+ All Categories
Home > Documents > Pseudo-likelihood estimation for non hereditary Gibbs ... › ~lavancie › slides ›...

Pseudo-likelihood estimation for non hereditary Gibbs ... › ~lavancie › slides ›...

Date post: 27-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
42
Introduction Definitions Campbell Estimation Simulations Pseudo-likelihood estimation for non hereditary Gibbs point processes Frédéric Lavancier, Laboratoire Jean Leray, Nantes, France. Joint work with David Dereudre, LAMAV, Valenciennes, France. 7th World Congress in Probability and Statistics Singapore, July 14-19 2008
Transcript
  • Introduction Definitions Campbell Estimation Simulations

    Pseudo-likelihood estimation for nonhereditary Gibbs point processes

    Frédéric Lavancier,Laboratoire Jean Leray, Nantes, France.

    Joint work withDavid Dereudre,

    LAMAV, Valenciennes, France.

    7th World Congress in Probability and StatisticsSingapore, July 14-19 2008

  • Introduction Definitions Campbell Estimation Simulations

    1 Introduction

  • Introduction Definitions Campbell Estimation Simulations

    Introduction

    SettingPseudo-likelihood estimation for Gibbs point processes.In the hereditary case : Besag (1975), Jensen and Moller(1991), Jensen and Kunsch (1994), Mase (1995), Billiot,Coeurjolly and Drouilhet (2008)Our aim : generalization to the non hereditary case.Motivation : non hereditary hardcore processes

    Our workCharacteristics of the non-hereditary interactions.A new equilibrium Campbell equation.Consistency of the Pseudo-likelihood estimator.Some simulations.

  • Introduction Definitions Campbell Estimation Simulations

    Introduction

    SettingPseudo-likelihood estimation for Gibbs point processes.In the hereditary case : Besag (1975), Jensen and Moller(1991), Jensen and Kunsch (1994), Mase (1995), Billiot,Coeurjolly and Drouilhet (2008)Our aim : generalization to the non hereditary case.Motivation : non hereditary hardcore processes

    Our workCharacteristics of the non-hereditary interactions.A new equilibrium Campbell equation.Consistency of the Pseudo-likelihood estimator.Some simulations.

  • Introduction Definitions Campbell Estimation Simulations

    2 Gibbs measure and hereditary interactions

  • Introduction Definitions Campbell Estimation Simulations

    Notations

    γ denotes a point configuration on Rd (i.e. aninteger-valued measure)δx denotes the Dirac measure at x.For Λ a subset in Rd, we note γΛ the projection of γ on Λ :

    γΛ =∑x∈γ∩Λ

    δx.

    M(Rd) = { γ }π is the Poisson process on Rd.πΛ is the Poisson process on Λ.λ is the Lebesgue measure on Rd.

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs measures

    (HΛ)Λ denotes a general family of energy functions :

    HΛ : (γΛ, γΛc) 7−→ HΛ(γΛ|γΛc)

    There are some minimal conditions on (HΛ)Λ.

    DefinitionA probability measure µ is a Gibbs measure if for everybounded Λ and for µ almost every γ

    µ(dγΛ|γΛc) ∝ e−HΛ(γΛ|γΛc )πΛ(dγΛ).

    If HΛ(γ) = +∞ then γ is forbidden µ a.s.

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs measures

    (HΛ)Λ denotes a general family of energy functions :

    HΛ : (γΛ, γΛc) 7−→ HΛ(γΛ|γΛc)

    There are some minimal conditions on (HΛ)Λ.

    DefinitionA probability measure µ is a Gibbs measure if for everybounded Λ and for µ almost every γ

    µ(dγΛ|γΛc) ∝ e−HΛ(γΛ|γΛc )πΛ(dγΛ).

    If HΛ(γ) = +∞ then γ is forbidden µ a.s.

  • Introduction Definitions Campbell Estimation Simulations

    Hereditary

    DefinitionThe family of energies (HΛ)Λ is said hereditary if for every Λ,every γ ∈M(Rd) and every x ∈ Λ

    HΛ(γ) = +∞⇒ HΛ(γ + δx) = +∞.

    γ is forbidden ⇒ γ + δx is forbiddenγ + δx is allowed ⇒ γ is allowed

    It is a standard assumption in classical statistical mechanics.Example : The classical hard ball model is hereditary.

  • Introduction Definitions Campbell Estimation Simulations

    Hereditary

    DefinitionThe family of energies (HΛ)Λ is said hereditary if for every Λ,every γ ∈M(Rd) and every x ∈ Λ

    HΛ(γ) = +∞⇒ HΛ(γ + δx) = +∞.

    γ is forbidden ⇒ γ + δx is forbidden

    γ + δx is allowed ⇒ γ is allowed

    It is a standard assumption in classical statistical mechanics.Example : The classical hard ball model is hereditary.

  • Introduction Definitions Campbell Estimation Simulations

    Hereditary

    DefinitionThe family of energies (HΛ)Λ is said hereditary if for every Λ,every γ ∈M(Rd) and every x ∈ Λ

    HΛ(γ) = +∞⇒ HΛ(γ + δx) = +∞.

    γ is forbidden ⇒ γ + δx is forbiddenγ + δx is allowed ⇒ γ is allowed

    It is a standard assumption in classical statistical mechanics.Example : The classical hard ball model is hereditary.

  • Introduction Definitions Campbell Estimation Simulations

    Hereditary

    DefinitionThe family of energies (HΛ)Λ is said hereditary if for every Λ,every γ ∈M(Rd) and every x ∈ Λ

    HΛ(γ) = +∞⇒ HΛ(γ + δx) = +∞.

    γ is forbidden ⇒ γ + δx is forbiddenγ + δx is allowed ⇒ γ is allowed

    It is a standard assumption in classical statistical mechanics.Example : The classical hard ball model is hereditary.

  • Introduction Definitions Campbell Estimation Simulations

    Non-hereditary

    We are interested in the non hereditary case.

    Examples :

    - If the interaction imposes clusters.

    HΛ(γ) = +∞ HΛ(γ + δx) < +∞

    - In Dereudre (2007), the author studies random GibbsVoronoi tesselations with geometric hardcore interactions.

  • Introduction Definitions Campbell Estimation Simulations

    Non-hereditary

    We are interested in the non hereditary case.Examples :

    - If the interaction imposes clusters.

    HΛ(γ) = +∞ HΛ(γ + δx) < +∞

    - In Dereudre (2007), the author studies random GibbsVoronoi tesselations with geometric hardcore interactions.

  • Introduction Definitions Campbell Estimation Simulations

    Non-hereditary

    We are interested in the non hereditary case.Examples :

    - If the interaction imposes clusters.

    HΛ(γ) = +∞ HΛ(γ + δx) < +∞

    - In Dereudre (2007), the author studies random GibbsVoronoi tesselations with geometric hardcore interactions.

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs Voronoi Tessellations.

    HΛ(γ) =∑

    {ver(x1,x2),(x1,x2)∈ Voronoi(γ)}

    V (ver(x1, x2)),

    where for every vertice ver(x1, x2),

    V (ver(x1, x2)) =

    {+∞ if ||x1 − x2|| > α,< +∞ otherwise.

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs Voronoi Tessellations.

    HΛ(γ) =∑

    {ver(x1,x2),(x1,x2)∈ Voronoi(γ)}

    V (ver(x1, x2)),

    where for every vertice ver(x1, x2),

    V (ver(x1, x2)) =

    {+∞ if ||x1 − x2|| > α,< +∞ otherwise.

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs Voronoi Tessellations.

    HΛ(γ) =∑

    {ver(x1,x2),(x1,x2)∈ Voronoi(γ)}

    V (ver(x1, x2)),

    where for every vertice ver(x1, x2),

    V (ver(x1, x2)) =

    {+∞ if ||x1 − x2|| > α,< +∞ otherwise.

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs Voronoi Tessellations.

    HΛ(γ) =∑

    {ver(x1,x2),(x1,x2)∈ Voronoi(γ)}

    V (ver(x1, x2)),

    where for every vertice ver(x1, x2),

    V (ver(x1, x2)) =

    {+∞ if ||x1 − x2|| > α,< +∞ otherwise.

  • Introduction Definitions Campbell Estimation Simulations

    HΛ(γ) = +∞ HΛ(γ + δx) < +∞

  • Introduction Definitions Campbell Estimation Simulations

    HΛ(γ) = +∞ HΛ(γ + δx) < +∞

  • Introduction Definitions Campbell Estimation Simulations

    3 Equilibrium equation

  • Introduction Definitions Campbell Estimation Simulations

    Nguyen-Zessin equilibrium equation

    Definition

    Let µ be a probability measure onM(Rd). The reduced Campbellmeasure C !µ is defined for all test function f from Rd ×M(Rd)into R by

    C !µ(f) = Eµ

    (∑x∈γ

    f(x, γ − δx)

    ).

    Theorem (Nguyen-Zessin (1979))

    Suppose that the energy (HΛ)Λ is hereditary. µ is a Gibbsmeasure if and only if

    C!µ(dx, dγ) = e−h(x,γ)λ⊗ µ(dx, dγ).

    where h(x, γ) = HΛ(γ + δx)−HΛ(γ).

    This theorem is not true in the non-hereditary case.

  • Introduction Definitions Campbell Estimation Simulations

    Nguyen-Zessin equilibrium equation

    Definition

    Let µ be a probability measure onM(Rd). The reduced Campbellmeasure C !µ is defined for all test function f from Rd ×M(Rd)into R by

    C !µ(f) = Eµ

    (∑x∈γ

    f(x, γ − δx)

    ).

    Theorem (Nguyen-Zessin (1979))

    Suppose that the energy (HΛ)Λ is hereditary. µ is a Gibbsmeasure if and only if

    C!µ(dx, dγ) = e−h(x,γ)λ⊗ µ(dx, dγ).

    where h(x, γ) = HΛ(γ + δx)−HΛ(γ).

    This theorem is not true in the non-hereditary case.

  • Introduction Definitions Campbell Estimation Simulations

    Removable points

    Definition

    Let γ be inM(Rd) and x be a point of γ.x is said removable from γ if

    ∃Λ such that x ∈ Λ and HΛ(γ − δx) < +∞.

    We note R(γ) the set of removable points in γ.

    DefinitionLet x in R(γ). We define the energy of x in γ − δx with thefollowing expression

    h(x, γ − δx) = HΛ(γ)−HΛ(γ − δx),

  • Introduction Definitions Campbell Estimation Simulations

    Removable points

    Definition

    Let γ be inM(Rd) and x be a point of γ.x is said removable from γ if

    ∃Λ such that x ∈ Λ and HΛ(γ − δx) < +∞.

    We note R(γ) the set of removable points in γ.

    DefinitionLet x in R(γ). We define the energy of x in γ − δx with thefollowing expression

    h(x, γ − δx) = HΛ(γ)−HΛ(γ − δx),

  • Introduction Definitions Campbell Estimation Simulations

    Equilibrium equations for non-hereditary Gibbs measures

    Theorem (Dereudre-Lavancier (2007))Let µ be a Gibbs measure,

    1Ix∈R(γ+δx)C!µ(dx, dγ) = e

    −h(x,γ)λ⊗ µ(dx, dγ). (1)

    Remark- If (HΛ)Λ is hereditary, x is always in R(γ + δx).So, (1) becomes equivalent to the Nguyen-Zessin’sequilibrium equation.

    - The equation (1) does not characterize the Gibbs measures.

  • Introduction Definitions Campbell Estimation Simulations

    Equilibrium equations for non-hereditary Gibbs measures

    Theorem (Dereudre-Lavancier (2007))Let µ be a Gibbs measure,

    1Ix∈R(γ+δx)C!µ(dx, dγ) = e

    −h(x,γ)λ⊗ µ(dx, dγ). (1)

    Remark- If (HΛ)Λ is hereditary, x is always in R(γ + δx).So, (1) becomes equivalent to the Nguyen-Zessin’sequilibrium equation.

    - The equation (1) does not characterize the Gibbs measures.

  • Introduction Definitions Campbell Estimation Simulations

    4 Pseudo-likelihood estimation

  • Introduction Definitions Campbell Estimation Simulations

    The pseudo likelihood contrast function

    Let Θ be a bounded open set in Rp.- θ in Θ : the smooth parameter of the energy.- α in R+ : the hardcore support parameter.- (Hα,θΛ )Λ : the parametric family of energies.- For x in R(γ), hα,θ(x, γ − δx) = Hα,θΛ (γ)−H

    α,θΛ (γ − δx).

    Let Λn the observation window of γ (e. g. Λn = [−n, n]d).

    DefinitionWe define the pseudo likelihood contrast function

    PLLΛn(γ, α, θ) =

    1Λn

    ∫Λn

    exp(−hα,θ(x, γ)

    )dx+

    ∑x∈Rα,θ(γ)∩Λn

    hα,θ(x, γ − δx)

    .

  • Introduction Definitions Campbell Estimation Simulations

    Estimation of both α and θ

    Let µ be a stationary Gibbs measure for the parameters α∗, θ∗.α∗ and θ∗ have to be estimated.

    DefinitionWe define for µ almost every γ

    α̂n(γ) = inf{α > 0, Hα,θΛn (γ)

  • Introduction Definitions Campbell Estimation Simulations

    Estimation of both α and θ

    Let µ be a stationary Gibbs measure for the parameters α∗, θ∗.α∗ and θ∗ have to be estimated.

    DefinitionWe define for µ almost every γ

    α̂n(γ) = inf{α > 0, Hα,θΛn (γ)

  • Introduction Definitions Campbell Estimation Simulations

    Estimation of both α and θ

    Let µ be a stationary Gibbs measure for the parameters α∗, θ∗.α∗ and θ∗ have to be estimated.

    DefinitionWe define for µ almost every γ

    α̂n(γ) = inf{α > 0, Hα,θΛn (γ)

  • Introduction Definitions Campbell Estimation Simulations

    5 Simulations

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs Voronoi Tessellations.

    Hα,θΛ (γ) =∑

    {ver(x1,x2),(x1,x2)∈ Voronoi(γ)}

    V α,θ(ver(x1, x2)),

    where for every vertice ver(x1, x2),

    V α,θ(ver(x1, x2)) =

    {+∞ if ||x1 − x2|| > αθ√

    max(V1,V2)min(V1,V2)

    − 1 otherwise,

    with Vj the volume of cell(xj).

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs Voronoi Tessellations.

    Hα,θΛ (γ) =∑

    {ver(x1,x2),(x1,x2)∈ Voronoi(γ)}

    V α,θ(ver(x1, x2)),

    where for every vertice ver(x1, x2),

    V α,θ(ver(x1, x2)) =

    {+∞ if ||x1 − x2|| > αθ√

    max(V1,V2)min(V1,V2)

    − 1 otherwise,

    with Vj the volume of cell(xj).

  • Introduction Definitions Campbell Estimation Simulations

    α = 0.12, θ = 0.5 α = 0.12, θ = −0.5

  • Introduction Definitions Campbell Estimation Simulations

    α = 0.12, θ = 0.5 α = 0.12, θ = −0.5

    6/164 removable points 456/634 removable points

    α̂ = 0.119, θ̂ = 0.6 α̂ = 0.119, θ̂ = −0.49

  • Introduction Definitions Campbell Estimation Simulations

    α = 0.12, θ = 0.5 α = 0.12, θ = −0.5

    6/164 removable points 456/634 removable points

    α̂ = 0.119, θ̂ = 0.6 α̂ = 0.119, θ̂ = −0.49

  • Introduction Definitions Campbell Estimation Simulations

    Repartition of α̂n and θ̂n on 200 replicates

    α = 0.12, θ = 0.5 sd(α̂n) = 1.7 10−4 sd(θ̂n) = 0.102

    α = 0.12, θ = −0.5 sd(α̂n) = 2.3 10−4 sd(θ̂n) = 0.016

    Asymptotic normality of θ̂n ? −→ If α is known : ok.−→ Otherwise... ?

  • Introduction Definitions Campbell Estimation Simulations

    E. Bertin, J.M. Billiot, R. Drouilhet, (1999)Existence of nearest-neighbours spatial Gibbs models , Adv. Appl. Prob. (SGSA) 31, 895-909.

    J. Besag , (1975). Statistical analysis of non-lattice data, The statistician,24 192-236.

    J.-M. Billiot, , J.-F. Coeurjolly, and R. Drouilhet, (2008) Maximumpseudolikelihood estimator for exponential family models of marked Gibbspoint processes, Electronic Journal of Statistics.

    D. Dereudre , (2007) Gibbs Delaunay tessellations with geometric hardcoreconditions, to appear in J.S.P.

    D. Dereudre , F. Lavancier, (2007) Pseudo-likelihood estimation fornon-hereditary Gibbs point processes, preprint.

    J.L. Jensen and H.R. Künsch, (1994) On asymptotic normality of pseudolikelihood estimates for pairwise interaction process, Ann. Inst. Statist.Math., Vol. 46, 3 :487-7486.

    J.L. Jensen and J. Moller (1991) Pseudolikelihood for exponential familymodels of spatial point processes, Ann. Appl. Probab. 1, 445-461.

    S. Mase (1995) Consistency of maximum pseudo-likelihood estimator ofcontinuous state space Gibbsian process Ann. Appl. Probab. 5, 603-612.

    X.X. Nguyen and H. Zessin, (1979) Integral and differentialcharacterizations of the Gibbs process, Math. Nach. 88 105-115.

  • Introduction Definitions Campbell Estimation Simulations

    Random Tessellation with hardcore interaction

    Point processes with forced clustersIntro

    Introduction Gibbs measure and hereditary interactionsEquilibrium equationPseudo-likelihood estimationSimulations


Recommended