+ All Categories
Home > Documents > Propagation Delay, Power...

Propagation Delay, Power...

Date post: 29-Aug-2018
Category:
Upload: doandat
View: 223 times
Download: 0 times
Share this document with a friend
22
EE141 – Fall 2005 Lecture 7 Propagation Delay, Propagation Delay, Power Dissipation Power Dissipation EE141 2 Important! Software Lab 3 this week Enrollments increased to 86 Hw-3 due on Thursday 5pm Check it out early (time to ask questions)
Transcript

1

EE141 – Fall 2005Lecture 7

Propagation Delay, Propagation Delay, Power DissipationPower Dissipation

EE141 2

Important!

Software Lab 3 this week

Enrollments increased to 86

Hw-3 due on Thursday 5pm• Check it out early (time to ask questions)

2

EE141 3

Today’s Lecture

Inverter Performance

Power Dissipation

Review:

MOS Capacitances: MOS Capacitances: Dynamic BehaviorDynamic Behavior

3

EE141 5

CGDCGS

CSB CDBCGB

(Miller)

Capacitive Device Model

= CGCS + CGSO = CGCD + CGDO

= CGCB= Cdiff

G

S D

B

= Cdiff

EE141 6

Gate-Channel Capacitance

S D

G

CGC

S D

G

CGCS D

G

CGC

Cut-off Resistive Saturation

Off/Lin Cgate = Cox·W·Leff

Textbook: page 109

CGCB CGCS CGCD

Sat Cgate = (2/3)·Cox·W·Leff ox

oxox t

C ε=

4

EE141 7

Gate Overlap Capacitance

doxO xCC ⋅=

xd xd

L d

Polysilicon gate

Top view

Gate-bulkoverlap

Source

n+

Drain

n+W

xd xd

L d

Polysilicon gate

Top view

Gate-bulkoverlap

Source

n+

Drain

n+W

Off/Lin/Sat CGSO = CGDO = CO·W

tox

n+ n+

Cross section

L

Gate oxidetox

n+ n+

Cross section

L

Gate oxide

EE141 8

Diffusion Capacitance

Bottom

Side wall

Side wallChannel

Source

Channel-stop implant

Substrate

W

NA+

NA

LS

ND

xj

Cdiff = Cbottom + Csw

= Cj · AREA + Cjsw · PERIMETER

Off/Lin/Sat Cdiff = Cj·LS·W + Cjsw·(2LS+W)

5

EE141 9

Capacitive Device Model

Gate-Channel Capacitance• CGC = Cox·W·Leff (Off, Linear)• CGC = (2/3)·Cox·W·Leff (Saturation)

Gate Overlap Capacitance• CGSO = CGDO = CO·W (Always)

Junction/Diffusion Capacitance• Cdiff = Cj·LS·W + Cjsw·(2LS + W) (Always)

Zero-bias Cdiff > CgateMOS On Cdiff ≤ Cgate

EE141 10

FanoutVoutVin

CL

SimplifiedModel

M3

M4

M1

M 2

Cw Cg3Cdb1

Cg4

Vout2

Cdb2

VDDVDD

Vin VoutCgd12

Computing the Capacitances

1

2

3

Miller effect

Reverse biased junction

Off Sat (M4)Lin (M3)

4No Miller effect

6

EE141 11

Computing the Capacitances

Miller effect

(Off Sat*)(Lin*)

* assuming LH transition at Vout

Reverse biased junction1

2

3

Propagation DelayPropagation Delay

7

EE141 13

CMOS Inverter Propagation Delay: Approach 1

V out

Iavg

V DD

V in = V DD

CL

avg

swingLpHL I

VCt

2⋅=

DDn

LpHL Vk

Ct⋅

~

EE141 14

CMOS Inverter Propagation Delay: Approach 2

V out

R n

V DD

V in = V DD

CL

)( LonpHL CRft ⋅=

Lon CR ⋅= 69.0

0.360.5

1

RonCL t

Voutln(0.5)

VDD

8

EE141 15

MOS Transistor as a SwitchTraversed path

ID

VDS

VDDVDD /2

VGS = VDD

Rmid

R0

∫∫ ⋅−

=⋅−

===

2

1

2

1

2

1 )()(1)(1))((

1212

t

t D

DSt

ton

t

ttoneq dttItV

ttdttR

tttRavgR

( ))()(21

21 tRtRR ononeq +⋅≈

VGS ≥ VT

S DRon

EE141 16

The Transistor as a Switch

VGS ≥ VT

S DRon

( ) ( )

⋅+⋅

+⋅+⋅

⋅=21

212

1

DDDSAT

DD

DDDSAT

DDeq VI

VVI

VRλλ

⋅⋅−⋅≈ DD

DSAT

DDeq V

IVR λ

651

43

ID

VDS

VDDVDD /2

VGS = VDD

Rmid

R0

( )021 RRR mideq +⋅=

9

EE141 17

0 0.5 1 1.5 2 2.5

x 10-10

-0.5

0

0.5

1

1.5

2

2.5

3

t (sec)

Vou

t(V)

tp = 0.69 CL·(Reqn+Reqp)/2?

tpHL

tpLH

Transient Response

EE141 18

Design for Performance

Keep capacitances small

Increase transistor sizes• watch out for self-loading!

Increase VDD (?)

10

EE141 19

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.41

1.5

2

2.5

3

3.5

4

4.5

5

5.5

VDD

(V)

t p(nor

mal

ized

)

Delay as a function of VDD

)2(')(52.0

4369.0

DSATnTnDDDSATnnn

DDL

DSATn

DDLpHL VVVVkLW

VCI

VCt−−⋅⋅⋅

⋅=

⋅=

Req

EE141 20

2 4 6 8 10 12 142

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8x 10

-11

S

t p(sec

)

Device Sizing

(fixed load)

Self-loading effect:Intrinsic capacitancesdominate

11

EE141 21

1 1.5 2 2.5 3 3.5 4 4.5 53

3.5

4

4.5

5x 10

-11

β

t p(sec

)

NMOS/PMOS Ratio

tpLH tpHL

tp β = Wp/Wn

EE141 22

t pH

L(ns

ec)

0.35

0.3

0.25

0.2

0.15

trise (nsec)10.80.60.40.20

Impact of Rise Time on Delay

tp = tstep(i) + η·tstep(i-1)

12

Power DissipationPower Dissipation

EE141 24

Where Does Power Go in CMOS?

Dynamic Power Consumption• Charging and discharging capacitors

Short Circuit Currents• Short-circuit path between supply rails

during switching

Leakage• Leaking diodes and transistors

13

EE141 25

#1: Dynamic Power Dissipation

Vin Vout

CL

Vdd

Not a function of transistor sizes!Need to reduce CL, Vdd, and f to reduce power

Energy/transition = CL·Vdd2

Power = Energy/transition·f = f·CL·Vdd2

EE141 26

Modification for Circuits with Reduced Swing

Can exploit reduced swing for lower power(e.g., reduced bit-line swing in memory)

E0→1 = CL·Vdd·(Vdd – Vt)

CL

Vdd

Vdd – Vt

Vdd

14

EE141 27

Adiabatic Charging

i(t) R C

C

Consider

Charging a capacitor

∫ ⋅⋅=⋅=T

avgC TIC

dtiC

V0

11

2

21

ddVC ⋅

TVCI C

avg⋅

=

2

0

2

0

22 )( C

T

avg

T

avgdis VCT

CRTIRdtIRdttiRE ⋅⋅⋅

=⋅⋅=⋅≥⋅= ∫ ∫

EE141 28

Adiabatic Charging

CC

CI Vdt

dVCRVIRV +⋅=+⋅=

VI = constExponential current

2

21

CR VCE ⋅= 2CR VC

TRCE ⋅=

I = IavgLinear ramp on VI

minimal energywins if T > 2RC

t

I

t

It

V

t

V

15

EE141 29

Node Transition Activity and Power

Consider switching a CMOS gate for N clock cycles

EN = CL·Vdd2·n(N)

EN: the energy consumed for N clock cyclesn(N): the number of 0→1 transitions in N clock cycles

clkddLNclkN

Navg fVCNNnf

NEP ⋅⋅⋅

=⋅=

∞→∞→

2)(limlim

NNn

N

)(lim10 ∞→→ =α

Pavg = α0→1·CL·Vdd2·fclk

EE141 30

#2: Short-Circuit Currents

Vin Vout

C L

Vdd

0.15

0.10

0.05

5.04.03.02.01.00.0

I VD

D(m

A)

Vin (V)

16

EE141 31

Short circuit current goes to zero if tfall >> trise,but can’t do this for cascade logic, so ...

How To Keep Short-Circuit Currents Down?

EE141 32

0 1 2 3 4 50

1

2

3

4

5

6

7

8

Vdd =1.5

Vdd =2.5

Vdd =3.3

Minimizing Short-Circuit Power

Keep the input and output rise/fall times the same (<10% of total consumption)

If Vdd < VTn + |VTp| then short-circuit power can be eliminated!From: Veendrick, IEEE Journal of Solid-State Circuits, Aug’84

tsin / tsout

P nor

m

17

EE141 33

Vout

Vdd

Sub-ThresholdCurrent

Drain JunctionLeakage

Sub-threshold current is one of the most compelling issuesin low-energy circuit design!

#3: Leakage

EE141 34

Np+ p+

Reverse Leakage Current

+

-Vdd

GATE

IDL = JS × A

JS = 10-100 pA/µm2 at 25 deg C for 0.25µm CMOSJS doubles for every 9 deg C!

Reverse-Biased Diode Leakage

18

EE141 35

ID versus VGS

0 0.5 1 1.5 2 2.50

1

2

4

5

6x 10-4

Long Channel

Short Channel

quadraticlinear

quadratic

VGS (V)

I D(A

)

3

EE141 36

Sub-Threshold Conduction

Typical values for S:60 – 100 mV/decade

The Slope FactorS is ∆VGS for ID2 /ID1 =10

0 0.5 1 1.5 2 2.510

-12

10-10

10-8

10-6

10-4

10-2

VT

Linear

Exponential

Quadratic

VGS (V)

I D(A

)

qkT

CCn

eII

Tox

D

nV

DT

GS

=+=

φ

φ

,1

0

19

EE141 37

Sub-Threshold Leakage Component

Leakage control is critical for low-voltage operation

EE141 38

VDS from 0 to 0.5V

−=

−kT

qVnkT

qV

D

DSGS

eeII 10

Sub-Threshold ID vs. VGS

ID

VGS

20

EE141 39

Sub-Threshold ID vs. VDS

( )DSkT

qVnkT

qV

D VeeIIDSGS

⋅+

−=

−λ110

VGS from 0 to 0.3V

ID

VDS

Hw3, Prob4n=1.5kT/q = 26mV

EE141 40

Vin=5V

Vout

CL

Vdd

Istat

Wasted energy …Should be avoided in most cases,but could help reducing energy in others (e.g. sense amps)

#4: Static Power Consumption

Pstat = P(in=1)·Vdd·Istat

21

EE141 41

Prime choice: Reduce voltage!• Recent years have seen an acceleration in

supply voltage reduction• Design at very low voltages still open question

(0.6 … 0.9 V by 2010!)

Reduce switching activity

Reduce physical capacitance

Principles for Power Reduction

EE141 42

Threshold Variations

Sub-threshold Conduction

Parasitic Resistances

The Sub-Micron MOS Transistor

22

EE141 43

VT

L

Long-channel threshold

Threshold as a function ofchannel length (for low VDS)

VDS

VT

Threshold Variations

Low VDS threshold

Drain induced barrier lowering (DIBL) (for low L)

EE141 44

Next Lecture

Optimizing for Performance and Power


Recommended