+ All Categories
Home > Documents > PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ......

PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ......

Date post: 21-Nov-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
41
STRATIGRAPHY OF BURGER J (OCS-Y-2321), BLOCK 6912, CHUKCHI SEA FEBRUARY 2016 Jonathan Bujak, Bujak Research Ltd: palynology Paul Connell: micropaleontology Malcolm Jones, Palynological Laboratory Services Ltd: sample processing www.bujakresearch.com PROPRIETARY
Transcript
Page 1: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

STRATIGRAPHY OF BURGER J (OCS-Y-2321), BLOCK 6912,

CHUKCHI SEA

FEBRUARY 2016

Jonathan Bujak, Bujak Research Ltd: palynology

Paul Connell: micropaleontology

Malcolm Jones, Palynological Laboratory Services Ltd: sample processing

www.bujakresearch.com

PROPRIETARY

Page 2: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 1

STRATIGRAPHY OF BURGER J (OCS-Y-2321), BLOCK 6912,

CHUKCHI SEA

TABLE OF CONTENTS

1. INTRODUCTION ........................................................................................................ 3

1.1 Material and methods .......................................................................................... 3

1.2 Biostratigraphic zonation .................................................................................... 4

1.3 Report format ...................................................................................................... 6

2. SUMMARY OF RESULTS ......................................................................................... 7

2.1 Palynological zonation ........................................................................................ 7

2.2 Micropaleontological assemblages ..................................................................... 8

3. BIOSTRATIGRAPHIC RESULTS .......................................................................... 10

3.1 Introduction ....................................................................................................... 10

3.2 Biostratigraphic subdivision ............................................................................. 11

4. LITHOSTRATIGRAPHIC PICKS .......................................................................... 29

5 SAMPLES ANALYSED ............................................................................................ 30

6. REFERENCES AND SELECTED SOURCES ........................................................ 31

7. APPENDIX A .............................................................................................................. 36

Species occurrence charts

PROPRIETARY

Page 3: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 2

FIGURES

Figure 1 Northern Alaskan and Chukchi Sea Jurassic - Cretaceous palynological zones of

Bujak Research International (2003a, b) plotted against the ICS 2012 time scale.

Note the local subdivision of Zone K6 in the Chukchi Sea.

Figure 2 Late Aptian to Cenomanian Arctic zonation showing Albian subzones and their

calibration with North Sea and northwest European stages and ammonite zones.

RANGE CHARTS (APPENDIX A)

Micropaleontological range chart in StrataBugs format: Plot showing lithostratigraphy, age,

palynological zones and micropaleontological assemblages, plus interpreted depositional

environments. Taxa are arranged by highest occurrence (tops) within major groups.

Palynological range chart in StrataBugs format: Plot showing lithostratigraphy, age,

palynological zones and micropaleontological assemblages, plus interpreted depositional

environments. Taxa are arranged by highest occurrence (tops) within major groups.

PROPRIETARY

Page 4: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 3

1. INTRODUCTION

The Burger J well is located on lease OCS-Y-2321, Block 6912, in the Chukchi Sea. It was

drilled on the Burger J prospect by the "Polar Pioneer" semi-submersible drilling rig and spudded

at approximately 71° 10' 24.03"N, 163° 28' 18.522"W on 30th July 2015. Total depth was reached

at 6800 ft in the last week of September 2015 (public information and press releases from Shell

Gulf of Mexico Inc.).

1.1 MATERIAL AND METHODS

Material

This report is based on micropaleontological and palynological analysis of 100 composite

cuttings samples, which were selected by the operator between 1512 ft and 6800 ft (TD).

Analyzed samples are listed in Section 5 of this report.

All depths in the report are based on depths listed on the sample bags. These are assumed to

indicate depth below the drill floor, which was 76 ft above mean sea level (BSEE daily reports,

public version).

In this report, the North American convention of using the top of the marked depth on the sample

bag as the reference point is followed. The "top" event can therefore be no higher in the well than

the top sample depth marked on the bag, but the actual "top" could occur at an intermediate depth

down to the bottom depth marked on the sample bag.

Processing and analysis

Samples were processed for palynology and micropaleontology by Malcolm Jones at

Palynological Laboratory Services Ltd in North Wales.

Micropaleontological fossil picking and analysis were undertaken by Paul Connell. Palynological

analysis was undertaken by Jonathan Bujak. No other biostratigraphic consultants or technical

staff were involved in any aspect of this work.

PROPRIETARY

Page 5: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

70

95

105

90

80

85

66

75

100

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

Figure 1. Northern Alaskan and Chukchi Sea Jurassic - Cretaceous palynological zones of Bujak Research International(2003a, b) plotted against the ICS 2012 time scale. Note the local subdivision of Zone K6 in the Chukchi Sea..

66.0

72.1

83.6

86.3

89.893.9

100.5

113.0

125.0

129.4

132.5

145.0

152.1

157.3

163.5

166.1

168.3170.3

66

174.1

66

182.7

66

190.8

66

201.3

139.8

66

199.3

EA

RLY

JU

RA

SS

IC

Maastrichtian

Campanian

Santonian

Coniacian

Turonian

Cenomanian

Albian

Aptian

Barremian

Hauterivian

Valanginian

Kimmeridigian

Oxfordian

Callovian

BathonianBajocianAalenian

Toarcian

Pliensbachian

Sinemurian

Hettangian

MID

DLE

JUR

AS

SIC

LATE

JUR

AS

SIC

EA

RLY

CR

ETA

CE

OU

SLA

TE C

RE

TAC

EO

US

Tithonian /Volgian s.l.

Berriasian

K15

CHUKCHI SEA

K14

K13K12

K11

K10K9

K8

K7

K6

K5

K4

K3

K2

K1

J9

J8

J7

J6

b

J4

J3

J2

J1

Isabelidinium amphiatum

Heterosphaeridium difficile

Chatangiella coronata

Chatangiella ditissima

Chatangiella verrucosa

Eurydinium glomeratum

Bacchidinium polypes

Gardodinium trabeculosum

Oligospheridium asterigerum

Muderongia asymmetrica

Aptea anaphrissa

Gochteodinia villosa

Gochteodinia judilentinae

Horologinella spinosigibberosa

Densoisporites velatus

Hystrichogonyaulax cladophora

Tubotuberella eisenackii

Ctenidodinium sellwoodii

Nannoceratopsis gracile

Phallocysta eumekes

Comparodinium perpunctatum

Dapcodinium priscum

TIM

E (M

a) AGE

(2012 INTERNATIONALCHRONOSTRATIGRAPHIC

CHART) SE

QU

EN

CE

BR

OO

KIA

NE

LLE

SM

ER

IAN

Cyclonephelium distinctum

Gonyaulacysta jurassica

Rhaetian

a

Teaniaesporites rhaeticus TrL3

J5

ba

cde

ba

bc

a(ii)a(i)

ba

K15

NORTHERN ALASKA

K14

K13K12

K11

K10K9

K8

K7

K6

K5

K4

K3

K2

K1

J9

J8

J7

J6

b

J4

J3

J2

J1

Isabelidinium amphiatum

Heterosphaeridium difficile

Chatangiella coronata

Chatangiella ditissima

Chatangiella verrucosa

Eurydinium glomeratum

Bacchidinium polypes

Gardodinium trabeculosum

Oligospheridium asterigerum

Muderongia asymmetrica

Aptea anaphrissa

Gochteodinia villosa

Gochteodinia judilentinae

Horologinella spinosigibberosa

Densoisporites velatus

Hystrichogonyaulax cladophora

Tubotuberella eisenackii

Ctenidodinium sellwoodii

Nannoceratopsis gracile

Phallocysta eumekes

Comparodinium perpunctatum

Dapcodinium priscum

Cyclonephelium distinctum

Gonyaulacysta jurassica

a

Teaniaesporites rhaeticus TrL3

J5

ba

cde

ba

bc

a(ii)a(i)

ba

b

a

PROPRIETARY

Page 6: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

ARCTIC ZONE *

ARCTIC SUBZONE *

NORTH SEA DINO ZONE **

NORTH SEA MFS AMMONITE ZONE

ABSOLUTE AGE (Ma) (Gradstein et

al. 2012)STAGE

top occurrence Epiplosphaera spinosa 96.7top occurrence Senoniasphaera 'reticulata'

top occurrence Sidridinium borealis

top occurrence Ovoidinium scabrosum 100.5top occurrence Aptea polymorpha

top sporadic Dingodinium cerviculum [A]

top consistent Cyclonephelium brevispinosum

top occurrence Chichaouadinium vestitum [A]

top consistent Senoniasphaera microreticulata [A]

top occurrence Luxadinium propatulum [A]

top occurrence Pseudoceratium / Endoceratium turneri

top common Pterodinium grande ALB16 MFS 103.0top occurrence Litosphaeridium arundum

top occurrence Gonyaulacysta cretacea / helicoidea [A]

top influx Litosphaeridium siphoniphorum

top occurrence Leptodinium modicum [A]

top occurrence Leptodinium? hyalodermopsis [A]

top occurrence Lunatadinium dissolutum [A]

top occurrence Protoellipsodinium spinocristatum

top occurrence Endoscrinium turneri 106.4top occurrence Endoscrinium rostratum [A]

top occurrence Carpodinium granulatum

top occurrence common / consistent Luxadinium primulum [A]

top consistent Oligosphaeridium totum totum [A]

top frequent Cribroperidinium edwardsii

top occurrence Odontochitina singhii

top influx Oligosphaeridium complex

top base Litosphaeridium siphoniphorum

top occurrence Apteodinium granulatum

top occurrence Apteodinium grande

top occurrence Scriniodinium heikei 107.0top occurrence Systematophora cretacea

top occurrence Gardodonium trabeculosum [A]

top occurrence Ellipsoidictyum imperfectum

top occurrence Cauca parva

top occurrence Pseudoceratium expolitum [A] 107.6top occurrence Cyclonephelium brevispinosum 'extremum' [A]

top occurrence Pseudoceratium retusum [A]

top influx Systematophora silyba

top occurrence Microdinium opacum [A] 108.2top occurrence Microdinium setosum

top occurrence Tehamadinium tenuiceras

top occurrence Leptodinium cancellatum [A]

top occurrence Stephodinium spinulosum

top occurrence Impagidinium verrucosum [A] 108.8top occurrence Escharisphaeridia rudis [A]

top occurrence Kleithriasphaeeridium simplicispinosum ALB5 110.8top occurrence Occisucysta tentoria

top occurrence Impagidinium alectrolophum

top influx Ellipsoidictyum imperfectum

top occurrence Kiokansium prolatum 112.0top occurrence Cyclonephelium compactum (extreme ornament)

top influx Cauca parva

top common Kiokansium prolatum

top common Kiokansium polypes

top occurrence Ellipsoidictyum inaffectum subsp. elongataum

base common Surculosphaeridium longifurcatum

top occurrence Occisucysta echinata

top occurrence Dingodinium albertii

top occurrence Aldorfia vectensis

top occurrence Protoellipsodinium clavulum 113.0top occurrence Achomosphaera verdieri

top occurrence Cerbia tabulata

** Arctic zonation (Bujak Research International 2003a, b) * North Sea scheme of Duxbury (2001) renamed with alphanumeric notation

Figure 2. Late Aptian to Cenomanian Arctic zonation showing Albian subzones and theit calibration with North Sea and northwest European stages and ammonite zones.

INFLATUM

ALB12

ALB7

ALB9

DINOCYST BIOEVENT (Note: [1] not all bioevents occur in both the North Sea and Arctic regions; [2] some bioevents show minor diachronism between the two regions;

[A] indicates Arctic range

K8A K8A CEN1

ALB13

ALB11

MFS

EARLY CENOMANIAN

ALB17

DISPAR

LATE ALBIAN

ALB15

ALB10

MANTELLI

LAUTUS

MIDDLE ALBIAN

DENTATUS

K7

MAMILLATUM

K7

ALB14

LATE K7C

LATE K7B

ALB8

LORICATUS

ALB6

LATE APTIANK6 K6C APT18 JACOBI

EARLY ALBIAN

ALB4

TARDEFURCATA

ALB3

ALB2

ALB1

EARLY K7C

LATE K7A

EARLY K7A

LATE K7E

EARLY K7E

LATE K7D

EARLY K7D

EARLY K7BPROPRIETARY

Page 7: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 4

1.2 BIOSTRATIGRAPHIC ZONATION

Mesozoic (Figure 1)

During the Triassic to Maastrichtian, the Arctic Ocean was connected to the Pacific Ocean,

permitting continuous interchange of marine fauna between the two oceans. Relatively low

latitudinal thermal gradients of the greenhouse climate also resulted in warmer Arctic air and sea-

surface temperatures (SST) than those of the present bipolar icehouse climate. Arctic Mesozoic

strata therefore contain abundant populations of dinoflagellates, which were the major

phytoplankton during this time.

The Arctic Ocean was centred on the North Pole throughout most of the Mesozoic, enabling an

Arctic Basin-wide scheme for the Arctic, except for the Oligocene to Recent of the Barents Sea

which was influenced by warmer waters of the Gulf Stream.

The Mesozoic Arctic Ocean was fringed by land inhabited by diverse plant communities, as

indicated by the presence of abundant pollen and spores in many Arctic and circum-Arctic

sediments. The Mesozoic palynological zonal scheme used in this report is therefore based on a

combination of dinoflagellates, pollen and spores, but with marine taxa providing most of the

zonal markers as they are less prone to local facies control and diachronism.

Arctic dinoflagellate assemblages include several distinctive endemic populations, plus more

cosmopolitan taxa that permit correlation into lower latitudes and calibration of the Arctic zones

with absolute time. The zonal scheme used in this report is summarised in Figures 1 and 2, based

on extensive analysis of wells and surface sections by Jonathan Bujak (Bujak Research

International, 2003a, b). Several Mesozoic zones are subdivided into subzones, with Albian

subzones being particularly significant to the present study,

Albian Subzones (Figure 2)

The Albian Gardodinium trabeculosum Zone (K7) is subdivided into five subzones. Most of the

taxa that define the subzones are dinoflagellate cysts that have relatively wide geographic

distribution. The stratigraphic ranges of these species can therefore be compared with those in

northwest Europe (e.g., Duxbury 2001), and there is sufficient similarity to permit correlation

PROPRIETARY

Page 8: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 5

with northwest European Ammonite zones. Some of the Alaskan biomarkers have slightly

different stratigraphic ranges from their North Sea / northwest European distribution and these

are noted in Figure 2.

Foraminifera

Despite the long history of micropaleontological analyses undertaken in Alaska and the adjacent

Beaufort-Mackenzie and Sverdrup basins, no comprehensive microfossil zonation scheme for the

Lower Cretaceous strata has been published.

The early monograph reports of Tappan (1962) and Bergquist (1966) largely neglected the pre-

Albian strata in Alaska and there have been no further detailed publications. Detailed research in

the Yukon and Sverdrup basins by Chamney (1969, 1971, 1978), Fowler and Braun (1993),

Hedinger (1994), Souaya (1976) and Wall (1983) have resulted in well-illustrated monographs

with modern foraminiferal taxonomy.

The large compilation of biostratigraphic data from many Alaskan wells, including all of those in

the Chukchi Sea, by Mickey et al. (2006) utilised a system of F-Zones to subdivide the

micropaleontological succession. Unfortunately the microfossil taxonomy remained unrevised

from the original analytical work in the early 1990's and the defining details of the zones were

never published. Our review of their well data was unable to recognise consistent criteria for the

definition of the F-Zones.

The taxonomy utilised in this report draws on the compilations mentioned above as well as the

available Russian literature (Dain, 1972; Bulynnikova et al., 1990) which deals with the,

frequently rich, microfossiliferous Barremian to Volgian strata of the northern basins of Siberia.

The assemblages, which have been recognised in this well are based on the characteristic

microfossils from each interval, are tabulated in Section 2 of this report. These assemblages

mainly reflect the lithostratigraphy, so that they have limited chronostratigraphic significance.

PROPRIETARY

Page 9: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 6

1.3 REPORT FORMAT

The report is divided into the following six sections and Appendix A.

• Section 1 discussed the examined material and methodology.

• Biostratigraphic results of the study are summarised in Section 2 and include a four-fold

degree of confidence for each zonal assignment that ranges from 1 (highest) to 4 (lowest).

• Section 3 documents the biostratigraphic subdivision of the well in more detail, including lists

of the bioevents used to recognise individual zones and subzones, plus environmental

interpretations.

• Section 4 lists the lithostratigraphic subdivision of the well based on the biostratigraphic

succession. Depths are approximate because well logs were not provided for the study.

• Section 5 tabulates the examined samples and their paleontological analyses.

• Section 6 lists an abbreviated bibliography.

• Micropaleontological and palynological range charts are provided in Appendix A.

PROPRIETARY

Page 10: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 7

2. SUMMARY OF RESULTS: BURGER J (OCS-Y-2321)

2.1 PALYNOLOGICAL ZONATION: BURGER J (OCS-Y-2321)

1512 ft highest examined sample

1512-3480 ft Gardodinium trabeculosum Zone K7 (Albian) [1]

• 1512-1590 ft Subzone K7d (late Albian) [2]

• 1590-1950 ft Subzone K7c (middle Albian) [3]

• 1950-3210 ft Subzone K7b (middle Albian) [3]

• 3210-3480 ft Subzone K7a (early Albian) [3]

3480-5280 ft Oligosphaeridium asterigerum Zone K6 (Aptian) [2]

• 3480-3930 ft Subzone K6b (late Aptian) [2]

• 3930-5280 ft Subzone K6a (late part of the Early Aptian) [4]

-------------- 5280 FT (APPROXIMATE): BROOKIAN UNCONFORMITY----------------

5280-5790 ft Aptea anaphrissa Zone K4 (late Hauterivian to Barremian) [2] with

common reworked K2 (Valanginian) taxa

------- 5790 FT (APPROXIMATE): LOWER CRETACEOUS UNCONFORMITY-------

5790-6570 ft Gochteodinia judilentinae Zone K2 (Valanginian) [2]

6570-6800 ft (TD) Horologinella spinosigibberosa Zone K1 (Berriasian) [3]

PROPRIETARY

Page 11: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 8

2.2 MICROPALEONTOLOGICAL ASSEMBLAGES: BURGER J (OCS-Y-2321)

1512 ft highest examined sample

1512-1590 ft no assemblage recognisable

1590-2130 ft megaspores

2130-3930 ft Haplophragmoides topagorukensis / Gaudryina tailleuri

3930-4980 ft Bathysiphon brosgei

4980-5280 ft radiolaria

-------------- 5280 FT (APPROXIMATE): BROOKIAN UNCONFORMITY----------------

5280-5790 ft Recurvoides ex gr. stschekuriensis / Haplophragmoides concavus

------- 5790 FT (APPROXIMATE): LOWER CRETACEOUS UNCONFORMITY-------

5790-5850 ft no assemblage recognisable

5850-6050 ft Glomospira / Haplophragmoides

6050-6570 ft Cribrostomoides infracretaceous / Labrospira goodenoughensis

6050-6080 ft Recurvoides sub-assemblage

6080-6140 ft Epistomina caracolla anterior sub-assemblage

6140-6290 ft Verneuilinoides neocomiensis sub-assemblage

6290-6570 ft Trochammina / Gaudryina sub-assemblage

6570-6800 ft (TD) Cribrostomoides canui

6630-6800 ft Ostracods / Pseudolamarckina sub-assemblage

PROPRIETARY

Page 12: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 9

NOTES

1. The base of each zonal interval is listed down to the top of the highest sample assigned to the

underlying zone, consistent with other Bujak Research Arctic reports. It is possible that the

horizon occurs in the gap between the examined samples.

2. The degree of confidence is shown in square brackets [1-4] after each zonal assignment:

• Confidence level 1: highest confidence level

• Confidence level 2: medium confidence level

• Confidence level 3: lower confidence level

• Confidence level 4: lowest confidence level

PROPRIETARY

Page 13: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 10

3. BIOSTRATIGRAPHIC RESULTS: BURGER J (OCS-Y-2321)

3.1 INTRODUCTION

1. This section of the report discusses the biostratigraphic succession interpreted from the

palynological and micropaleontological data shown on four range charts in Appendix A.

2. The zonal subdivision of the well is documented below in order of increasing downhole

depth, using the Bujak Research International zonal scheme shown in Figures 1 and 2.

3. The base of each zonal and subzonal interval is listed down to the highest sample assigned to

the underlying zone.

4. A confidence level is assigned to each zone in square brackets from 1 (highest) to 4 (lowest).

Each zonal bioevent listed within each zone or subzone is followed by the type of microfossil

in curved brackets, i.e., Palynomorphs (P): (A) algae, (D) dinocysts, (F) fungi and (S) spores

and pollen. Microfauna: (F) foraminifera, (O) ostracoda, (R) radiolaria (M) miscellaneous

microfossils and minerals.

5. Age-diagnostic species and other significant taxa are listed for each zone and subzone in

order of their highest occurrence observed in the well.

PROPRIETARY

Page 14: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 11

3.2 BIOSTRATIGRAPHIC SUBDIVISION: BURGER J (OCS-Y-2321)

Sea bed to 1512 ft: not examined

1512-3480 ft: Gardodinium trabeculosum Zone K7 (Albian) [1]

1512-1590 ft Subzone K7d (late Albian) [2]

Diagnostic palynomorphs:

1512 ft top Bacchidinium polypes (D) Zone 8 and older

top Vitreisporites pallidus (P) Zone 8 and older

top Apteodinium grande (D) Subzone K7d and older

top Chichaouadinium vestitum (D) Subzone K7e and older

top Chlamydophorella nyei (long horn) (D) Subzone K7d and older

top Endoscrinium turneri (D) Subzone K7e and older

top Leptodinium? hyalodermopsis (D) Subzone K7e and older

top Luxadinium primulum (D) Subzone K7e and older

top Luxadinium propatulum (D) Subzone K7e and older

top Oligosphaeridium totum totum Subzone K7d and older

top Ovoidinium scabrosum (D) Subzone K7e and older

top Protoellipsodinium spinocristatum (D) Subzone K7e and older

top Pseudoceratium turneri (D) Subzone K7e and older

top Senoniasphaera microreticulata (D) Subzone K7e and older

Lithology:

The washed residue from the only sample in this interval consists of fine grade, well sorted, sub-

angular, loose sand and a few lumps of crystalline pyrite.

Palynology:

Palynomorphs in the interval have fair to good preservation with some broken specimens.

Dinocysts comprise 15% of the palynological assemblage, with some probably representing the

PROPRIETARY

Page 15: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 12

cysts of nearshore marine dinoflagellates that were washed into non-marine locations during

storm surges.

Micropaleontology:

No foraminifera were recovered from this sample; the only biogenic material consists of

abundant coal fragments and carbonised woody debris.

Paleoenvironment:

Nonmarine to marginal marine coastal swamp if in situ, but could be deeper, inner neritic if re-

deposited as a debris flow. The presence of dinocysts and miospores may indicate deposition in

salt water creeks within a marginal marine environment.

Stratigraphic comments:

Age and lithology are typical of the Nanushuk Group and probably represent a lowstand deposit,

or a debris flow sourced from the coastal swamps.

1590-1950 ft: Subzone K7c (middle Albian) [3]

Diagnostic palynomorphs:

1590 ft top Cauca parva (D) Subzone K7e and older

top Ellipsoidictyum imperfectum (D) Subzone K7e and older

top Gardodinium trabeculosum (D) Subzone K7e and older

1680 ft top Cyclonephelium brevispinum 'extremum' (very short spines) (D) Subzone K7e

and older

1770 ft top Systematophora cretacea (D) Subzone K7e and older

Lithology:

The washed residue is dominated by fine-grained, sub-angular, well-sorted, loose sand, which

occasionally occurs as well-cemented fragments, and is accompanied by minor amounts of hard,

dark-brown dolomite, and a buff to light-brown sandy mudstone. The sand is generally finer

grained than in the overlying interval.

PROPRIETARY

Page 16: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 13

Palynology:

Palynomorphs in the interval have fair to good preservation with some broken specimens.

Dinocysts comprise 12-15% of the palynological assemblage, with some probably representing

the cysts of nearshore marine dinoflagellates that were washed into non-marine locations during

storm surges.

Micropaleontology:

No foraminifera were recovered from this interval. The only microfossils consist of small, brown

to dark-brown plant megaspores. Compared to the overlying interval there is a noticeable

decrease in the amount of coal and carbonized vegetation fragments.

Paleoenvironment:

Nonmarine to transitional; possibly strand line rather than swamp if the assemblages are in situ,

otherwise inner neritic, or deeper if redeposited as a debrite.

Stratigraphic comments:

Typical of the Nanushuk Group strata and possibly a regressive sequence.

1950-3210 ft: Subzone K7b (middle Albian) [3]

Diagnostic palynomorphs:

1950 ft top Microdinium setosum (D) Subzone K7b and older

top Tehamadinium tenuiceras (D) Subzone K7b and older

2130 ft top Stephodinium spinulosum (D) Subzone K7b and older marker

Diagnostic foraminifera:

2130 ft highest occurrence of foraminifera including Gaudryina tailleuri (F)

2220 ft top Ammodiscus rotalarius (F)

2310 ft top Haplophragmoides topagorukensis (F)

PROPRIETARY

Page 17: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 14

Lithology:

The washed residues consist of a monotonous series of light-brown, variably sandy, and variably

carbonaceous mudstones with common amounts of fine-grained sand which is occasionally seen

as well-cemented fragments. Minor amounts of light-brown dolomite, as seen above, and light-

gray limestone occur infrequently. Light-gray to light-brownish gray mudstone appear below

2670 ft. Minor amounts of oilwell cement were seen at 3030 ft. Crystalline pyrite occurs in every

sample with peak of common amounts at 2490 ft and 2580 ft.

Palynology:

Palynomorphs in the interval have good preservation with some broken specimens. Dinocysts

comprise 9-17% of the palynological assemblage, except in the cuttings sample at 2310-2340 ft

where they only comprise 3% of the assemblage. Some of the dinocysts may represent the cysts

of nearshore marine dinoflagellates that were washed into non-marine locations during storm

surges.

Micropaleontology:

Low numbers of light-brown, thin-walled, agglutinated foraminifera occur in most samples below

2130 ft. The most commonly occurring species are Haplophragmoides chapmani and

Haplophragmoides topagorukensis, which are the only foraminifera below 2580 ft. Maximum

numbers and diversity occur at 2400 ft which also marks the deepest occurrence of G. tailleuri,

Saccammina spp. and the highest occurrence of frequent H. topagorukensis. A single specimen of

a very small, calcareous benthonic foraminifer, Gavelinella spp. occurs at 2490 ft. With the

exception of Saccammina, all the genera in this interval are considered to be mobile epi-lithic,

possibly epi-phytal, browsers.

Fragments of coal occur in almost every sample and fluctuate from rare to abundant, particularly

at 2670 ft where there are common amounts of carbonised vegetation.

Paleoenvironment:

The top of the interval was possibly deposited in nonmarine to transitional environments if the

assemblages are in situ, but shallow marine, inner shelf conditions are suggested by the relative

abundant and diverse foraminifera between 2130 ft and 2490 ft. Below 2580 ft, the restricted

PROPRIETARY

Page 18: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 15

Haplophragmoides biofacies suggests nearshore, transitional environments with brackish

influence. Environmental conditions were probably strongly influenced by rapid short-term

variations in salinity and current velocity in shifting channels within a marsh to nearshore setting.

Ubiquitous pyrite suggests reducing conditions below the sediment-water interface.

Stratigraphic comments:

The interval probably represents an initial transgressive sequence reaching a local maximum

flooding event at about 2490 ft and thereafter a regressive sequence until the disappearance of

marine influences above 2130 ft which marks the onset of a lowstand sequence.

3210-3480 ft: Subzone K7a (early Albian) [3]

Diagnostic palynomorphs:

3210 ft top Impagidinium alectrolophum (D) Subzone K7a and older

top Kleithriasphaeridium simplicispinosum (D) Subzone K7a and older

top Occisucysta tentoria (D) Subzone K7a and older

3315 ft top Occisucysta echinata (D) Subzone K7a and older

Diagnostic foraminifera:

3315 ft deepest occurrence of rare Haplophragmoides chapmani (F)

Lithology:

The three samples in this interval are composed of variably brown-colored, sandy mudstone that

occasionally grades to clean, fine-grained sandstone. Rare fragments of cemented, well-sorted

sandstone and light-brown, firm limestone also occur. Pyrite is rare and fragments of oilwell

cement are rare to frequent at 3315 ft and 3390 ft.

Palynology:

Palynomorphs in the interval have good to good preservation with some broken specimens.

Dinocysts comprise 18-19% of the palynological assemblage, with some possibly representing

PROPRIETARY

Page 19: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 16

the cysts of marine dinoflagellates that were washed into non-marine locations during storm

surges.

Micropaleontology:

Low numbers of small agglutinated foraminifera occur in all three samples. H. topagorukensis is

the most common, particularly at 3315 ft, plus rarer H. chapmani and single occurrences of

Saccammina and Ammodiscus rotalarius. Plant megaspores are absent, but carbonised, woody

vegetation is abundant at 3315 ft and 3390 ft.

Paleoenvironment:

Probably nearshore, shifting channels in a marsh, with marine, inner neritic influences.

Stratigraphic comments:

The local foraminiferal maximum at 3315 ft may represent the most marine influence within this

shallow water facies. It was not possible to recognise the subtle boundary between the more

marine Torok Formation and the overlying, less marine Nanushuk Group in this well. Either the

influx of carbonised vegetation at 3390 ft or the uphole consistent occurrence of megaspores

above 3030 ft in the overlying interval are possible candidates, and the boundary is picked at the

early-middle Albian horizon between palynomorph zones K7a and K7b.

3480-5280 ft: Oligosphaeridium asterigerum Zone K6 (Aptian) [2]

3480-3930 ft: Subzone K6b (late Aptian) [2]

Diagnostic palynomorphs:

3480 ft top Cerbia tabulata (D) Zone K6 and older marker

top Oligosphaeridium asterigerum (D) Zone K6 and older marker

3660 ft top Achomosphaera verdieri (D) Zone K6 and older marker

top Protoellipsodinium clavulum (D) Zone K6 and older marker

PROPRIETARY

Page 20: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 17

Lithology:

This interval is composed of brown sandy mudstone which grades into muddy sandstone with

variable amounts of carbonaceous debris, as in the overlying intervals. The appearance of very

fine flakes of white mica is the only difference. Frequent to common amounts of pyrite are only

present in the top two samples at 3480 ft and 3570 ft.

Palynology:

Palynomorphs in the interval have good to excellent preservation, with dinocysts comprising 18-

24% of the palynological assemblage. Miospores comprise both water and wind-borne pollen and

spores that were transported to the depositional site.

Micropaleontology:

Rare and single specimens of H. topagorukensis occur in decreasing numbers downhole.

Carbonised vegetation is frequent to common in the top three samples, but very rare in the

deepest two samples at 3750 ft and 3840 ft. The deepest sample, at 3840 ft, is almost barren and

only one indeterminate agglutinated foraminifer plus a few megaspores were recovered.

Fragments of coal are frequent to common in all samples.

Paleoenvironment:

The upper part of the interval may have been deposited in an inner neritic environment; the lower

part was probably deposited in a nearshore, transitional environment.

Stratigraphic comments:

The uphole biofacies development suggests a transgressive sequence that culminates with the

local microfaunal maximum at 3315 ft in the overlying interval. The base of the interval is

probably coincident with a sequence boundary which overlies a deeper marine biofacies of the

underlying interval.

PROPRIETARY

Page 21: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 18

3930-5280 ft: Subzone K6a (late part of the Early Aptian) [4]

Diagnostic palynomorphs:

3930 ft top Oligosphaeridium asterigerum abundance (D) Subzone K6a and older marker

Diagnostic foraminifera:

3930 ft top Bathysiphon brosgei and Hippocrepina barksdalei (F)

4290 ft top rare occurrences of Conorboides umiatensis (F)

4980 ft top Parvicingula spp. (R)

top common to abundant loose, quartz pebbles (M)

top pyrite 'sticks' (M)

5010 ft top Verneuilinoides borealis (F) and top 'round browns' (M)

5220 ft base consistent occurrences of Pseudodictyomitra spp. (R),

isolated occurrence of Hedbergella aptiana (F)

5250 ft re-appearance of Gaudryina tailleuri (F),

base Haplophragmoides topagorukensis (F)

Lithology:

This interval can be divided into two sections based on the lithology and biofacies.

The upper section down to 4200 ft is much sandier than the overlying interval and the washed

residues are dominated by fragments of moderately well-cemented, fine-grained, subangular,

quartzose sand. Below 4290 ft, a medium to dark gray, micromicaceous mudstone occurs in

addition to the medium brownish gray, sandy mudstone. Pyrite is frequent to abundant down to

4380 ft, but is almost absent from 4470 ft to 4920 ft. In the same section, the mudstones are

richly carbonaceous and abundant coal fragments occur from 4560 ft to 4740 ft.

The lower section from 4980 ft downwards consists of brown, silty, carbonaceous, mudstone

accompanied by poorly sorted and occasionally well-cemented, sandstone. The grain size ranges

from very fine to coarse with scattered very coarse, well-rounded, subspherical quartz grains. In

the washed residue there are common to abundant well-polished quartz grains larger than 500

microns. At the same depth, pyrite reappears in abundance and remains abundant throughout the

remainder of the section. Crystalline lumps, plus small, finely crystalline spheres and discoids

PROPRIETARY

Page 22: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 19

occur with frequent cylindrical pyrite 'sticks'. This lower section is also characterized by the

occurrence of a minor component of hard, light-gray to dark grayish brown, non-calcareous

fragments which are possibly tuffaceous. Some of the larger mudstone fragments below 5190 ft

seem to be veined with a white, non-calcareous mineral.

Palynology:

Palynomorphs in the interval have good to excellent preservation, with dinocysts mostly

comprising more than 20% of the palynological assemblage, and reaching a peak of 32% between

4020-4140 ft, and a minimum of 16% in the cuttings samples at 44709-4500 ft and 5100-5130 ft.

Miospores comprise both water and wind-borne pollen and spores that were transported to the

marine depositional site.

Micropaleontology:

The upper section from 3930 ft to 4920 ft is sparsely fossiliferous and the agglutinated

foraminifera are mainly H. topagorukensis, B. brosgei and H. barksdalei.

The following additional events also occur:

4020 ft isolated occurrence of Pseudodictyomitra spp. (R) and shelly debris (M)

4560 ft local base B. brosgei

4650 ft local base H. topagorukensis

The samples from 4740 ft to 4920 ft, which contain common to abundant coal fragments and

carbonaceous debris, are devoid of foraminifera and only yielded a single megaspore.

The section below 4980 ft is marked by the reappearance of H. topagorukensis and B. brosgei,

but very few agglutinated foraminifera occur between 5040 ft and 5190 ft. The section is further

characterized by the occurrence of the pyritized nassellarian radiolaria Parvicingula,

Pseudodictyomitra, Archaeodictyomitra and Xitus. These genera were probably assigned to

Lithocampe in older Chukchi well reports. It is possible that the small, finely crystalline spheres

and discoids are pseudomorphs after radiolaria, but the lack of any surface ornament precludes a

confident assignment. The other characteristic microfossil which occurs throughout this section is

PROPRIETARY

Page 23: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 20

the small, smooth sphere, which may be the algal cyst reported as 'round browns' in modern

oceanographic reports.

The most interesting event in this section is the recovery of a few pyritized planktonic

foraminifera at 5220 ft which are assigned to Hedbergella aptiana. This species characterized the

early Aptian in northern Europe and southern Russia. As far as can be ascertained, there are no

previous reports of planktonic foraminifera from the Early Cretaceous of the Arctic region.

A few specimens of H. topagorukensis and a few calcareous benthonic foraminifera reappear in

the samples from 5190 ft to 5280 ft.

Paleoenvironment:

Within the section 3830 ft to 4650 ft, the presence of Bathysiphon and Hippocrepina reflect

marine, outer neritic water depths, with suboxic conditions below the sea bed being indicated by

the presence of abundant pyrite. The reappearance of abundant coal fragments in the lower half

of the section, below 4560 ft, may reflect a return to nearshore conditions, but the event probably

represents a substantial debrite flow sourced from the coastline.

Within the section from 4980 ft to 5280 ft deeper, outer neritic to upper bathyal water depths are

indicated by the agglutinated foraminifera and the presence of bathypelagic, nassellarian

radiolaria. Fluctuations in lithology and biofacies are consistent with debris flows and frequent

scouring of the substrate.

Stratigraphic comments:

The marked discontinuity between 4950 ft and 4980 ft may reflect a sequence boundary within

the Torok Formation or a tectonic slide plane.

There is no palynological evidence for the early Aptian Muderongia asymmetrica Zone K5,

indicating that the lower boundary of this interval represents a significant unconformity at the

base of the Brookian sequence.

The presence of abundant, coarse, well-rounded quartz grains could suggest the 'Pebble Shale' but

large, cemented, rock fragments indicate that they are associated with influxes of poorly sorted

sand.

PROPRIETARY

Page 24: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 21

5280-5790 ft: Aptea anaphrissa Zone K4 (late Hauterivian to Barremian) [2]

Diagnostic palynomorphs:

5280 ft top Aptea anaphrissa (D) Zone K4 and older marker

top Muderongia asymmetrica (D) Zone K4 and older marker

top Muderongia tetracantha (D) Zone K5 and older marker

top Subtilisphaera perlucida (D) Zone K5 and older marker

5310 ft top Kleithriasphaeridium fasciatum (D) Zone K4 and older marker

Diagnostic foraminifera:

5280 ft top Haplophragmoides concavus (F),

top Recurvoides ex gr. stschekuriensis sensu Fowler & Braun 1993 (F),

top Recurvoides ex gr. canningensis (F)

5310 ft top Lagena hauteriviana hauteriviana (F)

5426 ft top Labrospira goodenoughensis (F)

5610 ft top Lenticulina saxocretacea (F)

Lithology:

The interval is characterized by the occurrence of dark-gray to almost black, laminated, non-

calcareous and occasionally micromicaceous, mudstone. Larger fragments contain isolated,

coarse, well-rounded quartz grains that sometimes do not have high sphericity. Mudstone and

sandy conglomeratic lithofacies occur locally. The shallowest five samples also contain

fragments of highly calcareous, reddish brown mudstone that is shot through with white

anastomosing veins. Lighter gray, carbonaceous and micromicaceous sandy mudstones, which

grade to poorly sorted argillaceous sandstones, are present in variable proportions in all samples.

Pyrite is ubiquitous and occurs as crystalline lumps, small spheres, small discoids and 'sticks'.

Framboidal pyrite lumps are mostly rare, but a slight increase was noted in the deepest three

samples. Dark-green, oviform pellets/peloids are common in the deepest sample at 5780 ft.

Palynology:

Palynomorphs in the interval have good to excellent preservation, with dinocysts comprising 52-

72% of the palynological assemblage, except in the cuttings sample at 5280-5310 ft where they

PROPRIETARY

Page 25: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 22

comprise 43% of the assemblage. Miospores comprise both water and wind-borne pollen and

spores that were transported to the marine depositional site. Common specimens of

palynomorphs that characterize palynomorph Zone K2 (Valanginian) are interpreted to be

reworked in this interval.

Micropaleontology:

The rich and diverse foraminiferal assemblages are dominated by dark-brown, fine-grained

agglutinated foraminifera, particularly species of Recurvoides, with diverse but individually

sparse, calcareous benthonic foraminifera. A few nassellarian radiolaria also occur, plus two

occurrences of possible planktonic foraminifera, a single specimen of Hedbergella aptiana at

5310 ft, and a specimen tentatively assigned to Hedbergella tushepsensis at 5580 ft. Megaspores

and 'round browns' occur throughout.

Allowing for taxonomic revisions, the entire assemblage is comparable with those in adjacent

wells and published studies in Alaska and Arctic Canada (Wall, 1983; Fowler & Braun, 1993;

Mickey et al.,2006). The highest occurrence of Lagena hauteriviana hauteriviana may indicate

an age no younger than Middle Barremian. There is no available publication of a well-calibrated

microfauna that would allow recognition of Hauterivian strata in this well.

The most common, age-diagnostic and correlative agglutinated foraminiferal species are listed

above. Other frequently occurring taxa include Gaudryina tailleuri, Haplophragmoides

lobatoloculare, and undifferentiated specimens of Recurvoides. Very few of the species are

considered to be adapted to filter feeding, and most are mobile, epilithic morphotypes. Many of

the specimens of agglutinated foraminifera are either nearly opaque, deformed or broken, which

often precludes their confident identification, and such specimens are recorded as 'indet

frag/crushed agglut forams' on the range charts.

Approximately 20 species of calcareous benthonic foraminifera were recognised, although many

occur in only a few samples. The scattered occurrences of taxa that occur regularly in the

underlying Valanginian mudstones suggests that many of the calcareous benthonic foraminifera

are reworked in this interval. A distinct, and possibly in situ, sub-assemblage occurs below 5610

PROPRIETARY

Page 26: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 23

ft which comprises Lenticulina saxocretacea, Lenticulina macrodisca, Lenticulina muensteri and

Conorboides walli.

Paleoenvironment:

Marine, bathyal water depths with near normal conditions of salinity and dysoxic to oxic

conditions at the sea bed. Some of the fragments of dark gray mudstone have the appearance of a

diamicton. The sandy beds are probably basin-floor, turbidite fan deposits. The pellets/peloids

recovered from the deepest sample may indicate a starved horizon.

Stratigraphic comments:

The underlying interval at 5790 ft is dated as Valanginian, indicating the presence of a significant

stratigraphic break at the base of this interval which marks the base of the 'Brookian Sequence',

also known as the Lower Cretaceous Unconformity. The interval is a highstand deposit with little

sequential change to indicate variation in depositional regime.

5790-6570 ft: Gochteodinia judilentinae Zone K2 (Valanginian) [2]

Diagnostic palynomorphs:

5790 ft top Batioladinium micropodum (D) Zone K2 and older marker

top Gochteodinia villosa (D) Zone K3 and older marker

top Muderongia cf. M. simplex sensu Brideaux & McIntyre 1980 (D) Zone K2 and

older marker

top Nelchinopsis kostromiensis (D) Zone K2 and older marker

top Oligosphaeridium sp. GE of Brideaux & McIntyre 1980 (D) Zone K2 and

older marker

top Oligosphaeridium vasiforme (D) Zone K2 and older marker

top Paragonyaulacysta borealis (D) Zone K2 and older marker

top Stiphrosphaeridium dictyophorum (D) Zone K2 and older marker

top Tubotuberella uncinata (D) Zone K2 and older marker

5820 ft top Cymososphaeridium validum (D) Zone K2 and older marker

top Egmontodinium expiratum (D) Zone K2 and older marker

PROPRIETARY

Page 27: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 24

5850 ft top Gochteodinia judilentinae (D) Zone K2 and older marker

5880 ft top Oligosphaeridium diluculum (D) Zone K2 and older marker

5910 ft top Apteodinium spongiosum (D) Zone K2 and older marker

5990 ft top Parvocavatus spinosum (D) Zone K2 and older marker

Diagnostic foraminifera:

5850 ft top Cribrostomoides infracretaceous (F)

6050 ft top Saracenaria valanginiana (F),

top common Labrospira goodenoughensis (F)

6080 ft top Epistomina caracolla anterior (F)

6110 ft top Uvigerinammina sp.1 of Wall 1983 (F),

top common to abundant Cribrostomoides infracretaceous (F)

Lithology:

This interval can be subdivided into four sections: an upper mudstone; an upper sandstone; a

middle mudstone; and a lower sandstone.

The upper mudstone occurs in the top two samples and consists of grey to brown, occasionally

micromicaceous, variably sandy, mudstone together with dark gray, mudstone with coarse sand

grains.

The upper sandstone which is picked in the cuttings samples from 5850 ft to 6050 ft is gray to

white, quartzose, medium to fine-grained, occasionally with coarse 'floating' grains, well-sorted,

hard, occasionally loose, and with a white argillaceous matrix. Crystalline pyrite is common to

abundant throughout and pyrite 'sticks' are relatively rare. This section is attributed to the 'Burger

Sandstone' (Craig & Sherwood, 2004; Sherwood, 2012).

The underlying section, from 6050 ft to 6410 ft, is composed of light-grayish brown to brown,

silty, occasionally pyritic mudstone, grading to fine-grained, argillaceous sandstone which is

composed of varicoloured grains. The mudstone becomes noticeably less sandy below 6290 ft.

Pyrite 'sticks' and crystalline pyrite become abundant below 6290 ft and are accompanied by

small pyrite spheres.

PROPRIETARY

Page 28: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 25

The lower sandstone is picked from 6410 ft to the base of the interval at 6560 ft. Compared to the

upper sandstone it is much more argillaceous and micromicaceous. Fragments of a relatively

clean sandstone occur at 6440 ft and 6470 ft.

Palynology:

Palynomorphs in the interval have good to excellent preservation. Dinocysts comprise 52-77% of

the palynological assemblage in the upper part of the interval from 5790-6500 ft, decreasing in

the lower part to 47-49% from 6500-6570 ft. Miospores comprise both water and wind-borne

pollen and spores that were transported to the marine depositional site. Reworked Late Jurassic

palynomorphs occur sporadically in this interval and mostly represent Kimmeridgian to early

Volgian Zones J7 and J8.

Micropaleontology:

The upper mudstone contains indeterminate fragments of agglutinated foraminifera, a few

Lenticulina muensteri and a specimen of Geinitzinita arctocretacea.

Recovery from the 'Burger Sandstone' was sparse but diverse. The agglutinated foraminifera are

composed of white specimens of Glomospira subarctica, Glomospira variabilis and

Glomospirella arctica. White, coarse-grained and occasionally large Haplophragmoides occur

below 5910 ft. The most characteristic feature is the occurrence of calcareous tubes which are

attributed to Ditrupa.

The microfauna from the middle mudstone is dominated by a rich and diverse assemblage of

agglutinated foraminifera with a diverse and consistently occurring assemblage of calcareous

benthonic foraminifera. Inoceramus debris and shelly fragments occur in every sample below

6140 ft. In addition to the listed diagnostic taxa, Bathysiphon vitta, Glomospira subarctica,

Recurvoides ex gr. canningensis and undifferentiated Recurvoides occur in all samples, together

with regular occurrences of the calcareous benthonic foraminifera Saracenaria pyramidata,

Lenticulina muensteri, Astacolus strombecki and undifferentiated fragments of Dentalina/

Nodosaria. Most of the scattered occurrences of these taxa in the overlying late Hauterivian to

Barremian, 'Pebble Shale Unit' probably represent reworking. In the highly pyritic mudstones

PROPRIETARY

Page 29: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 26

below 6290 ft, the microfauna is dominated by C. infracretaceous and a suite of small finely

agglutinated species of Trochammina, Gaudryina and Haplophragmoides cushmani.

In the lower sandstone section, calcareous benthonic foraminifera are sparse and the agglutinated

foraminifera are reduced in numbers and diversity. Coarse-grained Haplophragmoides, similar to

those seen in the lower part of the 'Burger Sandstone', reappear between 6500 ft and 6500 ft.

Ditrupa tubes are absent.

Paleoenvironment:

The limited microfauna and the worm tubes in the 'Burger Sandstone' are consistent with

relatively shallow marine conditions and inner to middle neritic water depths. For the underlying

thick mudstone, a deep, outer neritic to upper bathyal environment with relatively tranquil

conditions is suggested by the rich and diverse microfaunas, but with strongly dysoxic conditions

within the substrate, particularly for the section below 6290 ft. Deposition of the lower sandstone

probably took place in a similar deep-water environment.

Stratigraphic comments:

The lower sandstone is probably a lowstand fan deposit overlain by a transgressive sequence of

deep marine mudstones which are separated from the overlying 'Burger Sandstone' by a sequence

boundary marking the start of a regressive sequence. This sequence is terminated upwards by a

return to transgressive conditions marked by the mudstone cap. The presence of pellets/peloids at

the upper boundary of the interval suggests prolonged sediment starvation.

6570-6800 ft (TD): Horologinella spinosigibberosa Zone K1 (Berriasian) [3]

Diagnostic palynomorphs:

6570 ft top Paragonyaulacysta capillosa (D) Zone K1 and older marker

top Priodinium alaskense (D) Zone K1 and older marker

6630 ft top Atopodinium prostatum (D) Zone K1 and older marker

top Horologinella spinosigibberosa (D) Zone K1 and older marker

PROPRIETARY

Page 30: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 27

Diagnostic foraminifera:

6570 ft top Cribrostomoides canui (F)

6630 ft top Pseudolamarckina spp. (F)

6660 ft top regular occurrences Schuleridea spp. (O)

6690 ft top Ammobaculites alaskensis (F)

Lithology:

The upper part of the interval is very sandy. In the underlying samples, the mudstones are

dominated by dark gray colors in contrast to the brownish gray colors of the overlying interval.

Pyrite is common and the small 'sticks' occur in floods below 6630 ft.

Palynology:

Palynomorphs in the interval have good to excellent preservation, with dinocysts comprising 46-

53% of the assemblage. Miospores comprise both water and wind-borne pollen and spores that

were transported to the marine depositional site.

Micropaleontology:

The microfaunal change at the top of this interval is marked by the appearance and sustained

occurrence of frequent to common C. canui and the almost complete disappearance of

C. infracretaceous. Only agglutinated foraminifera and Ditrupa tubes occur in the sand-rich

samples at 6570 ft to 6600 ft. From 6300 ft to the base of the well at 6800 ft, the agglutinated

foraminifera are composed of diverse and moderately abundant assemblages dominated by

C. canui, L. goodenoughensis, B. vitta and species of Saccammina and Recurvoides. The only

consistently present calcareous benthonics are L. muensteri, Pseudolamarckina and small

polymorphinids. Other notable events in this interval are the regular occurrences of ostracoda

below 6660 ft and the occurrence of frequent numbers of species of Ammobaculites and small

Gaudryina below 6690 ft.

PROPRIETARY

Page 31: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 28

Paleoenvironment:

Marine, outer neritic to shallow upper bathyal water depths with strongly dysoxic conditions

within the substrate. Some of the ostracoda have eye tubercles which may indicate that deposition

was within the photic zone.

Stratigraphic comments:

If the Ditrupa tubes recovered at the top of the interval are in situ, the interval would appear to be

a regressive sequence. There may be a sequence boundary at the top of this interval, below the

lowstand fan sandstone, at the base of the overlying Valanginian interval.

PROPRIETARY

Page 32: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 29

4. LITHOSTRATIGRAPHIC PICKS: BURGER J (OCS-Y-2321)

The following lithostratigraphic picks are based on ages assigned to the well section in the

present study. Depths are based on the observations of cutting samples and are approximate

because well logs were not provided for the study

1512 FT: LOWER BROOKIAN SEQUENCE (top not seen)

1512 ft: Nanushuk Group

3210 ft: Torok Formation

5280 FT: RIFT SEQUENCE

5280 ft: Pebble Shale Unit

5790 ft: Kuparuk equivalent

6800 ft: Total Depth

PROPRIETARY

Page 33: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 30

5. SAMPLES ANALYSED, BURGER J (OCS-Y-2321)

No. Sample Paleo No Sample Paleo No Sample Paleo interval interval interval 1 1,512-1,530 M P 2 1,590-1,620 M P 3 1,680-1,710 M P 4 1,770-1,800 M P 5 1,860-1,890 M P 6 1,950-1,980 M P 7 2,040-2,070 M P 8 2,130-2,160 M P 9 2,220-2,250 M P 10 2,310-2,340 M P 11 2,400-2,430 M P 12 2,490-2,520 M P 13 2,580-2,610 M P 14 2,670-2,700 M P 15 2,760-2,790 M P 16 2,850-2,880 M P 17 2,940-2,963 M P 18 3,030-3,060 M P 19 3,120-3,150 M P 20 3,210-3,240 M P 21 3,315-3,330 M P 22 3,390-3,420 M P 23 3,480-3,510 M P 24 3,570-3,600 M P 25 3,660-3,690 M P 26 3,750-3,780 M P 27 3,840-3,870 M P 28 3,930-3,960 M P 29 4,020-4,050 M P 30 4,110-4,140 M P 31 4,200-4,230 M P 32 4,290-4,320 M P 33 4,380-4,410 M P 34 4,470-4,500 M P

35 4,560-4,590 M P 36 4,650-4,680 M P 37 4,740-4,770 M P 38 4,830-4,860 M P 39 4,920-4,950 M P 40 4,980-5,010 M P 41 5,010-5,040 M P 42 5,040-5,070 M P 43 5,070-5,100 M P 44 5,100-5,130 M P 45 5,130-5,160 M P 46 5,160-5,190 M P 47 5,190-5,220 M P 48 5,220-5,250 M P 49 5,250-5,280 M P 50 5,280-5,310 M P 51 5,310-5,340 M P 52 5,340-5,370 M P 53 5,370-5,400 M P 54 5,400-5,423 M P 55 5,426-5,460 M P 56 5,460-5,490 M P 57 5,490-5,520 M P 58 5,520-5,550 M P 59 5,550-5,580 M P 60 5,580-5,610 M P 61 5,610-5,640 M P 62 5,640-5,670 M P 63 5,670-5,700 M P 64 5,700-5,730 M P 65 5,750-5,760 M P 66 5,780-5,790 M P 67 5,790-5,820 M P 68 5,820-5,850 M P

69 5,850-5,880 M P 70 5,880-5,910 M P 71 5,910-5,940 M P 72 5,960-5,970 M P 73 5,990-6,000 M P 74 6,020-6,050 M P 75 6,050-6,080 M P 76 6,080-6,110 M P 77 6,110-6,140 M P 78 6,140-6,170 M P 79 6,170-6,200 M P 80 6,200-6,230 M P 81 6,230-6,260 M P 82 6,260-6,290 M P 83 6,290-6,320 M P 84 6,320-6,350 M P 85 6,350-6,380 M P 86 6,380-6,410 M P 87 6,410-6,440 M P 88 6,440-6,460 M P 89 6,470-6,480 M P 90 6,500-6,510 M P 91 6,530-6,540 M P 92 6,560-6,570 M P 93 6,570-6,600 M P 94 6,600-6,630 M P 95 6,630-6,660 M P 96 6,660-6,690 M P 97 6,690-6,720 M P 98 6,720-6,750 M P 99 6,750-6,780 M P 100 6,780-6,800 M P

Paleo analysis M Micropaleontology P Palynology

PROPRIETARY

Page 34: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 31

6. REFERENCES AND SELECTED SOURCES

BANET, S. M. & SCHERR, J. 1992. Correlation of selected exploration wells from the North

Slope and Beaufort Sea, Alaska. MMS OCS Report vol. 91-0076, pp. 101-106.

BARTENSTEIN, H.,1976. Practical applicability of a zonation with benthonic Foraminifera in

the worldwide Lower Cretaceous. Geologie en Mijnbouw, v. 55, p. 83-86.

BARTENSTEIN, H., 1979. Worldwide zonation of the Lower Cretaceous using benthonic

foraminifera. Newsletters on Stratigraphy, v. 7, p. 142-154.

BARTENSTEIN, H. and BRAND, E., 1951. Mikropalaontologische Untersuchungen zur

Stratigraphie des nordwestdeutschen Valendis. Senckenbergische Naturforschende

Gesellschaft, Abhandlungen, v. 485, p. 239-336.

BERGGREN, W.A., KENT, D. V., SWISHER, C.C. & AUBRY, M.P. 1995. A revised Cenozoic

geochronology and chronostratigraphy. In: Berggren, W.A. et al (eds), Geochronology,

time scales and global stratigraphic correlations: a unified temporal framework for an

historical geology. Society of Economic Paleontologists and Mineralogists Special

Publication No. 54, pp. 129-212.

BERQUIST, H., 1966. Micropaleontology of the Mesozoic rocks of Northern Alaska. U. S.

Geological Survey, Professional paper No 302-D, 227 p.

BIRD, K. J. & MOLANAAR, C. M. 1987. Stratigraphy. In: Bird, K. J. and Magoon, L. B. (eds),

Petroleum geology of the northern part of the Arctic National Wildlife Refuge,

northeastern Alaska. United States Geological Survey Bulletin 1778, pp. 37-59.

BUJAK RESEARCH AND SCOTT RESEARCH 1984. Beaufort – Mackenzie Paleontological

Atlas: Volume 1 Palynology. Non-exclusive report, September 1984.

BUJAK RESEARCH INTERNATIONAL 2003a. Mesozoic biostratigraphic zonation, Alaska

North Slope and Canadian Beaufort – Mackenzie area. Non-exclusive report, August

2003.

PROPRIETARY

Page 35: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 32

BUJAK RESEARCH INTERNATIONAL 2003b. Cenozoic biostratigraphic zonation, Alaska

North Slope and Canadian Beaufort – Mackenzie area. Non-exclusive report, August

2003.

BULYNNIKOVA, S. P., KOMISSARENKO, V. K., BELOUSOVA, N. H., BOGOMJAKOVA,

E. D., RYLKOVA, G. E. and TYLKINA, K. E., 1990. Atlas of Mollusca and

Foraminifera of Upper Jurassic and Neocomian Marine Deposits of the Western Siberian

Oil-bearing Area, vol. 2. Foraminifera. Sibirskiy Nauchno-issledovatel'skiy Institut

Geologii, Geofizikii i Mineral'nogo Syrja, (SNIIGGIMS), 359 p. [original in Russian.]

CHAMNEY, T. P., 1969. Barremian Textulariina, Foraminiferida from Lower Cretaceous beds,

Mount Goodenough section, Aklavik Range, District of Mackenzie. Geological Survey of

Canada, Bulletin 185, 41 p.

CHAMNEY, T. P., 1971. New species of Foraminifera, Cretaceous-Jurassic boundary, Arctic

America. Geological Survey of Canada, Bulletin 192, p. 95-109.

CHAMNEY, T. P., 1978: Albian Foraminifera of the Yukon Territory. Geological Survey of

Canada, Bulletin 253, 62 p.

CRAIG, J. D. and SHERWOOD, K. W., 2001. Economic Study of the Burger Gas Discovery,

Chukchi Shelf, Northwest Alaska (revised 2004). U. S. Department of the Interior,

Minerals Management Service. Anchorage, Alaska. Available online at

http://www.mms.gov/alaska/re/reports/rereport.htm.

DAIN, L. G. (ed.), 1972. Foraminifera of the Upper Jurassic deposits of Siberia. All-Union

Petroleum Scientific-Research, Geological-Prospecting Institute, (VNIGRI), Trudy, no.

317. [original in Russian].

DAVIES, E.H.. 1983. The dinoflagellate Opell-Zonation of the Jurassic – Lower Cretaceous

sequence in the Sverdrup Basin, Arctic Canada. Geological Survey of Canada Bulletin

359.

DAVIES, E.H.. 1985. Dinoflagellate cyst occurrences of the Jurassic – Lower Cretaceous

sequence in the Sverdrup Basin, Arctic Canada. Geological Survey of Canada Open

File Report 1153.

PROPRIETARY

Page 36: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 33

DIXON, J. 1982. Jurassic and Lower Cretaceous subsurface stratigraphy of the Mackenzie Delta

–Tuktoyaktuk Peninsula, N.W.T. Geological Survey of Canada Bulletin 349. 52 p.

DIXON.J,.(ed.), 1996. Geological Atlas of the Beaufort-Mackenzie Area. Geological Survey of

Canada, Miscellaneous Report 59.

DUXBURY, S. 2001. A palynological zonation scheme for the Lower Cretaceous - United

Kingdom Sector, Central North Sea. - N. Jb. geol. Palaont. Abh., vol. 219, pp. 95-137;

Stuttgart

FOWLER, S. P., 1985. Lower Cretaceous foraminiferal microfaunas and biostratigraphy of the

Richardson Mountains, Yukon and Northwest Territories. Unpublished PhD thesis,

University of Saskatchewan, Saskatoon, 394 p.

FOWLER, S. P., 1996. Distribution of selected Berriasian to Aptian benthic foraminifers in the

Beaufort-Mackenzie Area, p. 102, fig. 68. in DIXON.J,.(ed.), 1996. Geological Atlas of

the Beaufort-Mackenzie Area. Geological Survey of Canada, Miscellaneous Report 59.

FOWLER, S. P. and BRAUN, W., 1993: Hauterivian to Barremian foraminifera and

biostratigraphy of the Mount Goodenough Formation, Aklavik Range, northwestern

District of Mackenzie. Geological Survey of Canada, Bulletin 443, 88 p., 9 pl.

GRADSTEIN, F.M., AGTERBERG, F.P., OGG, J.G., HARDENBOL, J., VAN VEEN, P.,

THIERRY, J. & HUANG, Z. 1995. A Triassic, Jurassic and Cretaceous time scale. In:

Berggren, W.A. et al (eds), Geochronology, time scales and global stratigraphic

correlations: a unified temporal framework for an historical geology. Society of

Economic Paleontologists and Mineralogists Special Publication No. 54, pp. 95-236.

HEDINGER, A.S., 1979: Late Jurassic Foraminifera from the Aklavik Range, Northwest

Territories. MSc. thesis, University of Alberta, Edmonton, Alberta.

HEDINGER, A. S., 1994. Upper Jurassic (Oxfordian-Volgian) Foraminifera from the Husky

Formation, Aklavik Range, District of Mackenzie, Northwest Territories. Geological

Survey of Canada, Bulletin 439, 173 p., 28 pl.

PROPRIETARY

Page 37: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 34

HEDINGER, A. S., 1996. Distribution of Jurassic Foraminifers in the Beaufort-Mackenzie Area,

p. 100, fig. 67. in DIXON.J,.(ed.), 1996. Geological Atlas of the Beaufort-Mackenzie

Area. Geological Survey of Canada, Miscellaneous Report 59.

KELLER, M. A., and MACQUAKER, J. H .S., 2015. Arctic Alaska’s Lower Cretaceous

(Hauterivian and Barremian) mudstone succession - Linking lithofacies, texture, and

geochemistry to marine processes, in DUMOULIN, J. A., (ed.), Studies by the U.S.

Geological Survey in Alaska, vol. 15: United States Geological Survey Professional

Paper 1814–B, 35 p., http://dx.doi.org/10.3133/pp1814B.

MCNEIL, D. H., 1996. Distribution of Albian to Maastrichtian benthic foraminifers in the

Beaufort-Mackenzie Area, p. 104, fig. 69. in DIXON.J,.(ed.), 1996. Geological Atlas of

the Beaufort-Mackenzie Area. Geological Survey of Canada, Miscellaneous Report 59.

MEYN, H and VESPERMANN, J. 1994. Taxonomische Revision von Foraminiferen der

Unterkreide SE-Niedersachens nach Roemer (1839,1841, 1842), Koch (1851) und Reuss

(1863). Senkenbergiana Lethaea, v. 74, p. 49-272.

MICKEY, M. B. and HAGA, H., 1987. Jurassic-Neocomian Biostratigraphy, North Slope,

Alaska. in TAILLEUR, I. and WEIMER P. (eds.), Alaskan North Slope Geology. Pacific

Section SEPM, Book 50, v. ,1 p. 397-404.

MICKEY, M. B., HAGA, H. and BIRD, K. J., 2006. Micropaleontology of Selected Wells and

Seismic Shot Holes, Northern Alaska. United States Geological Survey, Open-File Report

2006-1055.

MOLENAAR, C. M. 1983. Depositional relations of Cretaceous and Lower Tertiary rocks,

northeastern Alaska. The American Association of Petroleum Geologists Bulletin, vol.

67, pp. 1066-1080.

MOORE,, T. E.., WALLACE, W. K., BIRD, K. J., KARL, S. M., MULL, C. G. & DILLON, J.

T. 1994. Geology of northern Alaska. In: Plafker, G. & Bergn H. C., eds., The Geology

of Alaska: Boulder, Colorado, Geological Society of America, The Geology of North

America, vol. G-1.

PROPRIETARY

Page 38: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 35

SHELL GULF OF MEXICO INC., 2015. Revised Outer Continental Shelf Lease Exploration

Plan Chukchi Sea, Alaska. Burger prospect: Posey Area Blocks 6714, 6762, 6764, 6812,

6912 and 6915. Chukchi Sea Lease Sale 193. (Public Information Version).

SHERWOOD, K. W., 2012. Regional correlations for wells on U.S. Chukchi Shelf and Western

Arctic Alaska, version 06. Bureau of Ocean Energy Management, Alaska OCS Region.

SLITER, W. V., 1981. Albian Foraminifers from the Lower Cretaceous Christopher Formation of

the Canadian Arctic Islands. Geological Survey of Canada, Bulletin, 300, p 41-70, pl. 9-

15.

SOUAYA, F. J., 1976. Foraminifera of Sun-Gulf-Global Linckens Island Well P-46, Arctic

Archipelago, Canada. Micropaleontology, vol. 22, pp. 249-306.

TAPPAN, H., 1955. Foraminifera from the Arctic Slope of Alaska. Part 2, Jurassic Foraminifera.

United States Geological Survey, Professional Paper 236-B.

TAPPAN, H., 1957. New Cretaceous index Foraminifera from northern Alaska; in Studies in

Foraminifera, A.R. Loeblich, Jr. (ed.); United States National Museum, Bulletin 215, p.

201-222.

TAPPAN, H., 1960. Cretaceous biostratigraphy of northern Alaska. Bulletin of the American

Association of Petroleum Geologists, v. 44, no. 3, p. 273 - 297.

TAPPAN, H., 1962. Foraminifera from the Arctic Slope of Alaska. Part 3, Cretaceous

Foraminifera. United States Geological Survey, Professional Paper 236-C, p. 1-209, pl..

29-58.

WALL, J. H., 1983. Jurassic and Cretaceous foraminiferal biostratigraphy in the Eastern

Sverdrup Basin, Canadian Arctic archipelago. Bulletin of Canadian Petroleum Geology,

v. 31, p. 246-281.

PROPRIETARY

Page 39: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Burger J biostratigraphy page 36

APPENDIX A: RANGE CHARTS

Micropaleontological range chart in StrataBugs format

Plot showing lithostratigraphy, age, palynological zonal intervals and micropaleontological

assemblages; taxa arranged by highest occurrence (tops) within major groups

Palynological range chart in StrataBugs format

Plot showing lithostratigraphy, age, palynological zonal intervals and micropaleontological

assemblages; taxa arranged by highest occurrence (tops) within major groups

Palynological and micropaleontological range charts were also supplied digitally in excel format.

PROPRIETARY

Page 40: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Depth

1750'

2000'

2250'

2500'

2750'

3000'

3250'

3500'

3750'

4000'

4250'

4500'

4750'

5000'

5250'

5500'

5750'

6000'

6250'

6500'

6750'TD

Depth

500m

550m

600m

650m

700m

750m

800m

850m

900m

950m

1000m

1050m

1100m

1150m

1200m

1250m

1300m

1350m

1400m

1450m

1500m

1550m

1600m

1650m

1700m

1750m

1800m

1850m

1900m

1950m

2000m

2050mTD

Well Name : BURGER J (OCS-Y-2321)Interval Various Micropaleontological chart

Scale : 1:5000 prepared by Paul Connell for Bujak Research International

Chart date: 16 February 2016 Chukchi Sea

Jonathan Bujak

UK

Ch

ron

ostr

ati

gra

ph

y

late Albian1590

middle Albian

3210

early Albian

3480

late Aptian

3930

late part of theEarly Aptian

5280

Barremian -Hauterivian

5790

Valanginian

6570

6800.0

Berriasian

Ag

e

Lit

ho

str

ati

gra

ph

y

1512

Nanushuk Fm

3210

Torok Fm

5280

Pebble Shale

5790

6800.0

Kuparukequivalent

Fo

rmati

on

Palynological Zone

1512

K7

3480

K6

5280

K4

5790

K2

6570

6800.0

K1

Zo

ne

K7d1590

K7c

1950

K7b

3210

K7a

3480

K6b

3930

5280

K6a

Su

b Z

on

e

Mic

rop

ale

on

tolo

gic

al

assem

bla

ges

no assemblage recognisable

1590

megaspores

2130

Haplophragmoidestopagorukensis /

Gaudryina tailleuri

3930

Bathysiphon brosgei

4980

radiolaria

5280

Recurvoides ex gr.stschekuriensis /

Haplophragmoidesconcavus

no assemblage recognisable5850

Glomospira /Haplophragmoides

6050

Cribrostomoidesinfracretaceous /

Labrospiragoodenoughensis

6570

6800.0

Cribrostomoides canui

Zo

ne

Sam

ple

s

Barr

en

1512

1590

1680

1770

1860

1950

2040

2130

2220

2310

2400

2490

2580

2670

2760

2850

2940

3030

3120

3210

3315

3390

3480

3570

3660

3750

3840

3930

4020

4110

4200

4290

4380

4470

4560

4650

4740

483049204980501050405070510051305160519052205250528053105340537054005426546054905520555055805610564056705700575057805790582058505880591059605990602060506080611061406170620062306260629063206350638064106440647065006530656065706600663066606690672067506780

Absolute abundance (100mm=200 counts)

Gaudry

ina t

aill

euri

Saccam

min

a s

pp.

Am

modis

cus r

ota

lari

us

Glo

mospir

a s

pp.

Haplo

phra

gm

oid

es c

hapm

ani

Haplo

phra

gm

oid

es t

opagoru

kensis

Lituotu

ba s

pp.

indet

frag/c

rushed a

gglu

t fo

ram

s

Bath

ysip

hon b

rosgei

Hip

pocre

pin

a b

ark

sdale

iR

eophax f

uscus

Tro

cham

min

a m

cm

urr

ayensis

Vern

euili

noid

es b

ore

alis

Haplo

phra

gm

oid

es lin

ki

Tro

cham

min

a s

pp.

Am

mobaculit

es s

pp.

Haplo

phra

gm

oid

es c

oncavus

Haplo

phra

gm

oid

es lobato

locula

reR

ecurv

oid

es e

x g

r. c

annin

gensis

Recurv

oid

es e

x g

r. s

tschekuri

ensis

F&

B `

93

Recurv

oid

es s

pp.

Vern

euili

na c

ald

welli

Bath

ysip

hon v

itta

Tro

cham

min

a n

eocom

iana

Labro

spir

a g

oodenoughensis

Are

nobulim

ina m

cneili

Recurv

oid

es e

x g

r. d

isputa

bili

sH

ypera

mm

ina s

pp.

Glo

mospir

ella

arc

tica

Cri

bro

sto

moid

es infr

acre

taceous

Glo

mospir

a s

ubarc

tica

Glo

mospir

a v

ari

abili

sH

aplo

phra

gm

oid

es s

pp.

(coars

e g

rain

ed)

Lagenam

min

a s

pp.

Reophax d

eckeri

Pseudoboliv

ina r

ayi

Recurv

oid

es o

bskie

nsis

Am

mobaculit

es inele

gans

Are

nobulim

ina s

pp.

Lituotu

ba t

ort

uosa

Cri

bro

sto

moid

es c

oncavoid

es

Evolu

tinella

spp.

Uvig

eri

nam

min

a s

p.1

Wall

1983

Gaudry

ina m

illeri

Vern

euili

noid

es n

eocom

iensis

Recurv

oid

es p

aucus inflatu

sR

ecurv

oid

es p

aucus p

aucus

Gaudry

ina p

arv

aT

extu

lari

a s

pp.

Am

mobaculit

es r

etu

sus F

&B

1993

Gaudry

ina s

pp.

Tro

cham

min

a g

yro

idin

iform

isH

aplo

phra

gm

oid

es c

ushm

ani

Tro

cham

min

a r

osaceafo

rmis

Gaudry

inella

spp.

?K

uts

evella

spp.

Haplo

phra

gm

ium

irr

egula

rifo

rmis

Cri

bro

sto

moid

es c

anui

Reophax s

pp.

Am

mobaculit

es a

laskensis

Am

mobaculit

es c

f. r

eophacoid

es

Am

modis

cus o

rbis

Tro

cham

min

a w

alli

Am

mobaculit

es s

pp.

(larg

e f

rag)

1 2

1 2 2 1

1 5

1 2 1 3 7 1

1 1 3 1

2 7

1 1

1

1

2 7

5

2 3

5

1 2 9

1 2

3

5

1

1 1

1

1 1 1 1

5 2

1

1 1 1 1

1

9

2

3 1 11 3 2 1

1 21 2

11

33 3

4 3 15 6 1 7 6 1 1

3 1 1 7 3 5 1 21 1 1

1 1 9 1 1 2 8 24 2 2 21 1 3

1 4 4 1 11 1 1 33 1 6 2 1 1

1 1 12 1 1 1 1

1 1 6 2 4 21

1 3 5 2 2 21

5 1 4111 1 1 2 2 1 51 2 1 6 1

1 11 1 1

1 1 2 81 4 2 2 1 4 7 1 1

4 13 4 13 6 1 3 13 2 1 4 2 3 1 31 9 18 9 3 6 4 1 1 1

2 31 1 1 15 23 1 19 1 13 2 5 3 1 11 48 13 27 2 9 2 1 4 2 1 1 3 11 44 2 19 2 4 2 17 3 1 4 5 29

38 3 11 1 3 6 4 1 2 2 13 58 1 1 20 2 6 14 4 1 2 2 2 2 1

32 4 5 6 1 2 1 11 3 1 1 11 24 1 4 5 5 3 1 14 4 1 2 3 1

52 1 1 20 9 1 6 25 5 2 1 1 3 22 80 1 27 8 13 39 3 1 3 2

47 2 2 38 12 10 25 2 3 3 3 7 12 64 4 4 80 4 16 2 29 6 2 1 3 5 6 22 51 49 6 21 24 7 1 2 1 1

13 1 8 2 3 14 1 12 4 8 3 1 2 2 11 7 1 1 8 2 4 1 1 11 3 1 1 4 1 4 3

10 1 15 1 6 96 28 1 1 14 5 1 1 2 1 7 20 1

4 37 1 28 2 12 1 1 3 1 2 144 37 24 3 13 6 2 8 2 2 2 223 45 5 1 6 23 1 2 1 5 1 20 23 28 1 4 12 7 18 1 4 2 1 1 2 3 14 8 1 1 1

3 2 17 7 8 3 6 2 1 2 2 1 1 2 1 3 14 2 5 2 15 21 1 12 2 16 3 1 2 3 2 3 3 6 1

Foraminifera AgglutinatingAbsolute abundance (100mm=200 counts)

Gavelin

ella

spp.

Denta

lina/N

odosari

a s

pp.

(fra

gs)

Lenticulin

a m

uenste

riC

onorb

oid

es u

mia

tensis

Gavelin

ella

aw

unensis

Sara

cenari

a p

yra

mid

ata

Quadri

morp

hin

a s

p.

sensu F

&B

1993

Lagena h

aute

rivia

na h

aute

rivia

na

Valv

ulin

eri

a c

f. k

asachsta

nic

aN

odosari

a s

ceptr

um

(fr

ag)

indet

frag c

alc

benth

onic

fora

ms

Asta

colu

s s

trom

becki

Tri

stix c

f. a

cuta

ngulu

sC

onorb

oid

es w

alli

Lenticulin

a s

axocre

tacea

Lenticulin

a m

acro

dis

ca

Pseudonodosari

a s

pp.

Pra

ebulim

ina

? g

ravelli

niform

is F

&B

1993

Quin

quelo

culin

a o

pedenta

tapoly

morp

hin

ids u

ndiffe

rentiate

dLin

gulo

nodosari

a n

odosari

aS

ara

cenari

a b

rookeae

Gein

itzin

ita a

rcto

cre

tacea

Pseudonodosari

a c

f. n

etr

ona

Lenticulin

a s

pp.

(fra

gs)

Sara

cenari

a c

f. p

orc

upin

ensis

Sara

cenari

a v

ala

ngin

iana

Epis

tom

ina c

ara

colla

ante

rior

Lenticulin

a im

pre

ssa

Marg

inulin

opsis

jonesi

Nodosari

a s

pp.

Sara

cenari

a s

pp.

Lagena c

f. c

audata

sensu B

&B

1951

Asta

colu

s s

chlo

enbachi

Lagena c

f. s

ulc

ata

Pla

nula

ria s

pp.

Marg

inulin

opsis

pyra

mid

ata

Marg

inulin

opsis

spp.

Pseudola

marc

kin

a s

pp.

Lenticulin

a c

f. g

erk

iM

arg

inulin

opsis

gra

cili

ssim

aO

olin

a s

pp.

1

1

1

1

1 1 1 1

1 3 11 1

11

4

2 1 1

1 11 1 1

1 1 1 13 2 1 1 2 21 1 2 2 1 1 1

21 4 1 1 1 1 2

2 1 2 112

1 11 1

11 1

1 3 2 1 2 2 1 11 4 2 1 2 1 2 1 2 1 13 3 3 2 1 1 1 1 12 2 2 1 1 2 2 1 2 1

3 6 3 1 1 3 1 2 14 1 1 1 21 2 22 1 1

11 1 12 2 1 1 11 2 1

1 3 1 11

11

1 1 1 1 26 2 1 3 1 2 1

1 3 31 4 1 1 2 1

1 2 3 1 2 1 1 12 1 1 1 2 1 3

Foraminifera Calcareous*1

Hedberg

ella

aptiana (

pyri

tised)

Hedberg

ella

cf.

tushepsensis

(pyri

tised)

3

1

1

FOP*1

indet

cru

shed o

rnate

ostr

acod

indet

frag/c

rushed o

str

acod

?H

aplo

cyth

eri

dea s

p.

?P

ara

cypri

s s

p.

?D

olo

cyth

eri

dea s

p.

(sm

all

sm

ooth

)?

Eucyth

eru

ra s

p.

(juvenile

)S

chule

ridea s

p.1

Schule

ridea s

p.2

?Lophocyth

ere

sp.

indet

sm

all

ostr

acod

1

1

1

1

1

1 12 3 1

2 11 1

2

Ostracods*1

Pseudodic

tyom

itra

spp.

Parv

icin

gula

spp.

?O

besacapsula

spp.

Orb

iculif

orm

a s

pp.

Thanarl

a s

pp.

Xitus s

pp.

Arc

haeodic

tyom

itra

spp.

3

22 12 2 1

3 3 1 1 33 1 1 152 2 1 22 3 12

1

1 1

1

31

RadiolariaAbsolute abundance (100mm=200 counts)

shelly

debri

s

alg

al cysts

- r

ound b

row

ns

Inocera

mus d

ebri

s

Ditru

pa t

ube f

ragm

ents

gastr

opod p

roto

conch

indet

spin

es

Echin

oid

spin

es

10

13

1222426

331 10

621

31

1 1

211

12

7 11 2

2 12 1 21

7 238 17 1

4 211 105 6

332 24 43

139 10

28 56 3 26

19 3 720 12

10 2619 12

1018 2

9 3 17 1

Miscellaneous MicrofossilsAbsolute abundance (25mm=200 counts)

coal fr

agm

ents

pyri

te -

cry

sta

lline lum

ps

vegeta

tion/w

ood -

carb

onis

ed

mis

cella

neous m

egaspore

svegeta

tion/w

ood -

pyri

tised

quart

z g

ranule

s -

loose

pyri

te -

sphere

s

pyri

te -

fra

mboid

lum

ps

pyri

te -

sticks

pyri

te -

dis

coid

spelle

ts /

pelo

ids

100 1 10

60 2 21 1

21 5 21 3 1

11 1 6

15 1 5

4 60 3 2

18 4 4 3

2 1 12 1

12 12

3 1 10 4

2 21 1

31 8 2

3 27 26

51 8 24 1 1

4 3 13 2

1 3 7

6 8 18

8 18 1

2 9 6

2 16 2

31 4 51

17 3 92

7 31 6

35 2 47

14 33 1 2

11 1 1

6 1 2

2 8

62 1 10

17 2 1

10 10 1 1

9 5

8 9 1

1 38

58 37 2

71 3 46

72 23

621 10 4 12 78 71 25 1 1

71 39 1 40 8 8100 5 1 37 28 1 7

130 6 10 44 51 7 387 3 6 34 51 13 3

124 1 1 52 40 10 373 2 27 35 1 6

97 3 15 75 54 3 3117 7 58 22 2 1

103 72 32 1 176 36 1 6

66 2 1 9 29 1 41 45 2 2 30 18 3 3

67 3 36 6 1 2 260 1 1 66 5 3 2

45 23 146 3 33 1

41 8 1 38 23 7 12 1 3 35 16 2 10

41 1 61 612 2 2 47 2 4

60 6 1 30 15 5 134 7 14 3 4 1

49 2 1 39 179 139 2 5 40 1 3 636 71 1 5 10

28 9 19 1 26 2137 2 46 5 12 242 1 2 58 4

53 1 60 11 147 1 1 21 1 5 2

22 37 317 1 1 4 23 235 9 8 6 5

25 5 2 1110 10

20 2 18 83 20 1 25 1 30

12 3 6 1723 1 6 20 3

4 14 5 12 12 46 6 16 3

34 9 3 2214 5 1 84

5 33 7 4 16895 2 8 2 110

60 16 11853 8 14 93

6 35 10 5 5 227 9 1 5 1626 7 3 4 14

4 24 23 4 11 1 1 131 19 14 2 3 5 117 17 12 5

19 2 5 2 1250 2 1 1 55

12 3 3 3 5359 1 4 10 75

150 6 2 5 11188 5 4 2 90

44 1 46

Minerals Palaeoenvironment

Alaska

No

n M

ari

ne

Tra

nsit

ion

al

Inn

er

Neri

tic

Mid

dle

Neri

tic

Ou

ter

Neri

tic

Up

per

Bath

yal

Lo

wer

Bath

yal

Sam

ple

s

Barr

en

Sam

ple

depth

is B

AS

E o

f depth

range

1512

1590

1680

1770

1860

1950

2040

2130

2220

2310

2400

2490

2580

2670

2760

2850

2940

3030

3120

3210

3315

3390

3480

3570

3660

3750

3840

3930

4020

4110

4200

4290

4380

4470

4560

4650

4740

4830

4920

4980501050405070510051305160519052205250528053105340537054005426546054905520555055805610564056705700

5750578057905820585058805910

59605990602060506080611061406170620062306260629063206350638064106440647065006530656065706600663066606690672067506780

Alaska

no assemblage recognisable

1590

megaspores

2130

Haplophragmoidestopagorukensis /

Gaudryina tailleuri

3930

Bathysiphon brosgei

4980

radiolaria

5280

Recurvoides ex gr.stschekuriensis /

Haplophragmoidesconcavus

no assemblage recognisable5850

Glomospira /Haplophragmoides

6050

Cribrostomoidesinfracretaceous /

Labrospiragoodenoughensis

6570

6800.0

Cribrostomoides canui

Zo

ne

Lit

ho

str

ati

gra

ph

y

1512

Nanushuk Fm

3210

Torok Fm

5280

Pebble Shale

5790

6800.0

Kuparukequivalent

Fo

rmati

on

Ch

ron

ostr

ati

gra

ph

y

late Albian1590

middle Albian

3210

early Albian

3480

late Aptian

3930

late part of theEarly Aptian

5280

Barremian -Hauterivian

5790

Valanginian

6570

6800.0

Berriasian

Ag

e

Text Keys*1 Absolute abundance (100mm=200 counts)

PROPRIETARY

Page 41: PROPRIETARY Region... · 2017. 10. 30. · 1.3 Report format ..... 6 . 2. SUMMARY OF RESULTS ... K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 J9 J8 J7 J6 b J4 J3 J2 J1 Isabelidinium

Depth

1750'

2000'

2250'

2500'

2750'

3000'

3250'

3500'

3750'

4000'

4250'

4500'

4750'

5000'

5250'

5500'

5750'

6000'

6250'

6500'

6750'TD

Depth

500m

550m

600m

650m

700m

750m

800m

850m

900m

950m

1000m

1050m

1100m

1150m

1200m

1250m

1300m

1350m

1400m

1450m

1500m

1550m

1600m

1650m

1700m

1750m

1800m

1850m

1900m

1950m

2000m

2050mTD

Well Name : BURGER J (OCS-Y-2321)Interval Various Palynological chart

Scale : 1:5000 prepared by Jonathan Bujak for Bujak Research International

Chart date: 17 February 2016 Chukchi Sea

Jonathan Bujak

UK

Ch

ron

ostr

ati

gra

ph

y

late Albian1590

middle Albian

3210

early Albian

3480

late Aptian

3930

late part of theEarly Aptian

5280

Barremian -Hauterivian

5790

Valanginian

6570

6800.0

Berriasian

Ag

e

Lit

ho

str

ati

gra

ph

y

1512

Nanushuk Fm

3210

Torok Fm

5280

Pebble Shale

5790

6800.0

Kuparukequivalent

Fo

rmati

on

Palynological Zone

1512

K7

3480

K6

5280

K4

5790

K2

6570

6800.0

K1

Zo

ne

K7d1590

K7c

1950

K7b

3210

K7a

3480

K6b

3930

5280

K6a

Su

b Z

on

e

Mic

rop

ale

on

tolo

gic

al

assem

bla

ges

no assemblage recognisable

1590

megaspores

2130

Haplophragmoidestopagorukensis /

Gaudryina tailleuri

3930

Bathysiphon brosgei

4980

radiolaria

5280

Recurvoides ex gr.stschekuriensis /

Haplophragmoidesconcavus

no assemblage recognisable5850

Glomospira /Haplophragmoides

6050

Cribrostomoidesinfracretaceous /

Labrospiragoodenoughensis

6570

6800.0

Cribrostomoides canui

Zo

ne

Sam

ple

s

Barr

en

1512

1590

1680

1770

1860

1950

2040

2130

2220

2310

2400

2490

2580

2670

2760

2850

2940

3030

3120

3210

3315

3390

3480

3570

3660

3750

3840

3930

4020

4110

4200

4290

4380

4470

4560

4650

4740

483049204980501050405070510051305160519052205250528053105340537054005426546054905520555055805610564056705700575057805790582058505880591059605990602060506080611061406170620062306260629063206350638064106440647065006530656065706600663066606690672067506780

*1

Cyclo

psie

lla s

pp.

Pedia

str

um

bory

anum

Pte

rosperm

ella

spp.

Very

hachiu

m s

pp.

1

1 1

1

1

1

1

1

1 2 1

1

1

1

1

1

1

111

1 1

1

1

1

1 1

1

AlgaeAbsolute abundance (100mm=200 counts)

Apte

odin

ium

gra

nde

Bacchid

iniu

m p

oly

pes

Cannin

gia

colli

veri

Chic

haouadin

ium

vestitu

mC

hla

mydophore

lla n

yei (l

ong h

orn

)C

leis

tosphaeri

diu

m a

cic

ula

re

Cyclo

nepheliu

m d

istinctu

m

Endoscri

niu

m t

urn

eri

Lepto

din

ium

? h

yalo

derm

opsis

Luxadin

ium

pri

mulu

mLuxadin

ium

pro

patu

lum

Odonto

chitin

a o

perc

ula

ta

Olig

osphaeri

diu

m a

ste

rigeru

m

Olig

osphaeri

diu

m c

om

ple

x

Olig

osphaeri

diu

m t

otu

m t

otu

m

Ovoid

iniu

m s

cabro

sum

Pro

toelli

psodin

ium

spin

ocri

sta

tum

Pseudocera

tium

turn

eri

Pte

rodin

ium

alif

eru

mS

enonia

sphaera

mic

rore

ticula

taA

str

ocysta

cre

tacea

Cauca p

arv

a

Elli

psoid

icty

um

im

perf

ectu

mG

ard

odin

ium

tra

beculo

sum

Cyclo

nepheliu

m b

revis

pin

osum

`extr

em

um

`O

ligosphaeri

diu

m p

rolix

ispin

osum

Syste

mato

phora

cre

tacea

Mic

rodin

ium

seto

sum

Teham

adin

ium

tenuic

era

sS

tephodin

ium

spin

ulo

sum

Impagid

iniu

m a

lectr

olo

phum

Kle

ithri

asphaeri

diu

m s

implic

ispin

um

Occis

ucysta

tento

ria

Occis

ucysta

echin

ata

Cerb

ia t

abula

taA

chom

osphaera

verd

ieri

Pro

toelli

psodin

ium

cla

vulu

mA

pte

a a

naphri

ssa

Cyclo

nepheliu

m d

istinctu

m longis

pin

atu

m

Mudero

ngia

asym

metr

ica

Mudero

ngia

tetr

acanth

aS

ubtilis

phaera

perl

ucid

aK

leithri

asphaeri

diu

m f

ascia

tum

Lunata

din

ium

dis

solu

tum

Syste

mato

phora

cf.

com

plic

ata

Cyclo

nepheliu

m d

istinctu

m b

revis

pin

um

Olig

osphaeri

diu

m t

otu

m m

inor

Tubotu

bere

lla u

ncin

ata

Apro

bolo

cysta

eile

ma

Apte

odin

ium

spongio

sum

Batiola

din

ium

mic

ropodum

Gochte

odin

ia v

illosa

Mudero

ngia

cf.

M.

sim

ple

x s

ensu B

rideaux

& M

cIn

tyre

1980

Mudero

ngia

sim

ple

xN

elc

hin

opsis

kostr

om

iensis

Olig

osphaeri

diu

m d

iluculu

mO

ligosphaeri

diu

m s

p.

GE

McIn

tyre

& B

rideaux 8

0

Olig

osphaeri

diu

m v

asiform

e

Para

gonyaula

cysta

bore

alis

Sir

mio

din

ium

gro

ssii

Stiphro

sphaeri

diu

m d

icty

ophoru

mC

ym

ososphaeri

diu

m v

alid

um

Egm

onto

din

ium

expir

atu

mG

ochte

odin

ium

judile

ntinae

Gonyaula

cysta

dualis

Parv

ocavatu

s s

pin

osum

Gonyaula

cysta

jura

ssic

aR

hynchodin

iopsis

cla

dophora

Sentu

sid

iniu

m p

ilosum

Tubotu

bere

lla e

gem

enii

Para

gonyaula

cysta

capill

osa

Pri

odin

ium

ala

skaense

Tubotu

bere

lla e

isenackii

Ato

podin

ium

pro

sta

tum

Horo

login

ella

spin

osig

ibbero

sa

Senonia

sphaera

jura

ssic

aC

ribro

peri

din

ium

ehre

nberg

ii

2 2 1 2 1 4 1 1 1 1 1 3 2 4 1 1 2 2 2 1

2 1 2 4 1 7 4 5 1 1 1 4 1 1 2

2 3 3 3 1 1 2 3 1 2 2 2 6 1 2 1

1 2 2 6 1 2 1 1 2 1 3 1 2 1 2 1 1

2 4 5 1 3 2 1 1 1 1 1 3 1

1 3 7 2 2 3 1 1 1 1 1 1 1 1 1R

1 5 6 1 1 4 1R 1 1 1

1 1 4 4 1 1 1 6 1 1 4 1 1 1 1 1

1 2 1 6 5 4 1 1 5 1 1 1 2 1 1 1 1 1 2R

2 1 1 5 3 1 1 3 1 4 1 1 1 2 1 3 2 3

1 4 1 3 4 1 1 3 3 2 1 1 1 1 1 2 1 2 1

2 4 5 2 2 2 5 3 1 1 4 2 1 1 1 1R

2 2 1 2 1 8 1 2 1 1 3 1 1 1 1 1 2R

1 3 3 1 1 4 7 1 1 1 2 1 1 1 3 1 3 3

1 1 4 1 1 1 9 1 1 1 1 1 2 2 1 2

1 2 2 2 2 1 1 7 2 2 1 1 1

1 1 3 3 1 5 4 1 1 1 2 2 1 1

1 1 1 6 1 2 1 6 3 2 1 2 1 1 1 1 1 2

1 5 1 8 5 1 2 2 2 1

2 8 1 1 7 4 1 1 5 1 1 1 1 1 1 1 1 1R

1 1 3 7 1 2 4 2 2 1 9 1 2 1

1 1 5 4 1 1 5 3 1 1 8 1 1 1 1 1 1

4 5 3 1 2 11 2 2 2 1R

6 8 5 1 4 14 1 1 1 1

1 1 5 7 4 3 3 1 2 1 10 1 1 1 2 1

1 3 9 5 1 5 2 9 1 1 1 1

4 6 7 2 9 1 6 1 1 2 1

3 8 1 6 12 16 8 2 1 1

1 6 11 9 15 19 7 1 1 1

7 9 8 11 21 3 4 1

1 6 7 5 8 13 1 1 5 1 1 1 1 1R

1 5 8 3 6 8 1 3 1 1

2 7 5 4 8 9 1 6 1 1 1R

1 4 6 6 5 6 5 1

5 4 1 5 6 7 1 3 3 2 1 1 2

1 6 5 4 9 5 7 4 1 2 2 1 1 1 1R

7 3 1 7 8 8 2 1 1 2

4 8 6 7 9 3 1 1 1 1R5 9 3 6 11 1 2

3 12 4 3 14 3 3 14 14 1 4 10 5 1 12 11 2 9 9 4 1 1

3 10 4 8 8 6 1 1 24 9 3 5 3 5 1 12 7 7 6 4 8 1

3 8 9 4 6 5 1 2 15 9 8 5 5 37 7 5 2 6 4 2 1 16 9 8 3 8 5

9 18 9 12 45 1 1 1 1 2 1 1 11 8 21 12 11 42 2 3 2 2 1 1 13 6 23 15 9 49 1 1 4 1 3 1 1 1 1 1R2 7 25 13 7 54 4 3 1 1 1 1 1 1R 1R 1R4 8 23 1 9 8 59 1 1 1 1 1 2 3 13 5 14 7 10 67 1 6 3 2 1 1 2 2 1R 1R 1R 1R4 6 12 8 14 89 4 3 1 1 1 1 1 1 15 1 3 25 6 11 78 1 7 1 2 3 1 1 3 3 1R6 4 22 7 9 75 1 4 2 1 6 2 1 1 1 2 2 1R 1R5 1 9 26 5 13 65 3 3 1 1 5 2 1 4 1R 1R

3 8 35 1 7 9 68 1 6 2 1 8 1 1 3 3 5 1R 1R 1R 1R4 7 45 4 14 63 2 1 4 4 2 7 1 3 4 6 11 1 1R 1R 1R 1R 1R2 9 89 1 3 18 70 3 6 3 1 8 1 1 3 9 9 2 1R

3 6 78 1 4 12 66 2 3 2 9 1 1 13 12 7 1R 1R2 7 74 6 9 63 1 2 1 1 16 1 2 15 14 9 1 1R 1R4 4 56 8 7 56 2 2 1 23 1 19 17 8 1R6 5 55 7 8 51 1 1 3 3 26 1 1 4 21 6 1R 1R5 4 45 5 11 28 8 9 4 12 21 2 2 11 23 7 2 1 1 2 5 3 1 1 2 12 15 3 1 37 7 49 8 9 20 9 14 14 19 9 13 5 3 1 2 4 2 1 11 17 3 2 1 1 1R

5 6 52 7 6 13 13 21 5 17 22 1 1 8 17 6 1 2 3 1 5 1 8 21 1 1 1 2 1 1 1R 1R9 8 55 4 7 9 15 25 6 13 25 1 2 4 20 4 2 2 3 1 1 2 9 25 2 1 3 1 1 1 1R8 4 47 5 2 6 7 23 4 1 28 1 3 5 23 5 4 3 1 4 1 8 29 3 1 1 3 17 5 43 3 4 7 8 20 5 9 20 2 3 15 3 1 2 1 2 6 3 9 23 1 1 1 19 6 48 4 3 8 4 17 3 8 16 4 4 11 4 1 3 3 3 1 6 21 3 2 18 4 52 7 3 5 5 13 4 4 21 1 3 1 16 1 2 2 1 4 1 7 12 1 1 1 1 1 1R 1R

4 5 56 6 5 6 3 14 2 5 25 1 2 20 2 1 5 1 1 2 1 8 13 2 15 9 52 8 4 3 1 1 3 3 29 2 24 3 2 1 1 1 4 5 11 1 1 1 1 1R7 8 49 7 2 5 2 9 1 4 25 1 1 20 4 1 1 1 1 1 6 9 2 1 1 1 1R6 7 54 4 3 4 1 8 2 2 22 2 17 2 1 5

3 9 45 6 5 7 3 6 3 5 27 4 1 22 1 1 6 14 11 42 9 4 6 1 7 1 4 18 6 13 1 4 22 14 38 4 1 7 4 1 6 15 5 1 10 1 1 5 3

3 12 35 5 2 4 1 6 8 11 3 2 6 8 24 9 40 3 3 6 2 9 1 5 8 4 3 3 12 7 4 1R6 7 44 3 1 5 1 7 2 6 13 2 1 8 1 6 35 8 47 1 2 8 8 1 17 1 12 2 3 1 8 3 1 1 1 1 1R

8 6 52 2 3 9 1 5 1 3 20 1 15 2 1 1 1 1 7 1 1 1 1 2 17 7 46 5 12 1 6 4 25 20 1 1 1 3 1 2 19 5 36 1 4 6 4 1 2 19 1 1 14 1 1 1 4 1 1R8 3 33 1 3 9 6 2 5 9 1 2 8 2 3

4 5 32 2 4 7 7 1 4 6 1 9 1 3 2 1R5 4 35 1 5 8 4 1 2 5 1 5 5 1

3 3 29 1 2 6 5 1 8 1 4 4 22 2 31 3 7 2 1 2 3 3 2 15 1 14 3 35 1 5 3 6 1 6 5 12 2 1R1 1 26 1 6 1 8 7 4 18 2 1 1 1 1R2 2 22 1R 2 7 7 1 5 7 1 21 1

3 1 24 3 3 1 5 6 8 24 12 3 21 1 4 6 1 4 6 1 27 1 1R4 4 26 1 2 4 3 5 15 16 1 30 3 2 5 7 12

Dinoflagellate Cysts*1

Bra

chypori

spori

tes s

pp.

Plu

ricella

espori

tes s

pp.

Exesis

poro

nites s

pp.

1 3

1

1

2

1 1

1 1 3

1

1

1

1

1

1

1

1

1

21

FungiAbsolute abundance (100mm=200 counts)

Bis

accate

spp.

(long-r

angin

g f

orm

s)

Cam

aro

zonospori

tes insig

nis

Cic

atr

icosis

pori

tes a

ustr

alie

nsis

Cic

atr

icosis

pori

tes h

alle

iC

yath

idites /

Deltoid

ospora

spp.

Dis

taltri

angulis

pori

tes p

erp

lexus

Gle

icheniid

ites s

enonic

us

Laevig

ato

spori

tes o

vatu

s

Lycopodiu

mspori

tes a

ustr

ocla

vitid

ites

Osm

undacid

ites w

ellm

annii

Taxodia

ceaepolle

nites h

iatu

s

Vitre

ispori

tes p

alli

dus

Peri

nopolle

nites e

lato

ides

Contignis

pori

tes c

ooksonia

e

Rugubiv

esic

ulit

es r

ugosus

Aequitri

radites s

pin

ulo

sus

Cic

atr

icosis

pori

tes a

nnula

tus

Impard

ecis

pora

apiv

err

ucata

Rouseis

pori

tes r

eticula

tus

Kra

euselis

pori

tes r

eis

sin

geri

Appendic

ispori

tes p

roble

maticus

Calli

ala

spori

tes d

am

pie

riC

ere

bro

polle

nites m

esozoic

us

Pilo

sis

pori

tes v

eru

sE

xesip

olle

nites t

um

ulu

s

Pilo

sis

pori

tes t

richopapill

osus

Aequitri

radites v

err

ucosus

Coro

llina t

oro

sus

Cic

atr

icosis

pori

tes s

ubtr

iangulu

sD

ensois

pori

tes v

ela

tus

Lycospora

sp.

indet.

Densospori

tes s

pp.

67 2 2 1 65 1 3 15 2 33 2 1

71 1 1 1 82 1 16 2 27 3 1 2

70 3 75 3 11 1 26 5 1 1 2 1R

78 63 2 15 1 19 1 1

86 71 1 18 2 7 1

93 78 1 13 1 15 1

87 1 72 11 4 22 1 3

84 69 15 1 16 2

76 1 73 2 10 3 13 4

80 78 1 9 4 17 1 3

85 1 82 1 7 2 22 2 1

89 1 85 1 8 3 26 1 1

103 88 2 6 1 29 1

95 83 3 7 2 32 1 1 1R

90 1 79 1 9 3 27 1 2

90 75 1 5 1 23 1 1R

94 79 1 6 2 19 1

86 1 83 1 9 4 23 1

95 80 8 3 27 1 1

71 1 56 12 5 24 1

63 54 1 14 4 23 1 1 1

67 52 10 2 21 1 2 1

64 49 9 3 19 1

61 46 1 7 4 16

65 50 1 8 3 13 1 1

57 1 54 1 6 6 17 1 1

61 2 57 7 5 21 1 2 1 1

68 4 53 3 5 7 24 1

64 3 49 1 7 3 20 1 1 1 1R

56 1 45 2 9 2 16 1 1 1

63 2 48 1 8 4 12 2 2

65 50 1 4 3 15 2 1 1 1R

57 55 5 1 17 1 1 1

74 59 1 6 2 22 1 11

68 1 53 9 4 26 1

63 2 48 1 8 3 20

60 1 45 1 3 5 15 1 1 1

52 42 1 5 6 12 1 249 48 3 3 9 2

55 51 7 4 15 1 1 1 158 1 53 6 2 18 3 1 1 1R60 1 1 52 1 8 1 20

71 2 1 56 1 5 1 19 1 174 59 2 1 6 1 23 1 1

68 1 1 53 3 4 2 26 1 1 164 49 1 7 20 1 1

62 47 2 9 1 16 2 167 52 8 1 14 1 1

70 55 12 19 162 1 37 11 1 22

44 35 1 10 1 4 1 142 39 4 2 2 1R

46 35 17 3 6 1 1 1 1 1 155 40 13 1 2 1 3 1

47 37 20 1 7 1 1 1 1 2 1 1R 1R44 35 16 4 1 1 2 1

42 1 36 13 2 1 2 154 39 1 10 1 3 1 1 1 2 1 1 1 1R

57 42 8 2 6 3 1 1R49 1 45 9 1 9 1 1 1 1 1R

52 40 6 4 12 1 2 1 144 29 1 7 2 7 1 1 1 1

36 33 8 1 9 2 1 2 1 1 2 149 34 6 2 8 1 1 1 1

46 31 7 6 1 1R51 36 4 1 7 1 1 1 1

41 26 1 9 2 5 1 1R39 24 8 1 6 1 1

36 21 6 1 7 2 1 1 140 25 1 7 1 9 1 1 1R

37 1 1 22 2 4 3 5 1 138 1 23 1 2 5 6 6 1 1 1 1 1 1

34 1 1 19 3 8 5 3 1 3 1 131 16 2 7 7 4 2 2 3 1R

26 11 1 3 4 5 1 4 1 1 1 1 2 4 1R30 15 1 2 5 3 3 1 3 1 1 1 1 1 3 1

23 1 21 1 4 7 4 2 1 2 2 1 7 141 26 1 8 9 6 1 2 1 1 9 1

33 1 1 24 1 7 6 5 3 1 1 838 17 2 8 9 8 2 1 5

36 1 27 3 11 11 7 1 1 1 1 629 31 5 13 7 5 1 1 1 9 1R

39 1 30 6 10 5 6 1 1242 27 4 9 6 8 1 1 1 1 13 1R42 23 5 7 3 7 1 2 1 11

39 13 8 4 8 1 1 2 1435 11 6 5 6 1 1 1 17 1 1R

30 15 7 8 9 4 2129 14 4 9 8 1 1 22 1 1R

27 16 5 2 6 11 2 1 2 17 129 14 3 1 7 14 1 1 1 14 1R

26 11 4 3 1 13 1 1 1 17 1 1R30 15 8 2 3 10 1 2 1 1 15

33 18 7 1 2 7 3 1 2 2 1 2131 16 9 4 8 2 1 1 1 2 17

28 13 8 1 3 5 1 1 1528 19 3 3 5 9 1 1 11

25 21 5 2 6 6 4 1 2 1 1 2 123 15 4 1 8 12 1 1 2

21 12 7 1 3 7 1 1 1 2 2 1R

Spores And Pollen Palaeoenvironment

Alaska scheme

No

n M

ari

ne

Tra

nsit

ion

al

Inn

er

Neri

tic

Mid

dle

Neri

tic

Ou

ter

Neri

tic

Up

per

Bath

yal

Lo

wer

Bath

yal

Sam

ple

s

Barr

en

Sam

ple

depth

is B

AS

E o

f depth

range

1512

1590

1680

1770

1860

1950

2040

2130

2220

2310

2400

2490

2580

2670

2760

2850

2940

3030

3120

3210

3315

3390

3480

3570

3660

3750

3840

3930

4020

4110

4200

4290

4380

4470

4560

4650

4740

4830

4920

4980501050405070510051305160519052205250528053105340537054005426546054905520555055805610564056705700

5750578057905820585058805910

59605990602060506080611061406170620062306260629063206350638064106440647065006530656065706600663066606690672067506780

Mic

rop

ale

on

tolo

gic

al

assem

bla

ges

no assemblage recognisable

1590

megaspores

2130

Haplophragmoidestopagorukensis /

Gaudryina tailleuri

3930

Bathysiphon brosgei

4980

radiolaria

5280

Recurvoides ex gr.stschekuriensis /

Haplophragmoidesconcavus

no assemblage recognisable5850

Glomospira /Haplophragmoides

6050

Cribrostomoidesinfracretaceous /

Labrospiragoodenoughensis

6570

6800.0

Cribrostomoides canui

Zo

ne

Lit

ho

str

ati

gra

ph

y

1512

Nanushuk Fm

3210

Torok Fm

5280

Pebble Shale

5790

6800.0

Kuparukequivalent

Fo

rmati

on

Ch

ron

ostr

ati

gra

ph

y

late Albian1590

middle Albian

3210

early Albian

3480

late Aptian

3930

late part of theEarly Aptian

5280

Barremian -Hauterivian

5790

Valanginian

6570

6800.0

Berriasian

Ag

e

Text Keys*1 Absolute abundance (100mm=200 counts)

PROPRIETARY


Recommended