+ All Categories
Home > Documents > Progress towards Superlattice-Source Vertical Nanowire III ......2013/09/26  · SL source with...

Progress towards Superlattice-Source Vertical Nanowire III ......2013/09/26  · SL source with...

Date post: 07-Feb-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
30
Progress towards Superlattice-Source Vertical Nanowire III-V MOSFETs Jesús A. del Alamo and Xin Zhao Microsystems Technology Laboratories MIT E 3 S Teleseminar September 26, 2013
Transcript
  • Progress towards Superlattice-Source Vertical Nanowire III-V MOSFETs

    Jesús A. del Alamo and Xin Zhao Microsystems Technology Laboratories

    MIT

    E3S TeleseminarSeptember 26, 2013

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

    joyuenTypewritten Text

  • 2

    Outline

    1. Device concept

    2. Simulations

    3. Nanowire FET fabrication technology

    4. Electrical characteristics of InGaAs NW‐MOSFETs

    5. Next steps

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 1. Device conceptNanowire FET with Superlattice Source

    3

    joyuenTypewritten Text

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • High‐energy tail of electrons at source of FET responsible for subthreshold current

    Why S=60 mV/dec at best in FETs?

    4

    High energy tail Subthreshold current

    High‐energy tail of source electrons

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 5

    Key idea: suppress electron tail at source by engineering DOS

    Empty miniband

    Partially filled miniband

    Minigap

    Source DOS engineered to eliminate high‐energy electrons  subthreshold current suppressed

    DOS at source

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 60 mV/dec

    VGS

    log ID

    Steep S!

    0

    Source Channel Drain

    Subthreshold Characteristics

    6

    A

    AB

    C

    C

    B

    Three regimes of operation:1. Steep slope regime: limited by source to drain tunneling2. Subthreshold regime: thermionic emission of tail 

    electrons (minimized for narrow miniband)3. ON state: ballistic transport

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • How to create Miniband/Minigap DOS at Source?

    7

    Two essential ingredients:1. Superlattice source: to create miniband/minigap

    structure in longitudinal direction2. Nanowire geometry: to impose transversal quantization, 

    create 1D subbands and open a true minigap

    Esaki, TSF 1976

    1D‐DOSBand structure of SL

    Gnani, IEDM 2011

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 8

    2. Simulations: Nanowire SL structures

    Expected 1D subbandstructure 

    In0.53Ga0.47As NW, D=4.5 nm

    • Nexnano• Start by calibrating simulator with simple nanowire structures

    In0.53Ga0.47As NW, D=15 nm

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 9

    SL source with lateral confinement: minibands split into subbands

    3 nm In0.53Ga0.47As/1.2 nm In0.52Al0.48As SL, D=15 nm

    • In NW configuration, SL minibands split into subbands• For wide diameters, subbands overlap in energy    

    Same miniband, different subbands

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 10

    Tight transversal confinement:Minigap appears in all k directions

    With NW diameter 

  • 11

    Minigap widens as NW diameter shrinks

    For small D, minigap between 1st and 2nd miniband

    Same minibanddifferent subbands

    Eg=0.23 eV between 1st and 2nd miniband

    3 nm In0.53Ga0.47As/1.2 nm In0.52Al0.48As SL, D=4.5 nm

    different miniband

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • Transmission coefficient of standard NW

    InGaAs nanowire (D=4.5 nm)

    1st subband

    2nd subband(two‐fold degenerate)

    Expected plateau structure

    DOS

    12

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • Transmission coefficient of SL NW

    3 nm In0.53Ga0.47As/1.2 nm In0.52Al0.48As SL NW (D=4.5 nm,10 periods)

    1st miniband

    2nd miniband230 meV

    Transmission coefficient clearly reveals minigap in SL NW DOS13

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • T(E) suppressed by >two decades in minigap14

    3 nm In0.53Ga0.47As/1.2 nm In0.52Al0.48As SL NW (D=4.5 nm,10 periods)

    Transmission coefficient of SL NW

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • • Dielectric/semiconductor interface:• Interface traps with allowed states• Roughness

    • Sharpness of miniband edges:• Finite number of periods of SL• Imperfection of the crystal lattice: 

    • Doping• Phonons• Intermixing• Crystal defects: dislocations, etc

    • Non‐uniformity of nanowire diameter

    15

    Non-idealities

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 16

    3. NW MOSFET fabrication technology

    • Nanowire MOSFET provides ultimate scalability• Vertical Nanowire uncouples footprint scaling and gate length 

    scaling  can achieve excellent SCE on a tiny footprint

    Gate‐All‐Around Nanowire MOSFET: ultimate CMOS device!

    Kuhn, TED 2012

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 17

    Vertical NW MOSFET fabrication technology

    Key elements:• In0.53Ga0.47As source, drain and channel• Top‐down approach based on RIE (a first!)• High‐k dielectric by ALD, wrap‐around‐gate

    Device vehicle: InGaAs NW‐MOSFET    

    Zhao, IEDM 2013

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

    joyuenTypewritten Text

  • InGaAs

    Adhesionlayer

    HSQ

    ALD‐Al2O3

    ALD‐WN

    SOG

    Top View Side View

    Starting substrate

    Step 1Mask definition by EBL

    Step 2RIE and cleaning

    Step 3Digital Etch

    Superlattice

    Contact

    Fabrication technology

    18

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • Step 4High‐K/Gate metal depositionand patterning

    Step 5Planarization andetch back

    Step 62nd planarization, etch back and G/D contact opened

    Gate

    Gate Drain

    Step 7Metalization Gate DrainSource

    n+ InGaAssource

    InGaAschannel

    19

    InGaAs

    Adhesionlayer

    HSQ

    ALD‐Al2O3

    ALD‐WN

    SOG

    Superlattice

    Contact

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 20

    Key enabling technology: RIE etch by BCl3/SiCl4/Ar Chemistry

    • In compounds hard to etch• BCl3/SiCl4/Ar RIE chemistry used for III‐V optical devices• Never used for nm‐scale features• Substrate temperature during etch is key!

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 21

    Key enabling technology: RIE etch by BCl3/SiCl4/Ar Chemistry

    No notching in the etching of complex heterostructures

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 22

    Nanowire RIE followed by digital etch

    • Shrinks NW diameter by 2 nm per cycle• Unchanged shape• Improved sidewall roughness

    Digital etch:  self‐limiting O2 plasma oxidation + H2SO4 oxide removal

    before after 10 cycles

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 23

    After 1st planarization

    Nanowire arrays Contacts

    50 nm

    5 µm5 µm

    50 nm

    40 nmGate metal

    30 nm

    After 2nd planarization

    Nanowire

    Gate

    Source

    Drain

    Gate metal

    Pictures along the fabrication process

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 24

    4. Electrical characteristics of InGaAs NW-MOSFETs

    Single nanowire MOSFET: D= 30 nm, LG= 80 nm, 4.5 nm Al2O3 (EOT = 2.2 nm) 

    At VDS=0.5 V (normalized by periphery):• gm,pk=280 μS/μm• S=200 mV/dec• Ron=759 Ω.μm

    0.0 0.1 0.2 0.3 0.4 0.50

    5

    10

    15

    20

    I d (

    A)

    Vds (V)

    Vgs=-0.6 V to 0.8 V in 0.1 V stepRon=759 m(at Vgs=1 V)Lch=80 nmD=30 nm

    0

    50

    100

    150

    200

    Nor

    mal

    ized

    I d (

    A/m

    )

    -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

    10-8

    10-7

    10-6

    10-5

    Vds=0.05V

    I d (A

    )

    Vgs(V)

    Vds=0.5VIg< 10-9 A

    DIBL=195 mV/VS(Vds=0.05V)=145 mV/decS(Vds=0.5V)=200 mV/dec

    10-7

    10-6

    10-5

    10-4

    Nor

    mal

    ized

    I d (A

    /m

    )

    -0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

    50

    100

    150

    200

    Vgs(V)

    0

    50

    100

    150

    200

    250

    300gm, pk(Vds=0.5 V)=280 S/m

    Vds=0.5V

    Nor

    maz

    lied

    I d (

    A/m

    )

    Nor

    mal

    ized

    gm (

    S/

    m)

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

    joyuenTypewritten Text

  • 25

    D=50 nm InGaAs NW-MOSFETsSingle nanowire MOSFET: 

    D= 50 nm, LG= 80 nm, 4.5 nm Al2O3 (EOT = 2.2 nm) 

    At VDS=0.5 V:• gm,pk=730 μS/μm• S=305 mV/dec• Ron=310 Ω.μm

    0.0 0.1 0.2 0.3 0.4 0.50

    20

    40

    60

    80

    100

    Vds (V)

    I d (

    A)

    Vgs=-0.6 V to 0.8 V in 0.1 V stepRon=310m(at Vgs=1 V)LG=80 nmD=50 nm

    0

    100

    200

    300

    400

    500

    600

    700

    Nor

    mal

    ized

    I d (

    A/m

    )

    -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.810-7

    10-6

    10-5

    10-4

    I d (A

    )

    Vgs(V)

    DIBL=360 mV/VS(Vds=0.05V)=210 mV/decS(Vds=0.5V)=305 mV/dec

    Ig< 10-10 A

    Vds=0.5V

    Vds=0.05V

    10-6

    10-5

    10-4

    Nor

    mal

    ized

    I d (A

    /m

    )

    -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.40

    100

    200

    300

    400

    500

    600

    Nor

    maz

    lied

    I d (

    A/

    m) gm, pk(Vds=0.5 V)

    =730 S/m

    Vds=0.5V

    Vgs(V)

    0

    100

    200

    300

    400

    500

    600

    700

    Nor

    maz

    lied

    g m (

    S/m

    )

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 26

    Impact of nanowire diameter

    30 35 40 45 50

    150

    200

    250

    300

    350

    400

    450

    Nanowire Diameter (nm)

    DIB

    L (m

    V/V

    )

    30 35 40 45 50

    100200300400500600700800900

    Nor

    mal

    ized

    gm (

    S/

    m)

    Nanowire Diameter (nm)

    Vds=0.5 V

    30 35 40 45 50200

    400

    600

    800

    1000

    1200

    Vgs=1 VNorm

    aliz

    ed R

    on (

    m

    )

    Nanowire Diameter (nm)

    D↓  S↓, DIBL↓, gm↓, Ron↑

    30 35 40 45 50

    150

    200

    250

    300

    350S

    (mV

    /dec

    )

    Nanowire Diameter (nm)

    Vds=0.5V

    Vds=0.05V

    Error bars indicate distribution of ~10 devices

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 27

    Impact of digital etch

    InGaAs NW‐MOSFETs with D= 40 nm (final diameter)

    For same final diameter, digital etch:• Improves subthreshold swing• Improves peak transconductance• Reduces gate leakage current

    -0.6 -0.4 -0.2 0.0 0.2 0.4

    10-8

    10-7

    10-6

    10-5

    w/ digital etchw/o digital etch

    Vgs(V)

    I d (A

    )

    Vds=0.5V

    Vds=0.05V

    10-7

    10-6

    10-5

    10-4

    Nor

    mal

    ized

    I d (A

    /m

    )

    -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.410-6

    10-5

    10-4

    10-3Vds=1 V

    I g (A

    /cm

    2 )Vgs(V)

    w/ digital etch

    w/o digital etch

    better sidewall interfacial characteristics

    -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.20

    100

    200

    300

    400

    500 w/ digital etch w/o digital etch

    Vgs(V)

    Nor

    maz

    lied

    g m (

    S/

    m)

    joyuenTypewritten Text

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • Benchmarking against bottom-up InGaAs NW-MOSFETs

    • Fundamental trade‐off between transport and SCE• Top‐down NW‐MOSFETs as good as bottom up devices

    28

    Persson, DRC 2012

    Tomioka, Nature 2012

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 29

    5. Next steps

    1. Refine nanowire fabrication process• Make more robust• Reduce gate leakage current• Scale to D~20 nm

    2. Study InGaAs Nanowire MOSFETs• Build simple models (ballistic transport, electrostatics) and compare with measurements• Study transport at low temperatures

    3. Fabricate InGaAs Nanowire MOSFETs with SL source• Experimental observation of SL filtering

    4. Simulations of SLS‐NW MOSFETs• Dispersion relations, DOS, transmission coefficient, etc. 

    5. Fabricate Nanowire Tunnel FETs• In collaboration with Theme I colleagues• Initially, follow Intel’s heterostructure design

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.

  • 30

    Intel’s InGaAs Tunnel MOSFET

    Dewey, IEDM 2011

    joyuenTypewritten TextFor E3S Internal Use ONLYThese slides may contain prepublication data and/or confidential information.


Recommended