+ All Categories
Home > Documents > PROJECT MEMO - SINTEF · PROJECT MEMO MEMO CONCERNS Realisation of a 20kVA shunt active filter ......

PROJECT MEMO - SINTEF · PROJECT MEMO MEMO CONCERNS Realisation of a 20kVA shunt active filter ......

Date post: 15-Jul-2018
Category:
Upload: vannhi
View: 226 times
Download: 0 times
Share this document with a friend
34
PROJECT MEMO MEMO CONCERNS Realisation of a 20kVA shunt active filter DISTRIBUTION SINTEF Energy Research Address: NO-7465 Trondheim, NORWAY Reception: Sem Sælands vei 11 Telephone: +47 73 59 72 00 Telefax: +47 73 59 72 50 www.energy.sintef.no Enterprise No.: NO 939 350 675 MVA Magnar Hernes (SEFAS) Olve Mo (SEFAS) Kjell Ljøkelsøy (SEFAS) Andre Buettner (SEFAS) Dep. of power electronics and control (TU-Ilmenau) Examination office (faculty EI) (TU-Ilmenau) AN NO. CLASSIFICATION REVIEWED BY AN 02.12.69 Unrestricted Olve Mo ELECTRONIC FILE CODE AUTHOR(S) DATE 02062093922 2002-06-20 PROJECT NO. Andre Buettner NO. OF PAGES 12x127 [email protected] 85 DIVISION LOCATION LOCAL FAX Energy Systems Sem Sælands vei 11 Abstract: The presented memo discusses the development and the realisation of a shunt active filter. The presented active filter is realised by use of a PWM-converter with 10kHz switching frequency. This memo discusses simulation, laboratory development and realisation. The set-up is prepared and tested for the work on three-wire 230V line-line grid. The described filter works with current compensation so that the set-up is able to improve all kinds of currents. The filter can work in two modes: Compensation for harmonic current Compensation for reactive power and harmonic currents However, the improvement for voltage distortion is not guaranteed because several problems are accrued which are improved and discussed but not completely solved. These problems are: Delay between incoming current measurements and output of the converter current Oscillation of the inserted ripple filter (LC) with the grid inductance The control of the active filter is realised by an Infineon C167 micro controller (μC). The principal working mechanism can be seen in Figure 1-1 (Page 5). An Illustration of the shunt active filter operation is shown in Figure 7-3 on Page 75. 12x127 AN 02.12.69
Transcript

PROJECT MEMO MEMO CONCERNS

Realisation of a 20kVA shunt active filter

DISTRIBUTION

SINTEF Energy Research Address: NO-7465 Trondheim, NORWAY Reception: Sem Sælands vei 11 Telephone: +47 73 59 72 00 Telefax: +47 73 59 72 50 www.energy.sintef.no Enterprise No.: NO 939 350 675 MVA

Magnar Hernes (SEFAS) Olve Mo (SEFAS) Kjell Ljøkelsøy (SEFAS) Andre Buettner (SEFAS) Dep. of power electronics and control (TU-Ilmenau) Examination office (faculty EI) (TU-Ilmenau)

AN NO. CLASSIFICATION REVIEWED BY

AN 02.12.69 Unrestricted Olve Mo ELECTRONIC FILE CODE AUTHOR(S) DATE

02062093922 2002-06-20 PROJECT NO.

Andre Buettner NO. OF PAGES

12x127 [email protected] 85 DIVISION LOCATION LOCAL FAX

Energy Systems Sem Sælands vei 11 Abstract: The presented memo discusses the development and the realisation of a shunt active filter. The presented active filter is realised by use of a PWM-converter with 10kHz switching frequency. This memo discusses simulation, laboratory development and realisation. The set-up is prepared and tested for the work on three-wire 230V line-line grid. The described filter works with current compensation so that the set-up is able to improve all kinds of currents. The filter can work in two modes:

• Compensation for harmonic current • Compensation for reactive power and harmonic currents

However, the improvement for voltage distortion is not guaranteed because several problems are accrued which are improved and discussed but not completely solved. These problems are:

• Delay between incoming current measurements and output of the converter current • Oscillation of the inserted ripple filter (LC) with the grid inductance

The control of the active filter is realised by an Infineon C167 micro controller (µC). The principal working mechanism can be seen in Figure 1-1 (Page 5). An Illustration of the shunt active filter operation is shown in Figure 7-3 on Page 75.

12x127 AN 02.12.69

2

TABLE OF CONTENTS

Page

1 INTRODUCTION ............................................................................................................ 4

2 MODELLING OF A SHUNT ACTIVE FILTER ............................................................ 6 2.1 The model.............................................................................................................. 6 2.2 Power grid ............................................................................................................. 7 2.3 Three-phase diode rectifier load (B6) ................................................................... 7 2.4 Front end converter as active filter........................................................................ 7 2.5 The control module ............................................................................................... 8

2.5.1 The phase locked loop (PLL).................................................................. 9 2.5.2 The DC-voltage controller .................................................................... 10 2.5.3 The generation of the three phase current references ........................... 10 2.5.4 The current controller............................................................................ 12 2.5.5 The pulse width modulation (PWM) of the gate pulses ....................... 13

3 SIMULATION RESULTS ............................................................................................. 15 3.1 DC-voltage controller operation (file: ex01.psc) ................................................ 15 3.2 Generation of the current references (file: ex01.psc).......................................... 16 3.3 Current controller operation (file: ex01.psc)....................................................... 17 3.4 Pulse width modulation (file: ex01.psc).............................................................. 17 3.5 Phase locked loop (file: ex02.psc) ...................................................................... 18 3.6 Accrued problems ............................................................................................... 19

3.6.1 Oscillation of the ripple filter capacitor with the grid inductance (file: ex03.psc) ............................................................................................... 19

3.6.2 Delayed converter current and its effect to the active filter task (file: ex04.psc) ............................................................................................... 19

3.7 AC-side waveforms (active filter tasks for RL-DC-load at the rectifier) ........... 20 3.7.1 Active filtering for LG=650µH and LAC=300µH (file: ex04.psc) ......... 21 3.7.2 Active filtering for LG=50µH and LAC=300µH (file: ex05.psc) ........... 23 3.7.3 Active filtering for LG=50µH and LAC=0 (file: ex06.psc) .................... 24

3.8 Active filtering for a rectifier with RC-DC-load (file: ex07.psc) ....................... 25

4 EXPERIMENTAL SETUP OF THE SHUNT ACTIVE FILTER ................................. 28 4.1 The power grid .................................................................................................... 28 4.2 B6 diode rectifier load......................................................................................... 28

4.2.1 Inductive DC load ................................................................................. 28 4.2.2 Capacitive DC load ............................................................................... 31

4.3 The active filter ................................................................................................... 32 4.3.1 Control module ..................................................................................... 32 4.3.2 IGBT-converter..................................................................................... 33

5 CONTROL SOFTWARE ............................................................................................... 35 5.1 Interrupt structure................................................................................................ 35 5.2 Block diagram of the control system .................................................................. 36

12x127 AN 02.12.69

3

6 RESULTS AND MEASUREMENTS............................................................................ 52 6.1 Accrued problems ............................................................................................... 52

6.1.1 Oscillation of the filter capacitor with the grid inductance................... 52 6.1.2 Delayed current (Dead time between measurement and current output)54

6.2 Harmonic current and reactive power compensation for a diode rectifier.......... 56 6.2.1 230V over variac, additive commutation inductance ........................... 58 6.2.2 230V direct from the grid, additive commutation inductance .............. 62 6.2.3 230V direct from the grid, no additional inductance ............................ 66 6.2.4 Rectifier with capacitive DC-load ........................................................ 70

7 SUMMARY AND CONCLUSION ............................................................................... 74

8 REFERENCES ............................................................................................................... 77

9 APPENDIX A................................................................................................................. 78 9.1 Parameters used in the simulation model............................................................ 79 9.2 Calculation of specific parameters ...................................................................... 83

10 APPENDIX B ................................................................................................................. 84 10.1 Further calculations............................................................................................. 84 10.2 Used components ................................................................................................ 84

12x127 AN 02.12.69

1SINTEF Energy Research

”Power electronics and energy storage technologies for cost- and energy efficient power

systems”

SIP-strategic institute programme

AN 02.12.69 - Realisation of a 20kVA shunt active filter(Andre Buettner)

2SINTEF Energy Research

Why filter?

Problem:Insufficient power quality in low voltage AC-systems

Reasons:External disturbances (power outages, sags a.s.o.)Combined use of linear and non-linear loads (consumer of non-sinusoidal currents) causes current harmonics

3SINTEF Energy Research

Compensation for harmonic currents

Solution2:Active filter

Compensation for a selected or all harmonicsCompensation for reactive power is possible

Solution1:Passive harmonic filter

Compensation for a specific harmonicProblem: causes oscillation with the grid inductance

4SINTEF Energy Research

Types of active filters

Series active filterIn series with the lineNeed to conduct the complete line current

Shunt active filterParallel with the loadNeed to match the line voltage

Hybrid filterCombination of passive filter and active filterParallel and seriesCost effective solution in certain cases

5SINTEF Energy Research

Working mechanism for a shunt active filter

AC three-phasesource

Activefilter

iFilter

iMains iRectifier

iMeasure

Dioderectifier

6SINTEF Energy Research

Derivation of the filter algorithm

onCompensatiref

controllerlinkDC

onCompensaticontrollerlinkDCref

reffilter

filterrectifiermains

iii

iiiii

iii

=≈

+=

=

−=

−−

−−

0negligiblecurrent link DC

results controller idealan ofn suppositio With the

reactiveactiverectifiernrectifier

reactiveactiverectifier

rectifiernrectifierrectifier

iiiiiiiiii

)1()1()..2(

)1()1()1(

)..2()1(

++=

+=

+=

AC three-phasesource

Activefilter

iFilter

iMains iRectifier

iMeasure

Dioderectifier

7SINTEF Energy Research

Shunt filter algorithms

Compensation for harmonic currents

rectifierrectifieronCompensati

rectifiernonCompensati

iii

ii

)1(

)..2(

thatso−=

=

Compensation for harmonic currents and reactive power

activerectifieronCompensati

reactiverectifiernonCompensati

iii

iii

)1(

)1()..2(

thatso−=

+=

8SINTEF Energy Research

Main resultsFilter is able to improve all types of current shapesPossibility of compensation for harmonic currents and reactive power

Compensation for harmonic currents Compensation for harmonic currents and reactive power

Annotations1 phase voltage2 mains current3 rectifier current4 converter current

Current improvements5th harmonic from 22% to 3.5%

THD from 25% to 5%

Voltage improvement5th harmonic from 2.6% to 1.9%

THD from 2.8% to 2.2%

9SINTEF Energy Research

Accrued problems

Oscillation of the ripple filter capacitor with the grid inductance

D

D

grid inductance

5.0E-005

additionalcommutation inductance

GRID

0.0003

0.00

0825.0E-005

ripple filter

ACTIVE FILTER

variac inductance

0.00063

DIODE RECTIFIER

Delayed converter current

10SINTEF Energy Research

LC-oscillator (Cripple filter and Lgrid)

SimulationGraph1 – Line-line voltageGraph2 – Rectifier currentGraph3 – Mains current

LaboratoryBlue – non-oscillating signals

1 line-line voltage2 mains current

Red – oscillating signals3 line-line voltage4 mains current

Oscillation

Time (sec)

Line-line voltage

0.027 0.0316 0.0362 0.0408 0.0454 0.05-0.32-0.192-0.064+0.064+0.192+0.32

VRS

Rectifier current

0.027 0.0316 0.0362 0.0408 0.0454 0.05-0.043-0.0256-0.0082+0.0092+0.0266+0.044

I_rectifier_R

Mains current

0.027 0.0316 0.0362 0.0408 0.0454 0.05-0.06-0.036-0.012+0.012+0.036+0.06

I mains R

11SINTEF Energy Research

Delayed converter current

SimulationGraph1 – Rectifier currentGraph2

red mains currentblack converter current

LaboratorySignal 1 – Mains currentSignal 2 – Rectifier currentSignal 3 – Converter current

Effect of a delayed converter current

Time (sec)

Rectifier current

0.179 0.1836 0.1882 0.1928 0.1974 0.202-0.045-0.027-0.009+0.009+0.027+0.045

I_rectifier_R

Converter current and mains current

0.179 0.1836 0.1882 0.1928 0.1974 0.202-0.07-0.042-0.014+0.014+0.042+0.07

I_converter_filtered I mains R

12SINTEF Energy Research

Different delaysMicro controller delay

delay between rectifier current measurement and output of the current reference

Current controller delaydelay between reference and output of the fire pulses

IGBT on delayTurn on turn off of the gate drivers (negligible small)

AnnotationsSignal1 – Rectifier currentSignal2 – Current referenceSignal3 – Converter current

13SINTEF Energy Research

Micro controller delaybetween current measurement and current reference output60µs - fastest interrupt repeating time

AnnotationsSignal1 – Rectifier currentSignal2 – Current reference

Improvementsfaster AD-converterDecrease number of channels in use

14SINTEF Energy Research

Current controller delaybetween current reference and output of the converter current0 to 150µs – depending on the reference frequencybandwidth problem

AnnotationsSignal1 – Current referenceSignal2 – Converter current

ImprovementsFaster current controllerDifferent typ of current controller

15SINTEF Energy Research

Diode rectifier with inductive DC-load

A

B

C

5.0E-005 0.00

127.

2

Line-line voltage

Rectifier current

5th current harmonic 22%Current THD 25%-29% (Depending on the commutation)

16SINTEF Energy Research

Different constellations for the rectifier

D

D

grid inductance

5.0E-005

additionalcommutation inductance

GRID

0.0003

0.00

0825.0E-005

ripple filter

ACTIVE FILTER

variac inductance

0.00063

DIODE RECTIFIER

D

D

grid inductance

5.0E-005

additionalcommutation inductance

GRID

0.0003

0.00

0825.0E-005

ripple filter

ACTIVE FILTER

DIODE RECTIFIER

LCommutation = 980µH LCommutation = 350µH

D

D

grid inductance

5.0E-005

GRID

0.00

0825.0E-005

ripple filter

ACTIVE FILTER

DIODE RECTIFIER

LCommutation = 50µH

17SINTEF Energy Research

Waveforms (LCommutation = 980µH)

D

D

grid inductance

5.0E-005

additionalcommutation inductance

GRID

0.0003

0.00

0825.0E-005

ripple filter

ACTIVE FILTER

variac inductance

0.00063

DIODE RECTIFIER

SimulationCompensation for harmonic currents

Compensation of harmonic currents

Time (sec)

Voltage (R)

0.12 0.1242 0.1284 0.1326 0.1368 0.141-0.19-0.114-0.038

+0.038+0.114

+0.19VR

Mains curren (R)

0.12 0.1242 0.1284 0.1326 0.1368 0.141-0.046-0.0276-0.0092

+0.0092+0.0276

+0.046I m ains R

Rectifier current (R)

0.12 0.1242 0.1284 0.1326 0.1368 0.141-0.046-0.0276-0.0092

+0.0092+0.0276

+0.046I_rect ifier_R

Converter current (R)

0.12 0.1242 0.1284 0.1326 0.1368 0.141-0.02-0.012-0.004

+0.004+0.012

+0.02I_converter_f iltered

LaboratoryCompensation for harmonic currents

Annotations1 phase voltage2 mains current3 rectifier current4 converter current

Oscillation883Hz=17th harmonic

18SINTEF Energy Research

Results current (LCommutation = 980µH)Oscillation frequency 883Hz=17th harmonic

Simulation LaboratoryA c t iv e f ilt e r in g

T im e ( s e c )

T H D

0 . 1 2 0 .1 4 0 .1 6 0 .1 8 0 .2 0 .2 2+ 9 .3

+ 1 0 .0 2

+ 1 0 .7 4

+ 1 1 .4 6

+ 1 2 .1 8

+ 1 2 .9T H D

H a r m o n ic s

0 . 1 2 0 .1 4 0 .1 6 0 .1 8 0 .2 0 .2 2+ 0 .0 0 0 8

+ 0 .0 0 1 0 6

+ 0 .0 0 1 3 2

+ 0 .0 0 1 5 8

+ 0 .0 0 1 8 4

+ 0 .0 0 2 1( M ) -5 .h a r m ( M ) - 7 .h a rm (M ) - 1 1 .h a r m ( M ) - 1 3 .h a rm

Current THD about 9.5% Current THD about 9.3%

19SINTEF Energy Research

Results voltage (LCommutation = 980µH)Oscillation frequency 883Hz=17th harmonic

without active filtering with active filter

Voltage THD 5.97% Voltage THD 6.94%

20SINTEF Energy Research

Waveforms (LCommutation = 350µH)

SimulationCompensation for harmonic currents

and reactive power

LaboratoryCompensation for harmonic currents

and reactive power

Annotations1 phase voltage2 mains current3 rectifier current4 converter current

Oscillation3183Hz=63rd harmonic

D

D

grid inductance

5.0E-005

additionalcommutation inductance

GRID

0.0003

0.00

0825.0E-005

ripple filter

ACTIVE FILTER

DIODE RECTIFIER

Compensation of harmonic currents and reactive pow er

Time (sec)

Voltage (R)

0.18 0.1842 0.1884 0.1926 0.1968 0.201-0.19-0.114-0.038

+0.038+0.114

+0.19VR

Mains current (R)

0.18 0.1842 0.1884 0.1926 0.1968 0.201-0.047-0.0278-0.0086

+0.0106+0.0298

+0.049I m ains R

Rectifier current (R)

0.18 0.1842 0.1884 0.1926 0.1968 0.201-0.045-0.027-0.009

+0.009+0.027+0.045 I_rec t ifier_R

Converter current (R)

0.18 0.1842 0.1884 0.1926 0.1968 0.201-0.029-0.0174-0.0058

+0.0058+0.0174

+0.029I_conver ter_f iltered

21SINTEF Energy Research

Results current (LCommutation = 350µH)Oscillation frequency 3183Hz=63rd harmonic

Simulation LaboratoryA c t ive f ilt e r in g

T im e ( s e c )

T H D

0 . 1 2 0 .1 4 0 .1 6 0 .1 8 0 .2 0 .2 2+ 6 .9

+ 7 .6 8

+ 8 .4 6

+ 9 .2 4

+ 1 0 .0 2

+ 1 0 .8T H D

H a rm o n ic s

0 . 1 2 0 .1 4 0 .1 6 0 .1 8 0 .2 0 .2 2+ 0 .0 0 0 7

+ 0 .0 0 0 9 2

+ 0 .0 0 1 1 4

+ 0 .0 0 1 3 6

+ 0 .0 0 1 5 8

+ 0 .0 0 1 8( M ) - 5 .h a rm (M ) -7 .h a r m ( M ) -1 1 .h a r m ( M ) - 1 3 .h a rm

Current THD about 7.2% Current THD about 6.68%

22SINTEF Energy Research

Results voltage (LCommutation = 350µH)Oscillation frequency 3183Hz=63rd harmonic

without active filtering with active filtering

Voltage THD 2.83% Voltage THD 2.21%

23SINTEF Energy Research

Waveforms (LCommutation = 50µH)

SimulationCompensation for harmonic currents

LaboratoryCompensation for harmonic currents

Annotations1 phase voltage2 mains current3 rectifier current4 converter current

Oscillation3183Hz=63rd harmonic

D

D

grid inductance

5.0E-005

GRID

0.00

0825.0E-005

ripple filter

ACTIVE FILTER

DIODE RECTIFIER

Compensation of harmonic currents

Time (sec)

Voltage (R)

0.12 0.1242 0.1284 0.1326 0.1368 0.141-0.19-0.114-0.038

+0.038+0.114

+0.19 VR

Mains curren (R)

0.12 0.1242 0.1284 0.1326 0.1368 0.141-0.07-0.044-0.018

+0.008+0.034

+0.06I m ains R

Rectifier current (R)

0.12 0.1242 0.1284 0.1326 0.1368 0.141-0.05-0.03-0.01

+0.01+0.03+0.05 I_rec tifier_R

Converter current (R)

0.12 0.1242 0.1284 0.1326 0.1368 0.141-0.04-0.024-0.008

+0.008+0.024

+0.04I_converter_filtered

24SINTEF Energy Research

Results current (LCommutation = 50µH)Oscillation frequency 3183Hz=63rd harmonic

Simulation LaboratoryA c t ive f ilt e r ing

T im e ( s e c )

T H D

0 . 1 2 0 .1 4 0 .1 6 0 . 1 8 0 .2 0 .2 2+ 7 .8

+ 8 .0 6

+ 8 .3 2

+ 8 .5 8

+ 8 .8 4

+ 9 .1T H D

H a rm o n ic s

0 . 1 2 0 .1 4 0 .1 6 0 . 1 8 0 .2 0 .2 2+ 0 .0 0 0 8 3

+ 0 .0 0 0 9 9 2

+ 0 .0 0 1 1 5 4

+ 0 .0 0 1 3 1 6

+ 0 .0 0 1 4 7 8

+ 0 .0 0 1 6 4(M )-5 .h a rm o (M )-7 .h a rm o ( M) -1 1 . h a rm (M )-1 3 .h a rm

Current THD about 8.2% Current THD about 12.5%

25SINTEF Energy Research

Results voltage (LCommutation = 50µH)Oscillation frequency 3183Hz=63rd harmonic

without active filtering with active filtering

Voltage THD 2.83% Voltage THD 2.21%

26SINTEF Energy Research

Diode rectifier with capacitive DC-load

A

B

C

5.0E-005

0.01

65

30.0

Line-line voltage

Rectifier current (discontinuous)

5th current harmonic 89%Current THD 105% (discontinuous current flow)

27SINTEF Energy Research

Waveforms (RC-DC-load)Simulation

Compensation for harmonic currentsLaboratory

Compensation for harmonic currentsCompensation of harmonic currents

Time (sec)

Voltage (R)

0.12 0.1242 0.1284 0.1326 0.1368 0.141-0.2-0.12-0.04

+0.04+0.12

+0.2 VR

Mains current (R)

0.12 0.1242 0.1284 0.1326 0.1368 0.141-0.04-0.024-0.008

+0.008+0.024

+0.04I m ains R

Rectifier current (R)

0.12 0.1242 0.1284 0.1326 0.1368 0.141-0.045-0.027-0.009

+0.009+0.027+0.045 I_rec tifier_R

Converter current (R)

0.12 0.1242 0.1284 0.1326 0.1368 0.141-0.045-0.027-0.009

+0.009+0.027+0.045

I_converter_filtered

Annotations1 line-line voltage (TS)2 mains current (T)3 rectifier current (T)4 converter current (T)

Annotations1 phase voltage (R)2 mains current (R)3 rectifier current (R)4 converter current (R)

28SINTEF Energy Research

Results current (RC-DC-load)Oscillation frequency 883Hz=17th harmonic

Simulation LaboratoryA c t ive f ilt e r ing

T im e ( s e c )

T H D

0 . 1 4 5 0 .1 5 6 2 0 .1 6 7 4 0 . 1 7 8 6 0 .1 8 9 8 0 .2 0 1 + 0

+ 6

+ 1 2

+ 1 8

+ 2 4

+ 3 0T H D

H a rm o n ic s

0 . 1 4 5 0 .1 5 6 2 0 .1 6 7 4 0 . 1 7 8 6 0 .1 8 9 8 0 .2 0 1 + 0

+ 0 .0 0 0 6

+ 0 .0 0 1 2

+ 0 .0 0 1 8

+ 0 .0 0 2 4

+ 0 .0 0 3(M )-5 .h a rm o (M )-7 .h a rm o (M )-1 1 .h a rm (M )-1 3 .h a rm

Current THD about 22% Current THD about 25%

29SINTEF Energy Research

Results voltage (RC-DC-load)Oscillation frequency 883Hz=17th harmonic

without active filtering with active filtering

Voltage THD 5.4% Voltage THD 7.3%

30SINTEF Energy Research

Summary

Current improvementsPossibility of compensation for harmonic currents and reactive powerFilter is able to improve all types of distorted current shapes

Voltage improvementsdepending on the current flow trough the rectifiercontinuous current flow: able to improvediscontinuous current flow: no guaranty for an improvement

31SINTEF Energy Research

Conclusions

The major problems must be improved or solved

Delayed currentFaster AD-converterReplacement of the micro controller

by DSPby Tricore

Current controller with a higher bandwidthReducing the oscillation

Passive damping of the oscillating circuit (added resistor)Active damping by modified control algorithm


Recommended