+ All Categories
Home > Documents > Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and...

Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and...

Date post: 30-Dec-2015
Category:
Upload: phoebe-pearson
View: 221 times
Download: 3 times
Share this document with a friend
Popular Tags:
52
Pr Pr øveforelesning, Oppgitt øveforelesning, Oppgitt Emne Emne Water Phases (Solid, Liquid and Vapor) Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational on Mars: Theoretical and Observational Evidence for Their Past and Present Evidence for Their Past and Present Distribution, Including Global Inventory Distribution, Including Global Inventory [email protected] [email protected] http://joern.jernsletten.name/ http://joern.jernsletten.name/ Mandag, 14. Juni 2004 Mandag, 14. Juni 2004 Universitetet i Bergen Universitetet i Bergen Det Matematisk-Naturvitenskapelige Fakultet Det Matematisk-Naturvitenskapelige Fakultet Institutt for Geovitenskap Institutt for Geovitenskap Doctor Doctor Philosophiae Philosophiae J J ø ø rn Atle Jernsletten rn Atle Jernsletten
Transcript
Page 1: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

PrPrøveforelesning, Oppgitt øveforelesning, Oppgitt EmneEmne

Water Phases (Solid, Liquid and Water Phases (Solid, Liquid and Vapor)Vapor)

on Mars: Theoretical and on Mars: Theoretical and ObservationalObservational

Evidence for Their Past and PresentEvidence for Their Past and PresentDistribution, Including Global Distribution, Including Global

InventoryInventory

[email protected]@jernsletten.nameme

http://http://joern.jernsletten.name/joern.jernsletten.name/

Mandag, 14. Juni Mandag, 14. Juni 20042004

Universitetet i Universitetet i BergenBergen

Det Matematisk-Naturvitenskapelige Det Matematisk-Naturvitenskapelige FakultetFakultet

Institutt for Institutt for GeovitenskapGeovitenskap

Doctor Doctor PhilosophiaePhilosophiae

JJøørn Atle rn Atle JernslettenJernsletten

Page 2: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

OutlineOutline• Chronology• Vapor

– Theoretical evidence= Past & present distribution

– Observational evidence= Past & present distribution

• Solid– (same structure as Vapor section)– Earth / Mars analogs

• Liquid– (same structure as Vapor section)– Earth / Mars analogs

• Global inventory• Summary• References Cited

Page 3: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

Chronology Based on Crater CountsChronology Based on Crater Counts

( Adapted from McKee, 2003, after: Hartman and Neukum, 2001; Jakosky and Phillips, 2001; Zuber, 2001; Tanaka et al., 1992 )

Page 4: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Vapor]:[Vapor]: Early Observations Early Observations• No separable water vapor signal

= Sling psychrometer (Campbell, 1910)• Water vapor ~3% of Earth atmosphere

= Prismatic spectrograph (Adams and St. John, 1926)• Early obs. around λ7200 using large grating spectrograph

= No evidence for water vapor (Adams and Dunham, 1937)

• Partial pressure of water in Martian atmosphere= Based on dissociation pressure of goethite (Adamcik, 1963)

Page 5: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Vapor]:[Vapor]: Observational Evidence Observational Evidence• <1 – ~100 pr m in atmosphere (Carr, 1996)

= Average ~10 pr m; close to saturation• First shown by Earth-based telescopic observations in the 1960s• Viking Mars Atmospheric Water Detector (MAWD)

= Small amounts in the Martian atmosphere (Farmer et al., 1976)= Global vapor content ~ 1.3 cu km water ice (Farmer et al., 1977)

• European Space Agency (ESA), Infrared Space Observatory (ISO) (Burgdorf et al., 2000)

= Two complimentary spectrometers Infrared

= Total column density 12 3.5 pr m• TES observations (Smith, 2002)

= ~100 pr m north high lat.s, ~50 pr m south, midsummer= <5 pr m, middle & high lat.s, fall & winter both hemispheres

• Some H2O–bearing minerals invisible (Kirkland et al., 2003)

Page 6: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Vapor]:[Vapor]: TES vs. Synthetic Spectrum TES vs. Synthetic Spectrum

( Adapted from Smith, 2002 )

Page 7: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Vapor]:[Vapor]: Temporal and Spatial Temporal and Spatial VariabilityVariability

• Seasonal max. 45-50 pr m (Barker et al., 1970)• Obs. at McDonald Observatory 1972–1974 (Barker, 1976)

= 469 individual photoelectric scans of Doppler-shifted H2O lines= Almost 1 full Martian year (Ls = 118−269° and 301−80°)= Planetwide abundance 5−15 pr m= Maximum abundance ~40 pr m

After solstice at about 40° latitude in each hemisphere= Max. amount precedes max. insolation by 10–20° latitude= During the "drier" seasons (5–20 pr m) near the equinoxes on Mars, the atmospheric water vapor changes by a factor of 2–3x over a diurnal cycle with the maximum near local noon= The effects of the 1973 dust storm during the southern summer reduced the amount of water vapor over the southern hemisphere regions to 3–8 pr m

• Lat. of max. pr m northern polar area => equatorial lat.s

= From northern summer through northern fall (Farmer et al., 1977)= Not confirmed by TES (Smith, 2002)

• Deuterium cold trap u. atm. (Bertaux and Montmessin, 2001)

Page 8: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Vapor]:[Vapor]: TES & MAWD Temporal TES & MAWD Temporal VariationsVariations

( Adapted from Smith, 2002 )

Page 9: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Vapor]:[Vapor]: TES Geographic Distribution TES Geographic Distribution

( Adapted from Smith, 2002 )

Divided by (psurf/6.1):

Page 10: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Calculated Possible Depths Calculated Possible Depths to theto the

Base of the Martian CryosphereBase of the Martian Cryosphere

( Adapted from tabular data, Clifford, 1993 ). The thermal model used Equation 3.1, and with the following values for parameters:

Minimum: Qg = 45 mW m-2, K = 1.0 W m-1 K-1, and Tmp = 210 K;Nominal: Qg = 30 mW m-2, K = 2.0 W m-1 K-1, and Tmp = 252 K;Maximum: Qg = 15 mW m-2, K = 3.0 W m-1 K-1, and Tmp = 273 K

Page 11: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Constitutive Relation Constitutive Relation for Icefor Ice

Glen's Flow Law is widely accepted as the constitutive relationfor ice when shear stress acts on its basal plane:

where έ is the strain rate; A is a temperature-dependent constant; τb

is the basal shear stress; and n is a power law exponent (Glen, 1958)

έ = A τbn Equation 4.15

Regards ice as a plastic substance with a yield stress τ of 1 bar (Paterson, 1981)

Value of n generally taken as 3 (Paterson 1981; Johnston, 1981)

Shear strain rate (flow velocity) is lower for colder ice as a function of A

A varies with temperature, and is equal, for example, to 6.8 x 10-15

s-1 kPa-3 at 273 K, 4.9 x 10-16 at 263 K, 1.7 x 10-16 at 253 K, and 5.1 x 10-17 at 243 K

n varies with applied stress, taking a value of 1 for Newtonian deformation, and 3 for non-Newtonian deformation (Paterson, 1994)

Available evidence indicates that n = 3 for most situations (Russell-Head and Budd, 1979)

Page 12: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Deformation of Frozen Deformation of Frozen GroundGround

The total strain in deforming frozen ground is the sum of aninstantaneous strain, ε(i), and a creep strain, ε(c). The primarycreep of frozen ground (and ice) in a state of constant stresscan be described by the creep law (Andersland et al., 1978):

ε(c) = Kσntb Equation 4.17

where K, n, and b are temperature-dependent material constants

The steady state creep strain is governed by the creep law(Hult, 1966):

έ(c) = G(σ, T) Equation 4.18

where έ(c) is the steady state (secondary) creep rate; and thefunction G(σ,T) is found by plotting the slope dε(c)/dt againstthe applied stress for various temperatures

Page 13: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Temperature Temperature Dependence inDependence inthe Creep Lawthe Creep Law

where έc is the creep rate selected for the laboratory experiment- for frozen soils is often taken as 10-5 min-1 (Andersland et al.,1978); σc is the uniaxial stress for the selected creep rate; σc(T) and n(T) are temperature-dependent creep parameters

The creep law can be rewritten in the form of a power expression(Hult, 1966; Ladanyi, 1972):

έ(c) = έc[σ/σc(T)]n(T) Equation 4.19

The equations for both primary and secondary creep emphasize the temperature-dependence of creep deformation

Page 14: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Map of the Deformation Map of the Deformation Mechanisms of IceMechanisms of Ice

As a function of temperature, applied stress, and strain rate( from Carr, 1996, after Shoji and Higashi, 1978 )

Page 15: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Debris-Ice Feature Debris-Ice Feature TerminologyTerminology

( Adapted from Whalley and Azizi, 2003 )

Page 16: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Typical Rock Glaciers in Typical Rock Glaciers inWrangell Mountains, AlaskaWrangell Mountains, Alaska

Rock glacier “a” has a single lobe, and rock glacier “b” has a second lobe that appears to have advanced on top of another lobe that advanced at an earlier time

( Adapted from Whalley and Azizi, 2003 )

Page 17: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Two Possible Rock-Ice Two Possible Rock-Ice SystemsSystems

in Candor Chasma, Marsin Candor Chasma, Mars

Feature “A” resembles a rock glacier, and feature“B” resembles a protalus rampart

( Adapted from Whalley and Azizi, 2003; After Malin et al., 2000 )

Page 18: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Enlargements of Candor Enlargements of Candor Chasma FeaturesChasma Features

Feature “A” resembles a rock glacier, and feature“B” resembles a protalus rampart

( Adapted from Whalley and Azizi, 2003; After Malin et al., 2000 )

Enlargement of feature A Enlargement of feature B

Page 19: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Degradation of Ice-rich Degradation of Ice-rich MaterialMaterial

• Insolation asymmetries → slope asymmetries

– Differential sublimation erosion (Howard et al., 1982; Fenton and Herkenhoff, 2000 )

– Differential ground ice melting (Kreslavsky and Head, 2003 )

• Sublimation erosion in degradation of slopes

– Mars (Squyres, 1979; Howard et al., 1982; Moore et al., 1996; Fenton and Herkenhoff, 2000; Kreslavsky and Head, 2003 )

– Moons; including Triton, Io, and Ganymede (Smith et al., 1989; Moore et al., 1996, 1997, 1998 )

Page 20: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Profiles of Trough in Profiles of Trough in Northern Polar Layered Northern Polar Layered

DepositsDeposits

(Adapted from Fenton and Herkenhoff, 2000)

Page 21: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Profiles of Trough in Profiles of Trough in Northern Polar Layered Northern Polar Layered

DepositsDeposits

(Adapted from Fenton and Herkenhoff, 2000)

Page 22: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]: North-South Components of [Solid]: North-South Components of SlopeSlope

AngleAngle > 5° > 5°

Equatorward Slopes Poleward Slopes

Page 23: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: North-South Components of North-South Components of Slope Angle vs. Latitude Slope Angle vs. Latitude

Page 24: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Equatorward and Poleward Equatorward and Poleward CountsCounts

Page 25: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Correlations of Poleward N- Correlations of Poleward N-S Components of Slope AngleS Components of Slope Angle

Page 26: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Correlations of Equatorward Correlations of Equatorward N-S Components of Slope AngleN-S Components of Slope Angle

Page 27: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Equatorward-Poleward Slope Equatorward-Poleward Slope Angle DifferencesAngle Differences

101-pt. centered moving average smoothing101-pt. centered moving average smoothing

Page 28: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

• Average difference 0.25º ± 0.04º– Equatorward slopes steeper than poleward slopes

• Northern hemisphere 0.29º ± 0.06º

• Southern hemisphere 0.20º ± 0.03º

[Solid]:[Solid]: Quantified Equatorward- Quantified Equatorward-Poleward Slope Angle DifferencesPoleward Slope Angle Differences

Page 29: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Correlations of Correlations of Equatorward-Poleward Slope Angle Equatorward-Poleward Slope Angle

DifferenceDifference

Page 30: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: N-S Components of Slope N-S Components of Slope Angle at 30Angle at 30°°- - 6060°° Latitudes Latitudes

• Average difference 0.16º ± 0.04º– Equatorward slopes steeper than poleward slopes

• Northern hemisphere 0.11º ± 0.08º

• Southern hemisphere 0.22º ± 0.03º

Page 31: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Incidence Angles Incidence Angles

Page 32: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: North-South Components of North-South Components of Slope Angle vs. Temperature Slope Angle vs. Temperature

Page 33: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Depth below the Surface at Depth below the Surface at which Ground Ice is Stablewhich Ground Ice is Stable

(Adapted from Carr, 1996; after Farmer and Doms, 1979)

Page 34: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Map of Epithermal Neutron Map of Epithermal Neutron Flux from the Neutron Spectrometer of Flux from the Neutron Spectrometer of

the GRSthe GRS

Source: Boynton et al. (2002). Low values of epithermal flux indicate high hydrogen concentration (8). Contours (in white)show the regions where water ice is predicted to be stable at 0.8 meters depth as predicted by the model of Mellon andJakosky (1993) (note that no predictions were made poleward of 60° latitude as no thermal inertia data were available)

Page 35: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Residual Polar Ice Caps Residual Polar Ice Caps

( Images courtesy of NASA/JPL/Malin Space Science Systems )

Page 36: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Polar Layered Deposits Polar Layered DepositsMars Orbiter Camera image No. 46103;

( Images courtesy of NASA/JPL/Malin Space Science Systems )

Page 37: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Solid]:[Solid]: Polygonal Ground Polygonal Ground

Mars Orbiter Camera image No. E09-00029;( Image courtesy of NASA/JPL/Malin Space Science Systems )

Page 38: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

LiquidLiquid

• Current atmospheric temperature and pressure conditions preclude the existence of liquid

water on the surface of Mars= 154-218 K, diurnal range 170-290 K at lower latitudes= 6-10 mbar

Past & present distribution

Page 39: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Liquid]:[Liquid]: Coprates Chasma Layering Coprates Chasma Layering andand

Spur-and-Gully MorphologySpur-and-Gully Morphology

b. This close-up is centered at 14.5° South, 55.8° West;Image covers an area of approximately 9.8 km by 17.3 km;North is up ( MOC images courtesy of NASA/JPL/Malin Space Science Systems )

a. Context image b. Central ridge close-up

Page 40: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Liquid]:[Liquid]: Floor Deposits in Floor Deposits in Parallel Trough South of Coprates Parallel Trough South of Coprates

ChasmaChasma

Mars Orbiter Camera image No. MOC2-420;

center of image is at 60.1º West longitude, 15.2º South latitude

( Image courtesy of NASA/JPL/Malin Space Science Systems )

Page 41: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Liquid]:[Liquid]: Layered Floor Deposits in Layered Floor Deposits in FarFar

Western Candor ChasmaWestern Candor Chasma

Right image is 1.5 km wide, 2.9 km tall;

Mars Orbiter Camera image No. FHA-01278;

Context image Mars Orbiter Camera image No. FHA-01275;

( Images courtesy of NASA/JPL/Malin Space Science Systems )

a. Context image b. Layered floor deposits

Page 42: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Liquid]:[Liquid]: Nirgal Vallis Sand Waves Nirgal Vallis Sand Waves

Mars Orbiter Camera image No. E02-02651;

( Image courtesy of NASA/JPL/Malin Space Science Systems )

Page 43: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Liquid]:[Liquid]: Nanedi Vallis Channel Nanedi Vallis Channel

Mars Orbiter Camera image No. 8704;

( Image courtesy of NASA/JPL/Malin Space Science Systems )

Page 44: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Liquid]:[Liquid]: Liquidized Debris FlowLiquidized Debris Flow

(Adapted from Baratoux et al., 2002)

Page 45: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Liquid]:[Liquid]: Water Flows Water Flows

Mars Orbiter Camera image No. M09-03004;

( Image courtesy of NASA/JPL/Malin Space Science Systems )

Page 46: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Liquid]:[Liquid]: Oceans? Oceans?

(Adapted from Clifford and Parker, 2001)

(Adapted from Carr and Head, 2003)

Page 47: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Liquid]:[Liquid]: Peña de Hierro, Main Peña de Hierro, Main Source AreaSource Area

Morris et al., 2004Morris et al., 2004

Kargel and Marion, 2004Kargel and Marion, 2004

Stoker et al., 2004Stoker et al., 2004

Fernández-Remolar et al., 2003, 2004Fernández-Remolar et al., 2003, 2004

Jernsletten and Heggy, 2004a,bJernsletten and Heggy, 2004a,b

A.k.a. MER-B in the Late Hesperian?A.k.a. MER-B in the Late Hesperian?

Jarosite = Jarosite = KFeKFe3+3+33(SO(SO44))22(OH)(OH)66

Basic hydrous potassium iron sulfate Yellow-brown, brown, orange-brown Light yellow streaks

Page 48: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

[Global inventory]:[Global inventory]: Estimates for Estimates for major Hmajor H22O Reservoirs and TotalO Reservoirs and Total

Present-Day Inventory of Water on MarsPresent-Day Inventory of Water on Mars

( Sources: 1Farmer and Doms, 1979; 2Carr, 1987; 3Smith et al., 1999;

4Johnson et al., 2000; 5Clifford, 1993 )

Page 49: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

SummarySummary• 10-12 pr m water vapor in Martian atmosphere

= Always close to saturation= Direct observational evidence from MAWD, TES, telescopic obs.

• Presence of water ice evidenced by= Polar ice caps= Polar layered terrain= Terrain deformation

Analogs to terrestrial rock glaciers & protalus ramparts Poleward / equatorward slope assymmetries

= Direct observational evidence from Odyssey / GRS / HEND Gamma Ray Spectrometer / High Energy Neutron Detector

• Past presence of liquid water evidenced by= Layering / apparent sedimentation= Morphologic evidence

Apparent river channels / lake beds / shore lines Apparent signatures of water flow

= Direct observational evidence from MER-B Opportunity (!) Jarocite, “blueberries” Analog to acidic metal-rich brine pools in Rio Tinto, Spain

• Equivalent ocean 100’s m global inventory

=> Abundant evidence for water on Mars

Page 50: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

Adamcik, J. A. (1963), Adamcik, J. A. (1963), The water vapor content of the Martian atmosphere as a problem of chemical equilibrium, The water vapor content of the Martian atmosphere as a problem of chemical equilibrium, Planet. Space Sci., Planet. Space Sci., 1111(4), (4), 355-359.355-359.

Adams, W. S., and C. E. St. John (1926), An attempt to detect water-vapor and oxygen lines in the spectrum of Mars with the Adams, W. S., and C. E. St. John (1926), An attempt to detect water-vapor and oxygen lines in the spectrum of Mars with the registering microphotometer, registering microphotometer, Astrophys. J., 63Astrophys. J., 63, 133-137., 133-137.

Adams, W. S., and T. Dunham (1937), Water-vapor lines in the spectrum of Mars, Adams, W. S., and T. Dunham (1937), Water-vapor lines in the spectrum of Mars, Publ. Astron. Soc. Pacific, 49Publ. Astron. Soc. Pacific, 49(290), 209-211.(290), 209-211.Andersland, O. B., F. H. Sayles, and B. Ladanyi (1978), Mechanical properties of frozen ground, Chapter 5 in Andersland, O. B., F. H. Sayles, and B. Ladanyi (1978), Mechanical properties of frozen ground, Chapter 5 in Geotechnical engineering Geotechnical engineering

for cold regionsfor cold regions, edited by O. B. Andersland and D. M. Anderson, pp. 216-275, McGraw-Hill, New York, New York., edited by O. B. Andersland and D. M. Anderson, pp. 216-275, McGraw-Hill, New York, New York.Baratoux, D., N. Mangold, C. Delacourt, and P. Allemand (2002), Evidence of liquid water in recent debris avalanche on Mars, Baratoux, D., N. Mangold, C. Delacourt, and P. Allemand (2002), Evidence of liquid water in recent debris avalanche on Mars,

Geophys. Res. Lett., 29Geophys. Res. Lett., 29(7), 60-1 – 60-4.(7), 60-1 – 60-4.Barker, E. S. (1976), Mars: Detection of atmospheric water vapor during the southern hemisphere spring and summer season, Barker, E. S. (1976), Mars: Detection of atmospheric water vapor during the southern hemisphere spring and summer season, Icarus, Icarus,

2828(2), 247-268.(2), 247-268.Barker, E. S., R. A. Schorn, A. Woszczyk, R. G. Tull, and S. J. Little (1970), Mars: Detection of atmospheric water vapor during the Barker, E. S., R. A. Schorn, A. Woszczyk, R. G. Tull, and S. J. Little (1970), Mars: Detection of atmospheric water vapor during the

southern hemisphere spring and summer season, southern hemisphere spring and summer season, Science, 170Science, 170, 1308-1310., 1308-1310.Bertaux, J.-L., and F. Montmessin (2001), Bertaux, J.-L., and F. Montmessin (2001), Isotopic fractionation through water vapor condensation: The Deuteropause, a cold trap for Isotopic fractionation through water vapor condensation: The Deuteropause, a cold trap for

deuterium in the atmosphere of Mars deuterium in the atmosphere of Mars , , J. Geophys. Res., 106J. Geophys. Res., 106(E12), (E12), 32879-32884.32879-32884.Boynton, W. V., W. C. Feldman, S. W. Squyres, T. H. Prettyman, J. Brückner, L. G. Evans, R. C. Reedy, R. Starr, J. R. Arnold, D. M. Boynton, W. V., W. C. Feldman, S. W. Squyres, T. H. Prettyman, J. Brückner, L. G. Evans, R. C. Reedy, R. Starr, J. R. Arnold, D. M.

Drake, P. A. J. Englert, A. E. Metzger, I. G. Mitrofanov, J. I. Trombka, C. d’Uston, H. Wänke, O. Gasnault, D. K. Hamara, D. M. Drake, P. A. J. Englert, A. E. Metzger, I. G. Mitrofanov, J. I. Trombka, C. d’Uston, H. Wänke, O. Gasnault, D. K. Hamara, D. M. Janes, R. L. Marcialis, S. Maurice, I. Mikheeva, G. J. Taylor, R. L. Tokar, and C. Shinohara (2002), Distribution of hydrogen in Janes, R. L. Marcialis, S. Maurice, I. Mikheeva, G. J. Taylor, R. L. Tokar, and C. Shinohara (2002), Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits, the near surface of Mars: Evidence for subsurface ice deposits, Science, 297Science, 297, 81-85., 81-85.

Burgdorf, M. J., T. Encrenaz, E. Lellouch, H. Feuchtgruber, G. R. Davis, B. M. Swinyard, T. de Graauw, P. W. Morris, S. D. Sidher, M. J. Burgdorf, M. J., T. Encrenaz, E. Lellouch, H. Feuchtgruber, G. R. Davis, B. M. Swinyard, T. de Graauw, P. W. Morris, S. D. Sidher, M. J. Griffin, F. Forget, and T. L. Lim (2000), ISO observations of Mars: An estimate of the water vapor vertical distribution and Griffin, F. Forget, and T. L. Lim (2000), ISO observations of Mars: An estimate of the water vapor vertical distribution and the surface emissivity, the surface emissivity, Icarus, 145Icarus, 145, 79-90., 79-90.

Campbell, W. W. (1910), Water vapor on Mars, Campbell, W. W. (1910), Water vapor on Mars, J. Royal Astron. Soc. Canada, 4J. Royal Astron. Soc. Canada, 4, 212-213., 212-213.Carr, M. H. (1987), Mars: A water-rich planet?, in Carr, M. H. (1987), Mars: A water-rich planet?, in MECA symposium on Mars: evolution of its climate and atmosphereMECA symposium on Mars: evolution of its climate and atmosphere, edited by V. , edited by V.

Baker et al., hosted by National air and space museum, Smithsonian institution, Washington, D. C., July 17-19, 1986, Baker et al., hosted by National air and space museum, Smithsonian institution, Washington, D. C., July 17-19, 1986, LPI LPI Technical Report 87-01Technical Report 87-01, pp. 23-25, Lunar and Planetary Institute, Houston, Texas., pp. 23-25, Lunar and Planetary Institute, Houston, Texas.

Carr, M. H. (1996), Carr, M. H. (1996), Water on MarsWater on Mars. Oxford University Press, New York, New York.. Oxford University Press, New York, New York.Carr, M. H., and J. W. Head (2003), Oceans on Mars: An assessment of the observational evidence and possible fate, Carr, M. H., and J. W. Head (2003), Oceans on Mars: An assessment of the observational evidence and possible fate, J. Geophys. Res., J. Geophys. Res.,

108108(E5), 8-1 – 8-28.(E5), 8-1 – 8-28.Clifford, S. M. (1993), A model for the hydrologic and climatic behavior of water on Mars, Clifford, S. M. (1993), A model for the hydrologic and climatic behavior of water on Mars, J. Geophys. Res., 98J. Geophys. Res., 98(E6), 10973-11016.(E6), 10973-11016.Clifford, S. M., and T. J. Parker (2001), The evolution of the Martian hydrosphere: Implications for the fate of a primordial ocean and Clifford, S. M., and T. J. Parker (2001), The evolution of the Martian hydrosphere: Implications for the fate of a primordial ocean and

the current state of the northern plains, the current state of the northern plains, Icarus, 154Icarus, 154, 40-79., 40-79.Farmer, C. B., and P. E. Doms (1979), Global and seasonal water vapor on Mars and implications for permafrost, Farmer, C. B., and P. E. Doms (1979), Global and seasonal water vapor on Mars and implications for permafrost, J. Geophys. Res., J. Geophys. Res.,

8484(B6), 2881-2888.(B6), 2881-2888.Farmer, C. B., D. W. Davies, and D. D. LaPorte (1976), Mars: Northern summer ice cap – water vapor observations from Viking 2, Farmer, C. B., D. W. Davies, and D. D. LaPorte (1976), Mars: Northern summer ice cap – water vapor observations from Viking 2,

Science, 194Science, 194, 1339-1341., 1339-1341.Farmer, C. B., D. W. Davies, A. L. Holland, D. D. LaPorte, and P. E. Doms (1977), Farmer, C. B., D. W. Davies, A. L. Holland, D. D. LaPorte, and P. E. Doms (1977), Mars: Water vapor observations from the Viking Mars: Water vapor observations from the Viking

orbitersorbiters, , Science, 194Science, 194, 1339-1341., 1339-1341.

References Cited – 1 of 3References Cited – 1 of 3

Page 51: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

Fenton, L. K., and K. E. Herkenhoff (2000), Topography and stratigraphy of the northern Martian polar layered deposits using Fenton, L. K., and K. E. Herkenhoff (2000), Topography and stratigraphy of the northern Martian polar layered deposits using photoclinometry, stereogrammetry, and MOLA altimetry, photoclinometry, stereogrammetry, and MOLA altimetry, Icarus, 147Icarus, 147, 433-443., 433-443.

Fernández-Remolar, D. C., N. Rodriguez, F. Gómez, and R. Amils (2003), Geological record of an acidic environment driven by iron Fernández-Remolar, D. C., N. Rodriguez, F. Gómez, and R. Amils (2003), Geological record of an acidic environment driven by iron hydrochemistry: The Tinto River system, J. Geophys. Res., 108(E7), 16-1 – 16-15.hydrochemistry: The Tinto River system, J. Geophys. Res., 108(E7), 16-1 – 16-15.

Fernández-Remolar, D. C., O. Prietos-Ballesteros, and C. R. Stoker (2004), Searching for an acidic aquifer in the Rio Tinto basin, first Fernández-Remolar, D. C., O. Prietos-Ballesteros, and C. R. Stoker (2004), Searching for an acidic aquifer in the Rio Tinto basin, first geobiology results of MARTE project, Abstract no. 1766, 35.th Lunar and Planetary Science Conference, Houston, Texas, March geobiology results of MARTE project, Abstract no. 1766, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.15-19.

Glen, J. W. (1958), The flow law of ice, in Physique du mouvement de la Glace / Physics of the movement of ice, Symposium de Glen, J. W. (1958), The flow law of ice, in Physique du mouvement de la Glace / Physics of the movement of ice, Symposium de Chamonix, 16-24 September, pp. 171-183, Chamonix, 16-24 September, pp. 171-183, International Association of Hydrological Sciences Publication 47International Association of Hydrological Sciences Publication 47..

Hartmann, W. K., and G. Neukum (2001), Cratering chronology and the evolution of Mars, Hartmann, W. K., and G. Neukum (2001), Cratering chronology and the evolution of Mars, Space Science Reviews, 96Space Science Reviews, 96, 165-194., 165-194.Howard, A. D., J. A. Cutts, and K. R. Blasius (1982), Stratigraphic relationships within Martian polar cap deposits, Howard, A. D., J. A. Cutts, and K. R. Blasius (1982), Stratigraphic relationships within Martian polar cap deposits, Icarus, 50Icarus, 50, 161-215. , 161-215. Hult, J. A. H. (1966), Hult, J. A. H. (1966), Creep in Engineering StructuresCreep in Engineering Structures, Blaisdell, Waltham, Massachussetts., Blaisdell, Waltham, Massachussetts.Jakosky, B. M., and R. J. Phillips (2001), Mars' volatile and climate history, Jakosky, B. M., and R. J. Phillips (2001), Mars' volatile and climate history, Nature, 412Nature, 412, 237-244., 237-244.Jernsletten, J. A., and E. Heggy (2004a), Sounding of subsurface water through conductive media in Mars analog environments using Jernsletten, J. A., and E. Heggy (2004a), Sounding of subsurface water through conductive media in Mars analog environments using

transient electromagnetics and low frequency ground penetrating radar, oral presentation, Abstract no. 2089, 35.th Lunar and transient electromagnetics and low frequency ground penetrating radar, oral presentation, Abstract no. 2089, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.Planetary Science Conference, Houston, Texas, March 15-19.

Jernsletten, J. A., and E. Heggy (2004b), Sounding of groundwater through conductive media in Mars analog environments using Jernsletten, J. A., and E. Heggy (2004b), Sounding of groundwater through conductive media in Mars analog environments using transient electromagnetics and low frequency GPR, transient electromagnetics and low frequency GPR, Eos Trans. AGU, 85Eos Trans. AGU, 85(17), Jt. Assem. Suppl., Abstract no. P53A-01, poster (17), Jt. Assem. Suppl., Abstract no. P53A-01, poster presentation, AGU 2004 Joint Assembly, Montreal, Canada, May 17-21.presentation, AGU 2004 Joint Assembly, Montreal, Canada, May 17-21.

Johnson, C. L., S. C. Solomon, J. W. Head, R. J. Phillips, D. E. Smith, and M. T. Zuber (2000), Lithospheric loading by the northern polar Johnson, C. L., S. C. Solomon, J. W. Head, R. J. Phillips, D. E. Smith, and M. T. Zuber (2000), Lithospheric loading by the northern polar cap of Mars, cap of Mars, Icarus, 144Icarus, 144, 313-328., 313-328.

Johnston, G. H. (1981), editor, Johnston, G. H. (1981), editor, Permafrost engineering design and constructionPermafrost engineering design and construction, John Wiley and Sons, Inc., Toronto, Canada., John Wiley and Sons, Inc., Toronto, Canada.Kargel, J. S., and G. M. Marion (2004), Mars as a salt-, acid-, and gas-hydrate world, Abstract no. 1965, 35.th Lunar and Planetary Kargel, J. S., and G. M. Marion (2004), Mars as a salt-, acid-, and gas-hydrate world, Abstract no. 1965, 35.th Lunar and Planetary

Science Conference, Houston, Texas, March 15-19.Science Conference, Houston, Texas, March 15-19.Kirkland, L. E., K. C. Herr, and P. M. Adams (2003), Infrared stealthy surfaces: Why TES and THEMIS may miss some substantial mineral Kirkland, L. E., K. C. Herr, and P. M. Adams (2003), Infrared stealthy surfaces: Why TES and THEMIS may miss some substantial mineral

deposits on Mars and implications for remote sensing of planetary surface, deposits on Mars and implications for remote sensing of planetary surface, J. Geophys. Res., 108J. Geophys. Res., 108(E12), 11-1 – 11-11.(E12), 11-1 – 11-11.Kreslavsky, M. A., and J. W. Head (2003), North-south topographic slope asymmetry on Mars: Evidence for insolation-related erosion at Kreslavsky, M. A., and J. W. Head (2003), North-south topographic slope asymmetry on Mars: Evidence for insolation-related erosion at

high obliquity, high obliquity, Geophys. Res. Lett., 30Geophys. Res. Lett., 30(15), PLA 1-1 – PLA 1-4.(15), PLA 1-1 – PLA 1-4.Ladanyi, B. (1972), In situ determination of undrained stress-strain behavior of sensitive clays with the pressuremeter, Ladanyi, B. (1972), In situ determination of undrained stress-strain behavior of sensitive clays with the pressuremeter, Canadian Canadian

Geotech. J., 9Geotech. J., 9, 313–319., 313–319.Malin, M. C., K. S. Edgett, S. D. Davis, M. A. Caplinger, E. Jensen, K. D. Supulver, J. Sandoval, L. Posiolova, and R. Zimdar (2000), image Malin, M. C., K. S. Edgett, S. D. Davis, M. A. Caplinger, E. Jensen, K. D. Supulver, J. Sandoval, L. Posiolova, and R. Zimdar (2000), image

FHA01275, Malin Space Science Systems Mars Orbiter Camera Image Gallery, FHA01275, Malin Space Science Systems Mars Orbiter Camera Image Gallery, http://www.msss.com/moc_gallery/ab1_m04/images/FHA01275.htmlhttp://www.msss.com/moc_gallery/ab1_m04/images/FHA01275.html..

McKee, M. (2003), Martian timeline, McKee, M. (2003), Martian timeline, http://astronomy.com/content/dynamic/articles/ 000/000/001/357xsrza.asphttp://astronomy.com/content/dynamic/articles/ 000/000/001/357xsrza.asp..Mellon, M. T., and B. M. Jakosky (1993), Geographic variations in the thermal and diffusive stability of ground ice on Mars, Mellon, M. T., and B. M. Jakosky (1993), Geographic variations in the thermal and diffusive stability of ground ice on Mars, J. Geophys. J. Geophys.

Res., 98Res., 98(E2), 3345-3364.(E2), 3345-3364.Moore, J. M., M. T. Mellon, and A. P. Zent (1996), Mass wasting and ground collapse in terrains of volatile-rich deposits as a solar system-Moore, J. M., M. T. Mellon, and A. P. Zent (1996), Mass wasting and ground collapse in terrains of volatile-rich deposits as a solar system-

wide geological process: The pre-Gallileo view, wide geological process: The pre-Gallileo view, Icarus, 122Icarus, 122, 63-78., 63-78.

References Cited – 2 of 3References Cited – 2 of 3

Page 52: Prøveforelesning, Oppgitt Emne Prøveforelesning, Oppgitt Emne Water Phases (Solid, Liquid and Vapor) on Mars: Theoretical and Observational Evidence for.

Moore, J. M., E. Asphaug, D. Morrison, K. C. Bender, R. J. Sullivan, R. Greeley, P. E. Geissler, C. R. Chapman, and C. B. Pilcher Moore, J. M., E. Asphaug, D. Morrison, K. C. Bender, R. J. Sullivan, R. Greeley, P. E. Geissler, C. R. Chapman, and C. B. Pilcher (1997), Landform degradation and mass wasting on the icy Galilean satellites, Abstract no. 1407, 28.th Lunar and Planetary (1997), Landform degradation and mass wasting on the icy Galilean satellites, Abstract no. 1407, 28.th Lunar and Planetary Science Conference, Houston, Texas, March 17-21.Science Conference, Houston, Texas, March 17-21.

Moore, J. M., J. R. Spencer, E. Asphaug, D. Morrison, J. E. Klemaszewski, R. J. Sullivan, F. C. Chuang, R. Greeley, K. C. Bender, P. E. Moore, J. M., J. R. Spencer, E. Asphaug, D. Morrison, J. E. Klemaszewski, R. J. Sullivan, F. C. Chuang, R. Greeley, K. C. Bender, P. E. Geissler, C. R. Chapman, C. B. Pilcher, and the Galileo SSI Team (1998), Mass movement and landform degradation on Geissler, C. R. Chapman, C. B. Pilcher, and the Galileo SSI Team (1998), Mass movement and landform degradation on Callisto and Ganymede as observed during the Galileo nominal mission: The role of sublimation, Abstract no. 1553, 29.th Callisto and Ganymede as observed during the Galileo nominal mission: The role of sublimation, Abstract no. 1553, 29.th Lunar and Planetary Science Conference, Houston, Texas, March 16-20.Lunar and Planetary Science Conference, Houston, Texas, March 16-20.

Morris, R. V., S. Squyres, R. E. Arvidson, J. F. Bell, P. C. Christensen, S. Gorevan, K. Herkenhoff, G. Klingelhöfer, R. Rieder, W. Farrand, Morris, R. V., S. Squyres, R. E. Arvidson, J. F. Bell, P. C. Christensen, S. Gorevan, K. Herkenhoff, G. Klingelhöfer, R. Rieder, W. Farrand, A. Ghosh, T. Glotch, J. R. Johnson, M. Lemmon, H. Y. McSween, D. W. Ming, C. Schroeder, P. de Souza, M. Wyatt, and the A. Ghosh, T. Glotch, J. R. Johnson, M. Lemmon, H. Y. McSween, D. W. Ming, C. Schroeder, P. de Souza, M. Wyatt, and the Athena Science Team (2004), A first look at the mineralogy and geochemistry of the MER-B landing site in Meridiani Athena Science Team (2004), A first look at the mineralogy and geochemistry of the MER-B landing site in Meridiani Planum, Abstract no. 2179, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.Planum, Abstract no. 2179, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.

Paterson, W. S. B. (1981), Paterson, W. S. B. (1981), The Physics of GlaciersThe Physics of Glaciers, 2.nd Edition, Pergamon Press, New York, New York., 2.nd Edition, Pergamon Press, New York, New York.Paterson, W. S. B. (1994), Paterson, W. S. B. (1994), The Physics of GlaciersThe Physics of Glaciers, 3.rd Edition, Pergamon Press, Oxford, England., 3.rd Edition, Pergamon Press, Oxford, England.Russell-Head, D. S., and W. F. Budd (1979), Ice-sheet flow properties derived from bore-hole shear measurements combined with ice-Russell-Head, D. S., and W. F. Budd (1979), Ice-sheet flow properties derived from bore-hole shear measurements combined with ice-

core studies, core studies, J. Glac., 24J. Glac., 24, 117-130., 117-130.Shoji, H. and A. Higashi (1978), A deformation mechanism map of ice, Shoji, H. and A. Higashi (1978), A deformation mechanism map of ice, J. Glac., 85J. Glac., 85, 419-427., 419-427.Smith, M. D. (2002), The annual cycle of water vapor on Mars as observed by the Thermal Emission SpectrometerSmith, M. D. (2002), The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer, , J. Geophys. Res., J. Geophys. Res.,

107107(E11), 25-1 – 25-19.(E11), 25-1 – 25-19.Smith, B. A., L. A. Soderblom, D. Banfield, C. Barnet, A. T. Basilevksy, R. F. Beebe, K. Bollinger, J. M. Boyce, A. Brahic, G. A. Briggs, R. Smith, B. A., L. A. Soderblom, D. Banfield, C. Barnet, A. T. Basilevksy, R. F. Beebe, K. Bollinger, J. M. Boyce, A. Brahic, G. A. Briggs, R.

H. Brown, C. Chyba, S. A. Collins, T. Colvin, A. F. Cook, D. Crisp, S. K. Croft, D. Cruikshank, J. N. Cuzzi, G. E. Danielson, M. E. H. Brown, C. Chyba, S. A. Collins, T. Colvin, A. F. Cook, D. Crisp, S. K. Croft, D. Cruikshank, J. N. Cuzzi, G. E. Danielson, M. E. Davies, E. De Jong, L. Dones, D. Godfrey, J. Goguen, I. Grenier, V. R. Haemmerle, H. Hammel, C. J. Hansen, C. P. Helfenstein, Davies, E. De Jong, L. Dones, D. Godfrey, J. Goguen, I. Grenier, V. R. Haemmerle, H. Hammel, C. J. Hansen, C. P. Helfenstein, C. Howell, G. E. Hunt, A. P. Ingersoll, T. V. Johnson, J. Kargel, R. Kirk, D. I. Kuehn, S. Limaye, H. Masursky, A. McEwen, D. C. Howell, G. E. Hunt, A. P. Ingersoll, T. V. Johnson, J. Kargel, R. Kirk, D. I. Kuehn, S. Limaye, H. Masursky, A. McEwen, D. Morrison, T. Owen, W. Owen, J. B. Pollack, C. C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E. M. Shoemaker, Morrison, T. Owen, W. Owen, J. B. Pollack, C. C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E. M. Shoemaker, M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L. A. Sromovsky, C. Stoker, R. G. Strom, V. E. Suomi, S. P. Synott, R. J. M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L. A. Sromovsky, C. Stoker, R. G. Strom, V. E. Suomi, S. P. Synott, R. J. Terrile, P. Thomas, W. R. Thompson, A. Verbiscer, and J. Veverka (1989), Voyager 2 at Neptune: Imaging science results, Terrile, P. Thomas, W. R. Thompson, A. Verbiscer, and J. Veverka (1989), Voyager 2 at Neptune: Imaging science results, Science, 246Science, 246, 1422-1449., 1422-1449.

Smith, D. E., M. T. Zuber, S. C. Solomon, R. J. Phillips, J. W. Head, J. B. Garvin, W. B. Banerdt, D. O. Muhlerman, G. H. Pettengill, G. A. Smith, D. E., M. T. Zuber, S. C. Solomon, R. J. Phillips, J. W. Head, J. B. Garvin, W. B. Banerdt, D. O. Muhlerman, G. H. Pettengill, G. A. Neumann, F. G. Lemoine, J. B. Abshire, O. Aharonson, C. D. Brown, S. A. Hauck, A. B. Ivanov, P. J. McGovern, H. J. Zwally, and Neumann, F. G. Lemoine, J. B. Abshire, O. Aharonson, C. D. Brown, S. A. Hauck, A. B. Ivanov, P. J. McGovern, H. J. Zwally, and T. C. Duxbury (1999), The global topography of Mars and implications for surface evolution, T. C. Duxbury (1999), The global topography of Mars and implications for surface evolution, Science, 284Science, 284, 1495-1503., 1495-1503.

Squyres, S. W. (1979), The evolution of dust deposits in the Martian north polar region, Squyres, S. W. (1979), The evolution of dust deposits in the Martian north polar region, Icarus, 40Icarus, 40, 244-261., 244-261.Stoker, C. R., S. Dunagan, T. Stevens, R. Amils, J. Gómez-Elvira, D. C. Fernández-Remolar, J. Hall, K. Lynch, H. Cannon, J. Zavaleta, B. Stoker, C. R., S. Dunagan, T. Stevens, R. Amils, J. Gómez-Elvira, D. C. Fernández-Remolar, J. Hall, K. Lynch, H. Cannon, J. Zavaleta, B.

Glass, and L. Lemke (2004), Mars analog Rio Tinto experiment (MARTE): 2003 drilling campaign to search for a subsurface Glass, and L. Lemke (2004), Mars analog Rio Tinto experiment (MARTE): 2003 drilling campaign to search for a subsurface biosphere at Rio Tinto Spain, Abstract no. 1766, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-biosphere at Rio Tinto Spain, Abstract no. 1766, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.19.

Tanaka, K. L., D. H. Scott, and R. Greeley (1992), Global stratigraphy, in Tanaka, K. L., D. H. Scott, and R. Greeley (1992), Global stratigraphy, in MarsMars, edited by H. H. Kieffer et al., pp. 345-382, The , edited by H. H. Kieffer et al., pp. 345-382, The University of Arizona Press, Tucson, Arizona.University of Arizona Press, Tucson, Arizona.

Whalley, W. B., and F. Azizi (2003), Rock glaciers and protalus landforms: Analogous forms and ice sources on Earth and Mars, Whalley, W. B., and F. Azizi (2003), Rock glaciers and protalus landforms: Analogous forms and ice sources on Earth and Mars, J. J. Geophys. Res., 108Geophys. Res., 108(E4), GDS 13-1 – GDS 13-17.(E4), GDS 13-1 – GDS 13-17.

Zuber, M. T. (2001), The crust and mantle of Mars, Zuber, M. T. (2001), The crust and mantle of Mars, Nature, 412Nature, 412, 220-227., 220-227.

References Cited – 3 of 3References Cited – 3 of 3


Recommended