+ All Categories
Home > Documents > Pruning Strategy Affects Fruit Size, Yield and Biennial...

Pruning Strategy Affects Fruit Size, Yield and Biennial...

Date post: 21-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
6
NEW YORK FRUIT QUARTERLY . VOLUME 22 . NUMBER 3 . FALL 2014 27 This research was partially supported by the New York Apple Research and Development Program Pruning Strategy Affects Fruit Size, Yield and Biennial Bearing of Gala and Honeycrisp Apples Terence L. Robinson 1 Leo I. Dominguez 1 and Fernando Acosta 2 1 Department of Horticulture, NewYork State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA 2 University of Chihuahua, Chihuahua, Mexico Pruning to reduce flower bud load to a specific target is a strategy we are promoting to facilitate later chemical thinning. In two studies, we compared 3 styles of pruning to reduce bud load: stubbing back, spur pruning (spur extinction) and limb renewal pruning. The stubbing back pruning and the spur extinction pruning reduced flower bud load, fruit number and yield the most but increased fruit size and crop value compared to just limb renewal pruning. However, spur extinction is more time consuming task than stubbing back. A simple way to reduce flower bud load that is consistent with the Tall Spindle pruning system is first the elimination of 1-3 whole branches, followed by columnarization of the remaining branches and lastly shortening back weak, thin, pendant branches.T he primary reasons for pruning apple trees are to control tree size and to improve the light distribution within the tree canopy to improve fruit quality. In recent years a third reason has been proposed which is to man- age flower bud load to reduce the need for chemical and hand thin- ning (Hoying and Robinson, 2013; Robinson, et al., 2014). In this context pruning is the first step in a complete crop load man- agement strategy (pruning, chemi- cal thinning and hand thinning) we have termed precision crop load manage- ment (PCLM) (Robinson et al., 2014). The pruning part of PCLM in- volves identifying a target flower bud load and pruning precisely to that bud load (Robinson et al., 2013; 2014). It begins with counting the number of flower buds on a few representative trees per orchard and continues with pruning off enough buds to achieve a target flower bud number per tree. Determining the target bud numbers per tree depends both on the desired yield and fruit size but also on the level of risk the grower is willing to accept. Although it is possible to use pruning to reduce fruiting buds to nearly the exact level required to set a full crop, we suggest that additional buds be retained to account for natural factors that cause buds not to set such as frost or freeze, poor pollination, and poor flower viability. Based on preliminary data we are currently suggesting that growers prune using a bud load factor of 1.5 flower buds for each final fruit number. There are several pruning techniques one could use to reduce flower bud load including: 1. Limb renewal prun- ing where entire limbs are removed back to it point or origin (Figure 1), 2. Simplifying branches (columnarization) where lateral sec- ondary branches are removed from a branch thereby leav- ing a column of fruit- ing spurs (Figure 2), 2. Stubbing back pruning where the distal portion of a branch is removed (Figure 3), and 3. Spur pruning (spur extinction) where the branch is left intact but individual spurs are removed along the branch length (Figure 4). Figure 1. Limb renewal pruning= Elimination of a large branch at the point of origin leaving a 1 inch-long beveled stub. Figure 2. Branch simplification pruning = Columnarizing branches by re- moving lateral secondary branch- es leaving a column of spurs.
Transcript
Page 1: Pruning Strategy Affects Fruit Size, Yield and Biennial ...nyshs.org/wp-content/uploads/2014/09/Robinson... · They will help you create a long-term tax plan, an especially important

NEW YORK FRUIT QUARTERLY . VOLUME 22 . NUMBER 3 . FALL 2014 27

This research was partially supported by the New York Apple Research and Development Program

Pruning Strategy Affects Fruit Size, Yield and Biennial Bearing of Gala and Honeycrisp ApplesTerence L. Robinson1 Leo I. Dominguez1 and Fernando Acosta2

1DepartmentofHorticulture,NewYorkStateAgriculturalExperimentStation,CornellUniversity,Geneva,NY14456,USA2UniversityofChihuahua,Chihuahua,Mexico

“Pruning to reduce flower bud load to a specific target is a strategy we are promoting to facilitate later chemical thinning. In two studies, we compared 3 styles of pruning to reduce bud load: stubbing back, spur pruning (spur extinction) and limb renewal pruning. The stubbing back pruning and the spur extinction pruning reduced flower bud load, fruit number and yield the most but increased fruit size and crop value compared to just limb renewal pruning. However, spur extinction is more time consuming task than stubbing back. A simple way to reduce flower bud load that is consistent with the Tall Spindle pruning system is first the elimination of 1-3 whole branches, followed by columnarization of the remaining branches and lastly shortening back weak, thin, pendant branches.”

The primary reasons for pruning apple trees are to control tree size and to improve the light distribution within the tree canopy to improve fruit quality. In recent years a

third reason has been proposed which is to man-age flower bud load to reduce the need for chemical and hand thin-ning (Hoying and Robinson, 2013; Robinson, et al., 2014). In this context pruning is the first step in a complete crop load man-agement strategy (pruning, chemi-cal thinning and hand thinning) we have termed precision crop lo ad manage -ment (P C L M) (Robinson et al., 2014). The pruning part of PCLM in-volves identifying

a target flower bud load and pruning precisely to that bud load (Robinson et al., 2013; 2014). It begins with counting the number of flower buds on a few representative trees per orchard and continues with pruning off enough buds to achieve a target flower bud number per tree. Determining the target bud numbers per tree depends both on the desired yield and fruit size but also on the level of risk the grower is willing to accept. Although it is possible to use pruning to reduce fruiting buds to nearly the exact level required to set a full crop, we suggest that additional buds be retained to account for natural factors that cause buds not to set such as frost or freeze, poor pollination, and poor flower viability. Based on preliminary data we are currently suggesting that growers prune using a bud load factor of 1.5 flower buds for each final fruit number.

There are several pruning techniques o n e c o u l d u s e t o reduce flower bud load including:1. Limb renewal prun-

ing where entire limbs are removed back to it point or origin (Figure 1),

2. Simplifying branches (columnarization) where lateral sec-ondar y branches are removed from a branch thereby leav-ing a column of fruit-ing spurs (Figure 2),

2. S t u b b i n g b a c k pruning where the distal portion of a branch is removed (Figure 3), and

3. Spur pruning (spur extinction) where the branch is left intact but individual spurs are removed along the branch length (Figure 4).

1

Fig. 1 Limb renewal pruning= Elimination of a large branch at the point of origin leaving a 1

inch-long beveled stub.

Fig. 2 Branch simplification pruning=Columnarizing branches by removing lateral secondary

branches leaving a column of spurs.

Figure1. Limbrenewalpruning=Eliminationofalargebranchatthepointoforiginleavinga1inch-longbeveledstub.

1

Fig. 1 Limb renewal pruning= Elimination of a large branch at the point of origin leaving a 1

inch-long beveled stub.

Fig. 2 Branch simplification pruning=Columnarizing branches by removing lateral secondary

branches leaving a column of spurs.

Figure2. Branch simplification pruning =Columnarizing branches by re-movinglateralsecondarybranch-esleavingacolumnofspurs.

Page 2: Pruning Strategy Affects Fruit Size, Yield and Biennial ...nyshs.org/wp-content/uploads/2014/09/Robinson... · They will help you create a long-term tax plan, an especially important

28 NEW YORK STATE HORTICULTURAL SOCIETY

O r c h a r d systems differ in which o f the s e s t r a te g i e s th e y employ to manage the tree canopy via pruning (Robinson, 2003). The Tall Sp ind le s y s tem uses limb renewal pruning and branch s i m p l i f i c a t i o n t o a c h i e v e t h e desired bud load (Robinson, et al., 2006) while the Solaxe system relies on spur extinction t o a c h i e v e t h e desired bud load (Lespinasse, 1996; Lauri and Lespinasse, 2000; Lauri et al., 2004). Some recent studies have found that spur extinction gave positive results in terms of fruit size and return bloom but these studies did not examine why spur extinction gave positive results nor did they compare spur extinction with other methods of pruning to adjust bud load (Tustin et al., 2011; Tustin et al., 2012). We theorized that spur extinction was simply a method of crop load adjustment and the positive effects were largely a result of reducing crop load. We further theorized that other methods of adjusting crop load via pruning would

Figure3.Stubbingbackpruning=Cuttingoffthedistal1/3ofthebranchtoeliminated~1/3ofthefloweringbuds and the small diameter distal end of thebranch.

Figure4. Spur pruning=Spur Extinction pruning is themanual removal of every third spur therebyeliminated~1/3ofthefloweringbudsbutleavingthebranchintactwithnootherpruning.

2

Fig. 3 Stubbing back pruning=Cutting off the distal 1/3 of the branch to eliminated ~1/3 of the

flowering buds and the small diameter distal end of the branch.

Fig. 4 Spur pruning=Spur Extinction pruning is the manual removal of every third spur thereby

eliminated ~1/3 of the flowering buds but leaving the branch intact with no other pruning.

2

Fig. 3 Stubbing back pruning=Cutting off the distal 1/3 of the branch to eliminated ~1/3 of the

flowering buds and the small diameter distal end of the branch.

Fig. 4 Spur pruning=Spur Extinction pruning is the manual removal of every third spur thereby

eliminated ~1/3 of the flowering buds but leaving the branch intact with no other pruning.

give similar results. To test these hypotheses, we conducted 2 experiments to compare 3 of the 4 pruning strategies listed above to determine if one pruning strategy was better than another in improving fruit size, crop value or return bloom.

Materials And Methods Gala Fruit Size Study: In 2003 and 2004 a field study was conducted at Geneva, New York with 6 year-old Gala apple trees on M.9 rootstock trained in the Vertical Axis system. Three pruning styles were compared: 1) Minimal Pruning which

tax planning is not your job

FarmCreditEast.com / 800.562.2235

But with the hours you put into tax planning and preparation throughout the year, it may feel like it is. Our tax specialists will do more than

prepare your annual return. They will help you create a long-term tax plan, an especially important strategy during years of increased profits. And with

the time you save on paperwork, you can focus your efforts on the job you love most — a job we value, because we are you. For more information, watch our video at FarmCreditEast.com/Taxes.

Page 3: Pruning Strategy Affects Fruit Size, Yield and Biennial ...nyshs.org/wp-content/uploads/2014/09/Robinson... · They will help you create a long-term tax plan, an especially important

NEW YORK FRUIT QUARTERLY . VOLUME 22 . NUMBER 3 . FALL 2014 29

consisted of the complete removal of 1-3 of the largest limbs on the tree back to their point of origin; 2) Spur Pruning (Spur Extinction) which consisted of the elimination of 1-3 branches as in the minimal pruning treatment and then the elimination of 1/3 of all fruiting spurs on each branch by removing every third spur; and 3) Stubbing Back Pruning which consisted of the elimination of 1-3 branches as in the minimal pruning treatment and then the removal of the distal 1/3 of each horizontal or pendant branch. The experiment was designed as a randomized complete block with 4 blocks and 12 individual tree replications per treatment in each block. Trees were pruned in March of each year about 1 month before bud-break. Trees were chemically thinned with Carbaryl at petal fall followed by benzyl adenine plus Carbaryl when fruits were 10mm diameter. The trees were not hand thinned. At pink, the number of flowering buds per tree was recorded. At harvest, fruit number, fruit weight and trunk circumference were recorded. Trunk cross-sectional area, flower bud load and fruit crop load were calculated from trunk circumference and flower bud and fruit counts. Crop value was calculated from a predicted fruit size distribution using mean fruit size and a normal distribution and a standard deviation of 20g and then assigning prices to each size category. Data were analyzed by ANOVA using SAS GLM procedure. Adjusted fruit size was calculated by using crop load as a covariate. Honeycrisp Return Bloom Study: In 2011 and 2012 a second field study was conducted at Geneva, New York with 10 year-old Honeycrisp apple trees on M.9 rootstock trained in the Vertical Axis system. Three pruning styles were compared:

1) Minimal Pruning; 2) Spur Pruning (Spur Extinction); and 3) Stubbing Back Pruning which are described in the Gala experiment. The experiment was designed as a randomized complete block with 3 blocks and 9 individual tree replications per treatment in each block. Trees were pruned in March of each year about 1 month before bud-break. Trees were chemically thinned with Carbaryl at petal fall followed by naphthalene acetic acid plus Carbaryl when fruits were 10mm diameter. The trees were not hand thinned. At pink, the number of flowering buds per tree was recorded. At harvest, fruit number, fruit weight and trunk circumference were recorded. Trunk cross-sectional area, flower bud load and fruit crop load were calculated from trunk circumference and flower bud and fruit counts. Crop value was calculated from a predicted fruit size distribution using mean fruit size and a normal distribution and a standard deviation of 20g and then assigning prices to each size category. In the spring of 2012, the number of flowering and non-flowering spurs on three branches per tree was recorded. Return bloom was calculated as the percentage of total spurs, which were floral. Data were analyzed by ANOVA using SAS GLM procedure. Adjusted fruit size was calculated by using crop load as a covariate.

Results Gala Fruit Size Study: Both spur pruning and stubbing back pruning similarly reduced flower bud load compared to the minimally pruned treatment (Figure 5). In 2003 the final crop load (after a uniform chemical thinning program) of the stubbing

tax planning is not your job

FarmCreditEast.com / 800.562.2235

But with the hours you put into tax planning and preparation throughout the year, it may feel like it is. Our tax specialists will do more than

prepare your annual return. They will help you create a long-term tax plan, an especially important strategy during years of increased profits. And with

the time you save on paperwork, you can focus your efforts on the job you love most — a job we value, because we are you. For more information, watch our video at FarmCreditEast.com/Taxes.

Page 4: Pruning Strategy Affects Fruit Size, Yield and Biennial ...nyshs.org/wp-content/uploads/2014/09/Robinson... · They will help you create a long-term tax plan, an especially important

30 NEW YORK STATE HORTICULTURAL SOCIETY

back treatment was significantly lower than the minimally pruned treatment while the spur extinction treatment was intermediate but not significantly different than the minimally pruned treatment. However in 2004, both the spur extinction and the stubbing back treat-ments had significantly lower crop loads than the minimally pruned treatment. In 2003 fruit size of the stubbing back treatment was significantly greater than the minimally pruned treatment while the spur extinction treatment was intermediate but not significantly different than the minimally pruned treatment (Figure 5). However in 2004, both the spur extinction and the stubbing back treatment had significantly larger fruit size than the minimally pruned treatment. When fruit size was adjusted for crop load by covariate analysis the stubbing back pruning continued to have significantly larger fruit size than the minimally pruned treatment in 2003 and both the spur extinction and the stubbing back treatment had larger adjusted fruit size than the minimally pruned treatment in 2004. Pruning strategy had no effect on final yield or crop value in 2003 but in 2004, both spur pruning and stubbing back reduced yield but improved crop value compared to the minimally pruned treatment (Fig 5).

Honeycrisp Return Bloom Study: Both spur pruning and stubbing back pruning were equally effectively in reducing fruit number per tree (~30%); however, neither pruning strategy had any effect on the rate of fruit set (Figure 6). Both spur pruning and stubbing back pruning improved fruit size similarly (Figure 6). When fruit size was adjusted for crop load by covariate analysis both the spur extinction and the stubbing back treat-ment had larger adjusted fruit size than the minimally pruned treatment but the differences were reduced after the covariate adjustment. Both spur pruning and stubbing back pruning reduced yield (data not shown) but improved crop value compared to the minimally pruned treatment (Fig 6). Pruning strategy had no effect on return bloom of Hon-eycrisp (Figure 6). When fruit number per tree was regressed against return bloom, there was a significantly different nega-tive relationship for each pruning treatment (Figure 7). The minimally pruned treatment had the most negative slope and a much higher intercept. The stubbing back pruning had an intermediate slope and intermediate intercept while the spur pruning had the lowest slope and lowest intercept.

Discussion Spur extinction pruning and stubbing back pruning had very similar effects on flower bud load, fruit set, fruit size, yield and crop value with both Gala and Honeycrisp in both experiments. Both spur extinction and stubbing back prun-

ing generally had a positive effect on crop value compared to minimal pruning, thus the more aggressive pruning resulted in a benefit to the fruit grower. It appears that the effects of either pruning style were largely due to their effects on crop load not due to inherent advantages of one pruning style over another. There was no significant effect of pruning style on return bloom, which is in contrast to other reports showing a benefit due to spur extinction (Tustin, et al., 2011). In our study, return bloom was primarily affected by crop load; however, the different slopes of the relationships for each pruning style seemed to indicate that spur extinction at a medium crop load would result in the worst return bloom while the minimally pruned treatment at the same crop load would have better return bloom. With Honeycrisp, which is a highly biennial and weak growing cultivar, it appears that return bloom is better if there are resting spurs as a consequence of pruning and thinning strategy. To evaluate the need for more aggressive pruning we con-ducted a survey of the severity of pruning done by commercial apple growers in New York State in 2013. It showed that for both Gala and Honeycrisp some fruit growers were leaving only slightly more than 1 flower bud for each final fruit number

Figure5. Effect of pruning treatment on flower cluster load, fruit set fruit size,yieldandcropvalueofGalaappletreeson/M.9rootstockatGeneva,NY,USAin2004and2004.

Page 5: Pruning Strategy Affects Fruit Size, Yield and Biennial ...nyshs.org/wp-content/uploads/2014/09/Robinson... · They will help you create a long-term tax plan, an especially important

NEW YORK FRUIT QUARTERLY . VOLUME 22 . NUMBER 3 . FALL 2014 31

Figure7. Relationship of fruit number per tree in 2011 and return bloom in 2012 for threepruningtreatmentofHoneycrispappletreeson/M.9rootstockatGeneva,NY,USA.

5

Fig. 7. Relationship of fruit number per tree in 2011 and return bloom in 2012 for three pruning

treatment of Honeycrisp apple trees on /M.9 rootstock at Geneva, NY, USA.

Figure6. Effectofpruningtreatmentonflowerclusterload,fruitsetfruitsize,yieldandcropvalueofGalaappletreeson/M.9rootstockatGeneva,NY,USAin2004and2004.

while other growers were leaving 2, 3, 4 or 5 flower buds for each final fruit number (Table 1). The data from our survey and our pruning experiments suggests that many growers in New York are leaving too many flower buds when they prune and should prune more ag-gressively to improve fruit size and crop value; however, the final ratio of flower buds to final fruit number could be different for Gala than for Honeycrisp. With Gala (which is not a biennial cultivar) reducing the flower bud load with more aggressive pruning would appear to be more advantageous and more beneficial economically while with Honeycrisp an overly aggressive pruning where flower bud number was reduced to close to the final fruit number could result in greater biennial bearing. Based in these results we have proposed that Gala should be pruned to 1.2-1.3 flower buds per final fruit number while Honeycrisp should be pruned to 1.5-1.8 flower buds per final fruit number to allow more resting spurs with Hon-eycrisp (Robinson, et al., 2014). To achieve this reduction in flower bud load through pruning we have proposed there are at least 4 pruning approaches to accomplish this as outlined in the Introduction of this report. Our data suggest that spur extinction is no better at doing this than stubbing back pruning. Since spur extinction is more costly due to its high labor requirement we suggest that high-density orchards be managed with a combination of the other 3 pruning techniques. Our suggested pruning strategy is to: 1) annually remove 1-3 large limbs with a bevel cut for renewal and to keep the tree within its space; 2) columnarize the remaining branches by cutting off large secondary lateral branches leaving a column of spurs; and 3) shorten back very thin, weak pendant wood to the point where the branch is at least pencil size. In preliminary trials these 3 steps in pruning have resulted in approximately the correct number of flower buds.

Conclusions Pruning is an effective way to reduce flow-er bud load to accomplish some or most of the thinning job with the pruning shears. Among the different styles of pruning to reduce flower bud load, spur extinction was no better or worse than stubbing back for improving fruit size, crop value or return bloom of Gala and Honeycrisp. However, spur extinction is more time consuming task than stubbing back. A simple way to reduce flower bud load that is consistent with the Tall Spindle pruning system is a combination of elimination of 1-3 whole branches, followed by columnarization of the remaining branches and lastly shorten-ing back weak, thin, pendant branches.

Page 6: Pruning Strategy Affects Fruit Size, Yield and Biennial ...nyshs.org/wp-content/uploads/2014/09/Robinson... · They will help you create a long-term tax plan, an especially important

32 NEW YORK STATE HORTICULTURAL SOCIETY

Literature CitedHoying, S.A. and Robinson, T.L. 2013. Pruning for precision crop

load management. In: Robinson, T.L. (ed.). 2013. Eastern Apple Precision Orchard Management Summit Proceedings. New York State Agricultural Experiment Station, Cornell University, p. 21-24.

Lauri, P.E. and Lespinasse, J.M. 2000. The Vertical Axis and So-lAxe systems in France. Acta Hort. 513:287-296.

Lauri, P.E., Willaume, M., Larrive, G. and Lespinasse, J.M. 2004. The concept of centrifugal training in apple aimed at opti-mizing the relationship between growth and fruiting. Acta Hort. 636:35-42.

Lespinasse, J.M. 1996. Apple orchard management practices in France. From the Vertical Axis to the SolAxe. Compact Fruit Tree 29:83-88.

Robinson, T.L. 2003. Apple orchard systems. In: D.C. Ferree and I.J. Warrington (eds.). Apples: Physiology, Production and Uses. CABI Publishing. Wallingford, Oxon, United Kingdom.

Robinson. T.L., Hoying, S.A. and Reginato, G.L. 2006. The Tall Spindle apple planting system. NY Fruit Quarterly 14(2):21-28.

Robinson, T., Lakso, A., Greene, D. and Hoying, S. 2013. Preci-sion crop load management. NY Fruit Quarterly 21(2):3-9.

Robinson, T., Hoying, S., Miranda Sazo, M. and Rufato, A. 2014. Precision crop load management: Part 2. NY Fruit Quarterly 22(1):9-13.

Tustin, D.S., Dayatilake, G.A., Henriod, RE., Breen, K.C. and Oliver, M.J. 2011. Changes in fruiting behaviour and vegetative development of ‘Scifresh’ apple in response to artificial spur extinction using centrifugal training. Acta Hort. 903:603-610.

Tustin, D.S., Dayatilake, G.A., Breen, K.C. and Oliver, M.J. 2012. Fruit set responses to changes in floral bud load – a new concept for crop load regulation. Acta Hort. 932:195-202.

Terence Robinson is a research and extension professor who leads Cornell’s program on orchard management. Leo Dominguez is a research support specialist and graduate student who works with Dr. Robinson. Fernando Acosta was a visiting student from the University of Chihuahua who worked with Dr. Robinson for one year.

Table1. RangeoffloralbudloadsforHoneycrispandGalaappletrees in commercial orchards in NewYork State, USA in2013.

RatioofFloralBuds:FinalTargetFruitNumber

Orchard Honeycrisp Gala

1 1.49 1.13

2 1.83 1.31

3 2.00 1.47

4 2.43 1.64

5 2.44 1.74

6 2.50 1.82

7 2.72 1.83

8 2.88 1.85

9 2.88 1.94

10 3.25 2.05

11 3.44 2.11

12 3.46 2.64

13 5.22 2.70

14 5.80 2.88

15 - 3.26

16 - 3.48

17 - 4.38

18 - 5.80

Average 3.02 2.39

Lend a Helping Hand to Fruit Coloring

Contact your Helena representative today.

Foliar Phosphite

®

®

Helena, Ele-Max, Precision Nutrition & People...Products...Knowledge... are registered trademarks of Helena Holding Company. Utilize is a registered trademark of Goemar. © 2014 Helena Holding Company.

Formulated With


Recommended