VS

S SV V S

G

S

SV

G

VExample: Dense Wire Fabric ([Sunil Kathri])Trade-off:• Cross-coupling capacitance 40x lower, 2% delay variation• Increase in area and overall capacitance Also: FPGAs, VPGAs

Page 11: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 11

Encoding Data Avoids Worst-CaseConditions

Encoder

Decoder

Bus

In

Out

Page 12: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 12

Driving Large Capacitances

V in Vout

CL

VDD

• Transistor Sizing• Cascaded Buffers

Page 13: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 13

Using Cascaded Buffers

CL = 20 pF

In Out

1 2 N

0.25 m processCin = 2.5 fFtp0 = 30 ps

F = CL/Cin = 8000fopt = 3.6 N = 7tp = 0.76 ns

(See Chapter 5)

Page 14: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 14

Optimal number of stages (lez. 5/35 ref.)

For a given load, CL and given input capacitance Cin

Find optimal sizing f

ff

fFtFNtt pN

pp lnln

ln1/ 0/1

0

0ln

1lnln2

0

f

ffFt

f

t pp

For = 0, f = e, N = lnF

f

FNCfCFC in

NinL ln

ln with

ff 1exp

Page 15: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 15

Output Driver Design

Trade off Performance for Area and Energy

Given tpmax find N and f

• Area

• Energy

minminmin12

1

1

1

1...1 A

f

FA

f

fAfffA

NN

driver

22212

11

1...1 DD

LDDiDDi

Ndriver V

f

CVC

f

FVCfffE

Page 16: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 16

Output Driver Design (2)

The optimal values of N and f, for minimal tp, can give too much area and transistors.

Increasing tpmax, the problem consists in the solution with minimal area and optimal energy dissipation

(see text paragraph 9.2.2)

Page 17: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 17

Delay as a Function of F and N

101 3 5 7

Number of buffer stages N

9 11

10,000

1000

100

F = 100F = 1000

F = 10,000t p

/tp

0

Page 18: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 18

How to Design Large Transistors

G(ate)

S(ource)

D(rain)

Multiple

Contacts

small transistors in parallel

Reduces diffusion capacitanceReduces gate resistance

Page 19: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 19

Bonding Pad DesignBonding Pad

Out

InVDD GND

100 m

GND

Out

Page 20: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 20

ESD Protection

• When a chip is connected to a board, there is unknown (potentially large) static voltage difference

• Equalizing potentials requires (large) charge flow through the pads

• Diodes sink this charge into the substrate – need guard rings to pick it up.

Page 21: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 21

ESD Protection

Diode

PAD

VDD

R D1

D2

X

C

Page 22: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 22

Chip Packaging

ChipL

L ´

Bonding wire

Mountingcavity

Leadframe

Pin

•Bond wires (~25m) are used to connect the package to the chip

• Pads are arranged in a frame around the chip

• Pads are relatively large (~100m in 0.25m technology),with large pitch (100m)

•Many chips areas are ‘pad limited’

Page 23: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 23

Chip Packaging• An alternative is ‘flip-chip’:

– Pads are distributed around the chip– The soldering balls are placed on pads– The chip is ‘flipped’ onto the package– Can have many more pads

Page 24: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 24

Tristate Buffers

InEn

En

VDD

Out

Out = In.En + Z.En

VDD

In

En

En

Out

Increased output drive

Page 25: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 25

Reducing the swing

tpHL = CL Vswing/2

Iav

Reducing the swing potentially yields linear reduction in delay Also results in reduction in power dissipation Delay penalty is paid by the receiver Requires use of “sense amplifier” to restore signal level Frequently designed differentially (e.g. LVDS)

Page 26: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 26

INTERCONNECT

Page 27: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 27

Impact of Resistance

• We have already learned how to drive RC interconnect

• Impact of resistance is commonly seen in power supply distribution:– IR drop– Voltage variations

• Power supply is distributed to minimize the IR drop and the change in current due to switching of gates

Page 28: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 28

IR Introduced Noise

M1

X

I

R’

RΔV

Фpre

ΔV

VDD

VDD - ΔVV

I

Page 29: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 29

19

ASP DAC 2000

Power Dissipation TrendsPower Dissipation Trends

Power consumption is increasingPower consumption is increasing Better cooling technology neededBetter cooling technology needed

Supply current is increasing faster!Supply current is increasing faster!

OnOn--chip signal integrity will be a major chip signal integrity will be a major issueissue

Power and current distribution are criticalPower and current distribution are critical

Opportunities to slow power growthOpportunities to slow power growth Accelerate Accelerate VddVdd scalingscaling

Low κ dielectrics & thinner (Cu) Low κ dielectrics & thinner (Cu) interconnectinterconnect

SOI circuit innovations SOI circuit innovations

Clock system designClock system design

micromicro--architecturearchitecture

Power Dissipation

020406080

100120140160

EV4 EV5 EV6 EV7 EV8

Po

we

r (W

)

0

0.5

1

1.5

2

2.5

3

3.5

Vol

tage

(V

)

Supply Current

0

20

40

60

80

100

120

140

EV4 EV5 EV6 EV7 EV8

Curr

ent (

A)

0

0.5

1

1.5

2

2.5

3

3.5

Vo

ltag

e (

V)

Page 30: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 30

Resistance and the Power Distribution Problem

• Requires fast and accurate peak current predictionRequires fast and accurate peak current prediction• Heavily influenced by packaging technologyHeavily influenced by packaging technology

BeforeBefore AfterAfter

Page 31: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 31

Power Distribution

• Low-level distribution is in Metal 1• Power has to be ‘strapped’ in higher layers of

metal.• The spacing is set by IR drop,

electromigration, inductive effects• Always use multiple contacts on straps

Page 32: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 32

3 Metal Layer Approach (EV4)

3rd “coarse and thick” metal layer added to thetechnology for EV4 design

Power supplied from two sides of the die via 3rd metal layer

2nd metal layer used to form power grid

90% of 3rd metal layer used for power/clock routing

Metal 3

Metal 2

Metal 1

Page 33: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 33

2 reference plane metal layers added to thetechnology for EV6 designSolid planes dedicated to Vdd/Vss

Significantly lowers resistance of gridLowers on-chip inductance

6 Metal Layer Approach – EV6

Metal 4

Metal 2Metal 1

RP2/Vdd

RP1/Vss

Metal 3

Page 34: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 34

Electromigration

Limits dc-current to 1 mA/m

Page 35: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 35

The Global Wire Problem

Challenges• No further improvements to be expected after the

introduction of Copper (superconducting, optical?)• Design solutions

– Use of fat wires– Insert repeaters — but might become prohibitive (power, area)– Efficient chip floorplanning

• Towards “communication-based” design – How to deal with latency?– Is synchronicity an absolute necessity?

outwwdoutdwwd CRCRCRCRT 693.0377.0

Page 36: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 36

Interconnect Projections: Copper

• Copper is planned in full sub-0.25 m process flows and large-scale designs (IBM, Motorola, IEDM97)

• With cladding and other effects, Cu ~ 2.2 -cm vs. 3.5 for Al(Cu) 40% reduction in resistance

• Electromigration improvement; 100X longer lifetime (IBM, IEDM97)

– Electromigration is a limiting factor beyond 0.18 m if Al is used (HP, IEDM95)

Vias

Page 37: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 37

Diagonal Wiring

y

x

destination

Manhattan

source

diagonal

• 20+% Interconnect length reduction• Clock speed Signal integrity Power integrity • 15+% Smaller chips plus 30+% via reduction

Page 38: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 38

Reducing RC-delay

Repeater

(chapter 5)

Page 39: Progettazione di circuiti e sistemi VLSI

Interconnessioni e parassiti 39

Repeater Insertion (Revisited)

Taking the repeater loading into account

For a given technology and a given interconnect layer, there exists For a given technology and a given interconnect layer, there exists an optimal length of the wire segments between repeaters. The an optimal length of the wire segments between repeaters. The delay of these wire segments is delay of these wire segments is independent of the routing layer!independent of the routing layer!


Recommended