+ All Categories
Home > Documents > PSTI_EMS

PSTI_EMS

Date post: 03-Apr-2018
Category:
Upload: parichay-gupto
View: 219 times
Download: 0 times
Share this document with a friend

of 58

Transcript
  • 7/28/2019 PSTI_EMS

    1/58

    ENERGY MANAGEMENT SYSTEM

    Overview

    October 10, 2011

    Dr Shekhar KELAPURE

    PSTI, Bangalore

  • 7/28/2019 PSTI_EMS

    2/58

    What we cover

    Load Dispatch

    Why EMS

    What is EMS

    Components of EMS

    Network Applications Framework

    State Estimator

    Power Flow & Optimal Power Flow

    Contingency Analysis

    Load Forecast

    Dr Shekhar Kelapure 2

    What we do NOT cover

    Generation Applications

    Fault Analysis

  • 7/28/2019 PSTI_EMS

    3/58

    Load Dispatch

    Objective -> Operate/Drive the Power System

    so that it is Stable

    Reliable

    Secure

    OPTIMAL

    Operate Power System Efficiently

    Whats so big

    3Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    4/58

    Why Energy Management System (EMS)?

    What is expected from the Dispatcher?

    Stable/reliable/secure and optimal Operation

    What the Dispatcher need to know? Complete knowledge about the system

    (Parameters and models of the System components)

    And Knowledge of the Situation Situation Awareness

    (Real Time data of the system)

    EMS Mechanism to capturesystem knowledge and situation awareness

    And provide key indicators

    4Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    5/58

    Mechanism to hold the system knowledge

    Mechanism to capture real time data (meas)

    Analog measurements (P, Q, V, F, )

    Digital measurements (Status - CBs etc)

    Validate the measurements

    Analyze system performance using softwareprograms and provide key indicators

    Display data/measurements on meaningfuldisplays

    Send control commands

    to operate the system efficiently

    What is Energy Management System?

    5Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    6/58

    DatabasesDatabases

    Components of EMS

    Presentation

    Layer

    (DISPLAYS)

    Presentation

    Layer

    (DISPLAYS)

    AutomaticGeneration Control

    AutomaticGeneration Control

    Economic DispatchEconomic Dispatch

    Reserve/CostMonitoring

    Reserve/CostMonitoring

    Unit Commitment/Scheduling

    Unit Commitment/Scheduling

    Data Validation(State estimator)Data Validation

    (State estimator)

    Power Flow

    Optimal Power Flow

    Power Flow

    Optimal Power Flow

    Contingency AnalysisContingency Analysis

    Fault AnalysisFault Analysis

    Data Acquisition(SCADA)

    Data Acquisition(SCADA)

    Load ForecastLoad Forecast

    6

    Network Application Generation Application

    Data Layer

  • 7/28/2019 PSTI_EMS

    7/58

    Network Application Functions

    Objective Analyze Power System performance from

    network (transmission and generation) perspective

    To check

    Base case violations

    Optimal performance (Loss Minimization etc.)

    Security Assessment & EnhancementFault Analysis

    What we need

    GOOD measurements Load, Gen, Flows info.

    Transmission System Data Capacities, R, X, B, Tap etc

    Generation Data Ratings & other parameters

    7Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    8/58

    NA Functions used in EMS

    State Estimator

    To identify Anomalies

    Power Flow & Optimal Power Flow

    To carry out simulations

    To get optimal set-points

    Contingency Analysis

    What if Analysis (N-1, N-2 etc)

    Security Assessment and Enhancement

    Assessment and corrective actions

    Load Forecast Input to Simulations (NA functions)

    8Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    9/58

    Objective :

    Filter out Dead system components

    Establish connectivity information and

    Define the LIVE(Energized) network with

    Inputs :

    System Components Details,

    Switch Statuses and the Measurements (V, Power Flows,

    injections etc)

    Output :

    Live(energized) network details

    Formation of networks (Island wise)

    Mark viable islands (with Generation)

    Network Topology

    9Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    10/58

    COMPONENT DETAILS

    GEN1 BUS1

    GEN2 BUS2

    GEN3 BUS3

    SYNCON1 BUS6

    SYNCON2 BUS8

    TRANS1 BUS5 BUS6

    TRANS2 BUS4 BUS9

    LINE1 BUS1 BUS2

    LINE2 BUS1 BUS5

    LINE3 BUS2 BUS3

    Network Topology Formation

    SWITCH DETAILS

    BUS1CB1

    BUS1CB2

    BUS1CB3

    BUS1CB4BUS2CB1

    BUS2CB2

    BUS2CB3

    10Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    11/58

    Network Topology Node Terminology

    Secondary bus

    Primary bus

    BusCouplers

    Incomer #2Incomer #1

    Outgoing #1 Outgoing #2

    Nodes withUnique ID

    11Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    12/58

    1.060.002.32 - j 0.17

    1.045-4.980.183 + j 0.295

    1.055-15.67-0.061 - j 0.016

    1.05-15.73-0.135 - j 0.058

    1.035-16.47-0.149 - j 0.056

    1.057-15.3-0.035 - j 0.018 1.052-15.51

    -0.09 - j 0.058

    1.01-12.73-0.942 + j 0.44

    1.021-8.77

    -0.076 - j 0.018

    1.07-14.83-0.112 + j 0.068

    1.09-13.6600 + j .172

    1.02-10.34-0.478 + j 0.039

    1.057-15.3-0.295 - j 0.166

    1.57-j0.17

    -1.53+j0.31

    0.56-j0.003

    0.73+j0.06

    0.42+j0.02-0.40+j0.003

    -0.73+j0.053-0.73+j0.053

    0.63-j0.14

    0.75+j0.06

    -0.62+j0.16

    -0.55+j0.0540.24-j0.36

    -0.23+j0.045-0.71+j0.038

    0.16-j0.003

    -0.17+j0.017

    0.077-j0.026

    -0.076-j0.025

    0.015+j0.01

    0.17+j0.075

    -0.17-j0.08

    -0.015-j0.01 0.051+ j0.02

    0.065+j0.038

    DIGITAL DATA

    BUS1CB1 CLOSE

    BUS1CB2 OPEN

    BUS1CB3 CLOSE

    BUS1CB4 CLOSE

    BUS2CB1 CLOSE

    BUS2CB2 CLOSE

    BUS2CB3 OPEN

    BUS2CB4 CLOSE

    BUS2CB5 CLOSE

    BUS2CB6 CLOSE

    BUS2CB7 OPEN

    BUS3CB1 OPEN

    ANALOG DATA

    P, Q FLOWSGENERATIONS

    VOLTAGES (ANGLES?)

    FREQUENCY

    Real-Time Data superimposed on Line Network

    12Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    13/58

    CONNECTIVITY INFO

    ISLAND #1

    GEN1 BUS1

    GEN2 BUS2

    GEN3 BUS3

    SYNCON2 BUS8

    TRANS1 BUS5 BUS6

    TRANS2 BUS4 BUS9

    LINE1 BUS1 BUS2

    LINE2 BUS1 BUS5

    LINE3 BUS2 BUS4

    ISLAND #2

    LOAD12 BUS12

    Network Topology - Output

    13Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    14/58

    Objective :

    Identify and correct Anomalies, Suppress Bad data

    Refine the measurement set to form the State of the system

    Inputs :

    Energized System Components Details

    (Connectivity + Parameters)

    Switch Statuses (CBs, ISOs)

    Measurements (V, Power Flows, Loads, Generations)Tuning Parameters (Tolerances, Statistical Info etc)

    Output :

    Estimated complex voltages,

    Estimated P and Q injections and flowsError Analysis, List of Bad Data

    Methodology : Weighted Least Square (WLS)

    State Estimation

    14Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    15/58

    State EstimatorRefine Measurements

    System Info,Measurements and

    switch statusesNetwork Topology

    NO

    Observable? Add PseudoMeasurements

    Print resultsVoltage profile

    Loads and Generations

    Real/ reactive flowsMeas Vs EstimatesBad Data Processing

    Identify/suppress bad data

    acceptable?YES

    YES

    NO

    State Estimator (SE) Data Flow

    15Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    16/58

    Measurements

    Bus Voltages Magnitudes (V) and Angles

    Generations (Pgen and Qgen) and Loads (PL and QL)

    Flows(real and reactive) at either end of lines/ transformerSize 4 x Nlines(Flows) + Nbus (V) + Ngen (Gen)

    Output

    State variables (complex voltages at all buses 2 x NBUS)

    ? How many measurements are required?

    More measurements slower the estimation process

    Less Measurements erroneous results (poor estimation)

    Optimum - 1.5 to 2.8 times the state variables

    Measurements

    16Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    17/58

    1.062.32 - j 0.17

    1.0450.183 + j 0.295

    1.055

    -0.061 - j 0.016

    1.05-0.135 - j 0.058

    1.035

    -0.149 - j 0.056

    1.057-0.035 - j 0.018 1.052

    -0.09 - j 0.058

    1.01-0.942 + j 0.44

    1.021

    -0.076 - j 0.018

    1.07-0.112 + j 0.068

    1.0900 + j .172

    1.02-0.478 + j 0.039

    1.057-0.295 - j 0.166

    1.57-j0.17

    -1.53+j0.31

    0.56-j0.003

    0.73+j0.06

    0.42+j0.02-0.40+j0.003

    -0.43+j0.053

    0.63-j0.14

    0.75+j0.06

    -0.62+j0.16

    -0.55+j0.0540.24-j0.360

    0.23+j0.0450+j0

    0.16-j0.003

    -0.17+j0.017

    0+-j0

    0+j0

    0.0+j0.0

    0.17+j0.075

    -0.17-j0.082.32 - j 0.17

    0.0+j0.00.051+ j0.02

    0.065+j0.038

    INCONSISTANCIES

    FLOWS

    P15 AND P51

    P23 AND P32Q34 AND Q43

    LOADS

    P12

    Q12

    V12

    Identify Measurement Errors

    17Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    18/58

    1.062.32 - j 0.17

    1.0450.183 + j 0.295

    0.0

    -0.0 - j 0.0

    1.05-0.135 - j 0.058

    1.035

    -0.149 - j 0.056

    1.057-0.035 - j 0.018 1.052

    -0.09 - j 0.058

    1.01-0.942 + j 0.44

    1.021

    -0.076 - j 0.018

    1.07-0.112 + j 0.068

    1.0900 + j .172

    1.02-0.478 + j 0.039

    1.057-0.295 - j 0.166

    1.57-j0.17

    -1.53+j0.31

    0.56-j0.003

    0.+j0.0

    0.42+j0.02-0.40+j0.003

    -0.43+j0.053

    0.63-j0.14

    0.75+j0.06

    -0.62+j0.16

    -0.55+j0.0540.24-j0.360

    0.23+j0.0450+j0

    0.16-j0.003

    -0.17+j0.017

    0+-j0

    0+j0

    0.0+j0.0

    0.17+j0.075

    -0.17-j0.082.32 - j 0.17

    0.0+j0.00.051+ j0.02

    0.065+j0.038

    Suppress Erroneous Measurements

    REMOVE

    INCONSISTANCIES

    SUPRESS

    P51

    P23

    Q34

    LOADS

    P12 = 0.0Q12 = 0.0

    V12 = 0.0

    IGNORE

    OR

    REPLACE WITH

    APPROPRIATE VALUES

    18Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    19/58

    1.062.32 - j 0.17

    1.0450.183 + j 0.295

    0.0-0.0 - j 0.0

    1.05-0.135 - j 0.058

    1.035-0.149 - j 0.056

    1.01-0.942 + j 0.44

    1.021-0.076 - j 0.018

    1.07-0.112 + j 0.068

    1.0900 + j .172

    1.02-0.478 + j 0.039

    1.057-0.295 - j 0.166

    1.57-j0.17

    -1.53+j0.31

    0.56-j0.003

    0.+j0.0

    0.42+j0.02

    -0.40+j0.003

    -0.43+j0.053

    0.63-j0.14

    0.75+j0.06

    -0.62+j0.16

    -0.55+j0.054

    0.24-j0.360

    0.23+j0.0450+j0

    0.16-j0.003

    -0.17+j0.017

    0+-j0

    0+j0

    0.0+j0.0

    0.17+j0.075

    -0.17-j0.080.0+j0.0

    0.051+ j0.02

    0.065+j0.038

    1.057-0.035 - j 0.018 1.052

    -0.09 - j 0.058

    Check Observability

    UNOBSERVABLE - Enable to estimate due to insufficient measurements

    Calculations beyond the reach of available measurements

    OBSERVABILITY

    Insufficient

    Measurements @

    BUS10 and BUS11

    ??WHAT TO DO?? - - - - - - - - - - - - - - - - - - - - ADD PSUEDO MEASUREMENTS

    19Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    20/58

    1.060.002.32 - j 0.17

    1.044-4.980.183 + j 0.295

    0.0-0.0 - j 0.0

    1.05-15.73-0.135 - j 0.058

    1.035-16.47-0.149 - j 0.056

    1.057-15.3-0.035 - j 0.018 1.052-15.51

    -0.09 - j 0.058

    1.012-12.73

    -0.942 + j 0.44

    1.023-8.77-0.076 - j 0.018

    1.07-14.83-0.112 + j 0.068

    1.09-13.6600 + j .172

    1.02-10.34-0.478 + j 0.039

    1.057-15.3-0.295 - j 0.166

    1.56-j0.17

    -1.52+j0.31

    0.56-j0.003

    0.+j0.0

    0.41+j0.02-0.38+j0.003

    -0.63+j0.053

    0.61-j0.14

    0.65+j0.06

    -0.59+j0.16

    -0.55+j0.0540.18-j0.360

    -0.17+j0.0450+j0

    0.18-j0.003

    -0.17+j0.017

    0+-j0

    0+j0

    0.0+j0.0

    0.17+j0.075

    -0.17-j0.080.0+j0.0

    0.051+ j0.02

    0.065+j0.038

    ESTIMATES :

    Voltages

    1 1.0600.00

    1 1.044-4.980

    1 1.012-12.73

    1 1.020-10.34

    Power Flows

    1 2 1.56 0.170

    1 5 0.65 +0.060

    2 1 1.52 +0.31

    2 4 0.55 0.003

    2 5 0.41 +0.020

    Estimation Output

    20Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    21/58

    IDENTIFY BAD DATA

    Voltages

    Measu Estimat

    1 1.060 1.060

    2 1.045 1.044

    3 1.010 1.012

    4 1.020 1.0204

    Power Flows

    Meas Estimat

    1 2 1.57 1.561 5 0.75 0.65

    2 1 1.53 1.52

    2 4 0.56 0.55

    2 5 0.42 0.41

    1.060.002.32 - j 0.17

    1.044-4.980.183 + j 0.295

    0.0-0.0 - j 0.0

    1.05-15.73-0.135 - j 0.058

    1.035-16.47-0.149 - j 0.056

    1.057-15.3-0.035 - j 0.018 1.052-15.51

    -0.09 - j 0.058

    1.012

    -12.73-0.942 + j 0.44

    1.023-8.77-0.076 - j 0.018

    1.07-14.83-0.112 + j 0.068

    1.09-13.6600 + j .172

    1.02-10.34-0.478 + j 0.039

    1.057-15.3-0.295 - j 0.166

    1.56-j0.17

    -1.52+j0.31

    0.56-j0.003

    0.+j0.0

    0.41+j0.02-0.38+j0.003

    -0.63+j0.053

    0.61-j0.14

    0.65+j0.06

    -0.59+j0.16

    -0.55+j0.0540.18-j0.360

    -0.17+j0.0450+j0

    0.18-j0.003

    -0.17+j0.017

    0+-j0

    0+j0

    0.0+j0.0

    0.17+j0.075

    -0.17-j0.08

    0.0+j0.00.051+ j0.02

    0.065+j0.038

    Bad Data Identification

    21Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    22/58

    1.060.002.32 - j 0.17

    1.045-4.980.183 + j 0.295

    1.055-15.67-0.061 - j 0.016

    1.05-15.73-0.135 - j 0.058

    1.035-16.47-0.149 - j 0.056

    1.057-15.3-0.035 - j 0.018 1.052-15.51-0.09 - j 0.058

    1.01-12.73-0.942 + j 0.44

    1.021-8.77-0.076 - j 0.018

    1.07-14.83-0.112 + j 0.068

    1.09-13.6600 + j .172

    1.02-10.34

    -0.478 + j 0.039

    1.057-15.3-0.295 - j 0.166

    1.57-j0.17

    -1.53+j0.31

    0.56-j0.003

    0.73+j0.06

    0.42+j0.02-0.40+j0.003

    -0.73+j0.053

    0.63-j0.14

    0.75+j0.06

    -0.62+j0.16

    -0.55+j0.0540.24-j0.36

    -0.23+j0.045-0.71+j0.038

    0.16-j0.003

    -0.17+j0.017

    0.077-j0.026

    -0.076-j0.025

    0.015+j0.01

    0.17+j0.075

    -0.17-j0.08

    -0.015-j0.01 0.051+ j0.02

    0.065+j0.038

    OMIT BAD MEAS

    Power Flows

    Meas Estimat

    1 5 0.75 0.65

    5 1 0.43 -0.63

    Bad Data Suppression

    22Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    23/58

    1.060.002.32 - j 0.17

    1.045-4.980.183 + j 0.295

    1.055-15.67

    -0.061 - j 0.016

    1.05-15.73-0.135 - j 0.058

    1.035-16.47

    -0.149 - j 0.056

    1.057-15.3-0.035 - j 0.018 1.052-15.51

    -0.09 - j 0.058

    1.01-12.73-0.942 + j 0.44

    1.021

    -8.77-0.076 - j 0.018

    1.07-14.83-0.112 + j 0.068

    1.09-13.6600 + j .172

    1.02-10.34-0.478 + j 0.039

    1.057-15.3-0.295 - j 0.166

    1.57-j0.17

    -1.53+j0.31

    0.56-j0.003

    0.73+j0.06

    0.42+j0.02-0.40+j0.003

    -0.73+j0.053

    0.63-j0.14

    0.75+j0.06

    -0.62+j0.16

    -0.55+j0.0540.24-j0.36

    -0.23+j0.045-0.71+j0.038

    0.16-j0.003

    -0.17+j0.017

    0.077-j0.026

    -0.076-j0.025

    0.015+j0.01

    0.17+j0.075

    -0.17-j0.08

    -0.015-j0.01 0.051+ j0.02

    0.065+j0.038

    Final Estimation

    This becomes the base case for the remaining Network Analysis Functions

    23Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    24/58

    Objective :

    To compute the power flow in the branches

    thru the complex voltages for given load/ generation profile

    Inputs : system information

    component parameters and connectivity

    load and generation profile, voltage set-points

    output : voltage profile (voltage magnitude and angles)

    power flow calculations

    loss calculation

    violations (voltage magnitude and power flows)

    MODELLING IS CRUCIAL

    Power Flow

    24Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    25/58

    Kirchhoffs current Law

    Power Injection at ith

    bus Si = Vi x Ii*

    ?? Set of Simultaneous Non-linear equations ??

    Gauss Seidel (only for very small systems)Newton Raphson (Normally used)

    Fast Decoupled (Modified Newton Raphson)

    ( )

    ( )jiijij

    n

    jjii

    jiijij

    n

    j

    jii

    YVVQ

    YVVP

    +=

    +=

    =

    =

    sin

    cos

    1

    1

    Vi ithbus

    To bus 1

    V1

    To bus j

    Vj

    To bus k

    Vk

    Yii

    YijYi1 Yik

    Power Flow Basic equations

    25Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    26/58

    Non-linear eqns

    Linearize & solve Iteratively

    Characteristics

    Quadratic Convergence

    Normally 3-5 iterations

    Reliable

    Difficulty - Handling Large Matrices MISMATCHJACOBIANUPDATE

    NBUSNBUSNBUS

    NBUS

    Q

    P

    V

    QQV

    PP

    V

    VV

    QQV

    PP

    Q

    P

    =

    =

    1

    Newton Raphson based Power Flow

    Whats way out? Try de-coupling ?FDLF?

    [ ] [ ] [ ]

    [ ] [ ]QV

    QV

    PP

    =

    =

    1

    1

    Assumptions

    1. |V| ~ 1.0 p.u.Bus angle ) very small

    2. Sin()=0

    3. Cos()=1

    4. R

  • 7/28/2019 PSTI_EMS

    27/58

    OUTPUT

    SLK Pgen , Qgen

    PV - , Qgen

    PQ - , |V|

    In additionBranch Pflow , Qflow

    LOSSES PL , QL

    SHUNT POWER

    Power Flow, Inputs and Output

    INPUTS

    System DATA

    LINE DETAILS(RXB)

    XMER DETAILS(RXT)

    GENERATOR DATA(QLT)

    SHUNT DATA(B)

    LOAD/GEN DATA

    LOAD DATA

    GENERATION DATA(PV)

    TUNING PARAMETERS

    27Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    28/58

  • 7/28/2019 PSTI_EMS

    29/58

    BUS WISE RESULTS IN TABULATED FORM

    sr_no bus_no v_mag v_angle(rad) p_inj q_inj

    1 1 1.0600 .0000 2.3238 -.1707

    2 2 1.0450 -.0870 .1830 .2950

    3 3 1.0100 -.2221 -.9420 .0440

    4 4 1.0700 -.2589 -.1120 .0682

    5 5 1.0900 -.2385 .0000 .1716

    6 6 1.0186 -.1805 -.4780 .03907 7 1.0623 -.2385 .0000 .0000

    8 8 1.0207 -.1532 -.0760 -.0180

    9 9 1.0567 -.2673 -.2950 -.1660

    10 10 1.0517 -.2708 -.0900 -.0580

    11 11 1.0573 -.2671 -.0350 -.0180

    12 12 1.0551 -.2735 -.0610 -.0160

    13 13 1.0503 -.2745 -.1350 -.0580

    14 14 1.0351 -.2875 -.1490 -.0560**********************************************************

    BUS WISE DETAILED RESULTS

    results for bus number 1

    voltage(pu) 1.0600 angle(deg) -.0001

    flow to (MW/MVAr) 2 1.5689 -.1744

    flow to (MW/MVAr) 8 .7549 .0610

    line charging (MVAr) -.0573

    shunt injection (MVAr) .0000

    Injections P/Q (MW/MVAr) 2.3238 -.1707

    ****************************************************************

    results for bus number 2

    voltage(pu) 1.0450 angle(deg) -4.9830

    flow to (MW/MVAr) 1 -1.5259 .3056

    flow to (MW/MVAr) 3 .7325 .0595

    flow to (MW/MVAr) 6 .5629 -.0027

    flow to (MW/MVAr) 8 .4136 .0243

    line charging (MVAr) -.0917

    shunt injection (MVAr) .0000

    Injections P/Q (MW/MVAr) .1830 .2950

    ****************************************************************

    Power Flow Results

    SUMMARY

    ********************************************************

    total generation P/Q (MW/MVAr) 2.5068 .4081

    total load P/Q (MW/MVAr) -2.3730 -.3510

    system losses P/Q (MW/MVAr) -.1339 -.5522

    total charging (MVAr) .2830

    total shunt power (MVAr) .2122

    ********************************************************

    OR You can print them in IEEE Format exactly same as input

    So that other programs can read it easily

    29Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    30/58

    Objective : Optimize the system parameters

    for better performance

    Inputs : System information (parameters & connectivity)load and generation profile, set-points(V, t, MW)

    component modeling and constraints

    Output : Voltage profile (voltage magnitude and angles)Optimized power flow calculations

    Violations (V, MW, MVAr) remaining

    Major difficulty :Getting well-behaved objective function and

    constraints as function of control variables

    Optimal Power Flow

    30Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    31/58

    Objective :

    Minimize PLOSS

    or Overload Alleviations

    Subject to :

    Satisfaction of load flow equations (Power Balance)

    Limits on the control variables (set-points)Limits on line/transformer loading

    Maintain Load Generation Balance

    Control Variables :

    Real Power Controls :

    MW Gen, Tie-Line Flows, HVDC/FACTS set-points

    Reactive Power Controls

    Generator voltage set-points

    VAr resources (Capacitors, Reactors, SVCs, Syn. condensers)

    Transformer taps

    HIGHLY NON-LINEAR PROBLEM Solved using Gradient, SLP or any other method

    Problem Formulation

    31Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    32/58

    LOSS REDUCTION

    REAL POWER LOSSES

    (UNOPTIMISED)BSH_14=0.0

    0.2893 p.u.

    1.060.003.36 + j 0.41

    1.015-6.990.256 + j 0.322

    0.98-23.6

    -0.085 - j 0.022

    0.97-23.7-0.189 - j 0.0812

    0.94-24.88

    -0.209 - j 0.078

    0.983-23.0-0.049 - j 0.025 0.97-23.3

    -0.126 - j 0.0812

    0.96-18.88-1.319 + j 0.134

    0.97-12.67

    -0.106 - j 0.025

    1.0-22.27-0.15 + j 0.13

    1.037-20.2800 + j .24

    0.96-15.03-0.67 + j 0.054

    1.057-15.3-0.295 - j 0.166

    2.28+j0.19

    -2.18+j0.08

    0.80+j0.08

    1.05+j0.15

    0.59+j0.09-0.57-j0.03

    -1.02-j0.03

    0.88-j0.10

    1.08+j0.27

    -0.87+j0.14

    -0.77+j0.0280.33-j0.08

    -0.32+j0.10-0.99+j0.065

    0.226+j0.041

    -0.23-j0.01

    0.11+j0.039

    -0.107-j0.036

    0.022+j0.013

    0.247+j0.11

    -0.24-j0.104-0.07 - j 0.03

    -0.022-j0.013 0.073+ j0.036

    0.091+j0.062

    BSH_14 = 0.00

    C

    Power Flow Base case

    32Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    33/58

    LOSS REDUCTION

    REAL POWER LOSSES

    (UNOPTIMISED)

    BSH_14=0.0

    0.2893 p.u.

    REAL POWER LOSSES

    (OPTIMISED)

    BSH_14=0.05

    0.2854 p.u.

    Loss Reduction

    1.35%

    1.060.003.35 + j 0.34

    1.018-7.010.256 + j 0.322

    0.995-23.42-0.085 - j 0.022

    0.99-23.54-0.189 - j 0.0812

    0.97-24.86-0.209 - j 0.078

    0.997-22.8-0.049 - j 0.025 0.99-23.1

    -0.126 - j 0.0812

    0.96-18.82

    -1.319 + j 0.134

    0.98-12.68-0.106 - j 0.025

    1.02-22.09-0.16 + j 0.13

    1.048-20.1800 + j .24

    0.97

    -15.02-0.67 + j 0.054

    1.057-15.3-0.295 - j 0.166

    2.27+j0.15

    -2.18+j0.13

    0.80+j0.07

    1.04+j0.14

    0.59+j0.08-0.57-j0.018

    -1.02-j0.006

    0.88-j0.12

    1.08+j0.25

    -0.87+j0.14

    -0.77+j0.0450.33-j0.08

    -0.32+j0.10-0.99+j0.073

    0.226+j0.028

    -0.23-j0.003

    0.10+j0.035

    -0.106-j0.032

    0.021+j0.009

    0.244+j0.098

    -0.24-j0.09

    -0.07 - j 0.03

    -0.021-j0.009 0.072+ j0.017

    0.091+j0.061

    CBSH_14 = 0.05

    OPF Loss Minimization

    33Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    34/58

    1.060.002.90 + j 0.28

    1.025-5.820.68 + j 0.322

    0.992-22.42-0.085 - j 0.022

    0.98-22.5-0.189 - j 0.0812

    0.97-24.86-0.209 - j 0.078

    0.994-21.8-0.049 - j 0.025 0.98-22.1-0.126 - j 0.0812

    0.97-17.61-1.319 + j 0.134

    0.98-11.72-0.106 - j 0.025

    1.014-21.11-0.16 + j 0.13

    1.048-19.1200 + j .24

    0.97-13.95

    -0.67 + j 0.054

    1.00-21.73-0.413 - j 0.232

    1.897+j0.104

    -1.835+j0.086

    0.83+j0.083

    1.059+j0.148

    0.62+j0.09-0.60-j0.027

    -0.952-j0.026

    0.85-j0.11

    1.00+j0.24

    -0.84+j0.14

    -0.79+j0.0330.32-j0.08

    -0.31+j0.10-1.01+j0.068

    0.23+j0.039

    -0.23-j0.008

    0.11+j0.039

    -0.107-j0.036

    0.022+j0.013

    0.244+j0.113

    -0.24-j0.10-0.07 - j 0.03

    -0.021-j0.013 0.072+ j0.036

    0.090+j0.062

    Overload Min

    REAL POWER FLOWS

    (UNOPTIMISED)

    1 2 2.27

    1 5 1.08G1 = 3.35

    G2 = 0.256

    REAL POWER FLOWS

    (OPTIMISED)

    1 2 1.897

    1 5 1.00

    G1 = 2.90

    G2 = 0.68

    OPF Overload Alleviation

    34Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    35/58

    1.060.003.35 + j 0.34

    1.018-7.010.256 + j 0.322

    0.995-23.42-0.085 - j 0.022

    0.99-23.54-0.189 - j 0.0812

    0.97-24.86-0.209 - j 0.078

    0.997-22.8-0.049 - j 0.025 0.99-23.1

    -0.126 - j 0.0812

    0.96-18.82

    -1.319 + j 0.134

    0.98-12.68-0.106 - j 0.025

    1.02-22.09-0.16 + j 0.13

    1.048-20.1800 + j .24

    0.97-15.02-0.67 + j 0.054

    1.057-15.3-0.295 - j 0.166

    2.27+j0.15

    -2.18+j0.13

    0.80+j0.07

    1.04+j0.14

    0.59+j0.08-0.57-j0.018

    -1.02-j0.006

    0.88-j0.12

    1.08+j0.25

    -0.87+j0.14

    -0.77+j0.0450.33-j0.08

    -0.32+j0.10-0.99+j0.073

    0.226+j0.028

    -0.23-j0.003

    0.10+j0.035

    -0.106-j0.032

    0.021+j0.009

    0.244+j0.098

    -0.24-j0.09

    -0.07 - j 0.03

    -0.021-j0.009 0.072+ j0.017

    0.091+j0.061

    CBSH_14 = 0.05

    Voltage Alleviation

    Voltage V_14

    (UNOPTIMISED)

    BSH_14=0.0

    0.94 p.u.

    Voltage V_14

    (OPTIMISED)

    BSH_14=0.05

    0.97 p.u.

    OPF Voltage Alleviation

    35Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    36/58

    Objective :

    Evaluation of the system performance under outages

    Inputs :System information (Parameters and connectivity info)

    Load and generation profile, voltage set-points

    Component modeling, Rating of the equipment

    Output :

    List of CRITICAL contingencies leading to violations

    Approach :Approximate simulation

    Contingency Analysis

    36Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    37/58

    Ranking

    (Based on Per. Indices)

    SystemInformation and

    Base CaseState Estimator

    Print results

    Ranking List

    Power Flow results forTop ranked outages

    AnalysisFull Evaluation of Severe

    Outages

    List of credibleoutages (having

    more probability ofoccurrence)

    Efficient Screening

    Contingency Analysis Flow Chart

    37Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    38/58

    Possible outages :

    All lines, transformers, generators, shunts, loads

    For 14 bus sample system,Total number of single component outages

    17 lines + 3 transformers + 2 generators + 3 shunts

    TOTAL = 25 + (?multiple outages?)

    WHAT IF the System size is 1000 buses?

    Challenge : 1500 AC load flow simulations of 1000 bus system

    Take considerable time

    Contingency Analysis possible contingencies

    38Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    39/58

    Filtering/Screening Criteria

    1. Probability of occurrence

    2. Use of approx. analysis like

    Power flow with less tolerance

    Power flow 1 iteration, esp. for overload analysis

    Network equivalents (outage impact - local)

    Ranking SEVERE contingencies based on

    performance indices

    - overload index

    - voltage index

    Full AC power flow analysis

    for top ranked contingencies

    Processing Approach

    1500

    150

    15

    Possible CTGs

    Credible CTGs

    Severe

    CTGs

    39Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    40/58

    Normally used performance Indices

    - overload index

    - voltage index

    - Based on Type of limit violated and % violations

    Index = 1000 x Type of limit violated

    + (100 + %violation)

    e.g. Emergency limit violated by 12%Index = 2112

    2

    1 max_

    _ =

    =

    nline

    j lj

    lj

    overloadi

    f

    fP

    2

    1 max_

    _ =

    =

    nbus

    jj

    j

    voltageiV

    VP

    Severity Indices

    Limits Type

    1 Normal

    2 Emergency

    3 LoadShed

    40Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    41/58

    1.060.002.32 - j 0.17

    1.045-4.980.183 + j 0.295

    1.055-15.67-0.061 - j 0.016

    1.05-15.73-0.135 - j 0.058

    1.035-16.47-0.149 - j 0.056

    1.057-15.3-0.035 - j 0.018 1.052-15.51

    -0.09 - j 0.058

    1.01-12.73-0.942 + j 0.44

    1.021-8.77-0.076 - j 0.018

    1.07

    -14.83-0.112 + j 0.068

    1.09-13.6600 + j .172

    1.02-10.34-0.478 + j 0.039

    1.057-15.3-0.295 - j 0.166

    1.57-j0.17

    -1.53+j0.31

    0.56-j0.003

    0.73+j0.06

    0.42+j0.02-0.40+j0.003

    -0.73+j0.053

    0.63-j0.14

    0.75+j0.06

    -0.62+j0.16

    -0.55+j0.0540.24-j0.36

    -0.23+j0.045-0.71+j0.038

    0.16-j0.003

    -0.17+j0.017

    0.077-j0.026

    -0.076-j0.025

    0.015+j0.01

    0.17+j0.075

    -0.17-j0.08

    -0.015-j0.01 0.051+ j0.02

    0.065+j0.038

    Base Case Power Flow Results

    41Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    42/58

    1.060.002.75 - j 0.13

    1.025-5.91-0.217 - j 0.127

    1.055-16.67-0.061 - j 0.016

    1.05-16.73-0.135 - j 0.058

    1.033-17.47-0.149 - j 0.056

    1.056-16.3-0.035 - j 0.018 1.05-16.51

    -0.09 - j 0.058

    1.01-14.00-0.942 + j 0.20

    1.012-9.66-0.076 - j 0.018

    1.07

    -15.84-0.112 + j 0.113

    1.09-14.6700 + j .194

    1.01-11.34-0.478 + j 0.039

    1.053-16.3-0.295 - j 0.166

    1.92+j0.09

    -1.86+j0.10

    0.53-j0.065

    0.726-j0.04

    0.38-j0.036-0.37+j0.06

    -0.80+j0.045

    0.66-j0.16

    0.83+j0.09

    -0.65+j0.18

    -0.52+j0.1140.24-j0.085

    -0.24+j0.097-0.70+j0.14

    0.16-j0.011

    -0.17+j0.026

    0.077+j0.076

    -0.0767-j0.025

    0.016+j0.01

    0.17+j0.078

    -0.17-j0.07

    -0.016-j0.01 0.053+ j0.03

    0.067+j0.044

    Example - Generator Outage

    Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    43/58

    1.060.002.33 - j 0.10

    1.045-4.490.183 + j 0.219

    1.055-17.4-0.061 - j 0.016

    1.05-17.45-0.135 - j 0.058

    1.034-18.06-0.149 - j 0.056

    1.056-16.9-0.035 - j 0.018 1.05-17.05

    -0.09 - j 0.058

    1.01-13.25-0.942 + j 0.078

    1.011-10.66-0.076 - j 0.018

    1.07

    -16.6-0.112 + j 0.117

    1.09-15.100 + j .187

    1.012-11.66-0.478 + j 0.039

    1.055-16.8-0.295 - j 0.166

    1.42-j0.14

    -1.38+j0.25

    0.75-j0.006

    0.82+j0.05

    0.0+j0.00.0+j0.0

    -0.87+j0.074

    0.38-j0.14

    0.91+j0.09

    -0.38+j0.15

    -0.72+j0.0960.149-j0.42

    -0.148+j0.046-0.79+j0.072

    0.16-j0.003

    -0.17+j0.025

    0.076-j0.027

    -0.0754-j0.026

    0.014+j0.01

    0.17+j0.079

    -0.17-j0.08-0.046 - j 0.026

    -0.014-j0.01 0.046+ j0.03

    0.057+j0.046

    Example Line outage

    43Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    44/58

    Objective :

    Evaluate optimal set-points to bring the system back to

    normal state in post contingency scenario

    Inputs :System information (Parameters and connectivity info)

    Load and generation profile, voltage set-points

    Component modeling and constraints

    List of severe contingencies

    output :

    Post Contingency complex voltage profile (V, )

    Power flow calculations

    (after implementing optimized controls)

    Two Approaches:Preventive Action

    Corrective Action

    Security Constrained Optimization

    44Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    45/58

    Objective : min Overloads OR Voltage excursions

    subject to : Satisfaction of load flow equations

    Limits on the control variables (set-points)

    Maintain Load Generation Balance

    Minimum deviation in set-points

    Pre and post outage(each severe outage) constraints

    Control Variables :

    1. Generator voltage setpoints

    2. VAr resources (capacitors, reactors, SVCs, syn. condensers)

    3. Transformer Taps

    4. Generations (MW)

    5. Tie-Line Flows, HVDC/FACTs controllers

    SCO Preventive Action (PA)

    45Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    46/58

    Challenges :

    Single Big problem

    Large number of constraints

    (considering all outages together)

    Conflicts between constraints

    May lead to infeasible solution

    Costly (Contingency may not happen at all)

    Then WHY?

    For some severe contingencies, post-outage controls

    rescheduling may not be possible due to time limitations

    Preventive Action - Challenges

    46Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    47/58

    Objective : min Overloads OR Voltage excursions

    subject to : Satisfaction of load flow equations

    Limits on the control variables (set-points)

    Maintain Load Generation Balance

    Minimum deviation in set-points

    Only Post outage constraints for specific contingency

    Control Variables :1. Generator voltage setpoints

    2. VAr resources (capacitors, reactors, SVCs, syn. condensers)

    3. Transformer Taps

    4. Generations

    5. Tie-Line Flows, HVDC/FACTs controllers

    SCO Corrective Action

    47Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    48/58

    Advantages :

    Since occurrence of contingency is NOT certain, keeping

    post contingency plans ready is better (Preparedness)

    Separate optimization problem for each outage case

    Sometimes it may NOT be possible to make changes after

    outage

    Challenges :

    Post contingency scenario Time is crucial

    Whether to go for PA/CA?For severe contingencies where the execution of CA is not

    possible, then check the probability and consequences and

    implement PA

    Corrective Action

    48Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    49/58

    Load Forecast

    Objective :

    To get the accurate forecast of system/ area loads

    Inputs :

    Load History (Normally stored from actual SCADA data)

    Loads are function Weather data

    Effective weather forecast

    Weather history data

    Formula to get derived forecast variable

    Planning Inputs

    49Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    50/58

    Load Forecast Types

    Short Term:

    Forecast Load for next hour (for every 5 mins)

    Forecasting Emergencies in Operations (Real Time)

    Medium Term

    Forecast Load for a week (hourly forecast)

    Normally used in operations (daily planning)

    Long Term

    Forecast Load for > 1 Year (monthly forecast)

    Normally used in Planning

    50Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    51/58

    Load Forecast Methodologies

    Regression Technique:

    Based on Historical load data and weather forecast

    Similar day forecast

    Based on the similar weather day in history

    Load Patterns (Save cases)

    Saved Load curved in history can be used to forecast

    With appropriate scaling/shifting etc

    51Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    52/58

    Regression Analysis

    Daily Load Curve :

    Weekly Load Curve :

    52Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    53/58

    Regression Technique

    Important to Note :

    Load curved are cyclic in nature over the week

    (e.g. Load pattern is similar on all Mondays)

    With appropriate Load growth (say 12% over year)

    Thus Regression Technique can effectively be used

    Challenges :

    Loads are highly dependent on weather (Rains?)

    Special days (festivals have different load patterns)

    Planning impact can not be handled

    53Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    54/58

    Similar Day Forecast

    Advantage :

    Takes care of weather dependencies

    Procedure :

    - Get the weather forecast for the selected day

    - Identify similar weather day in history

    (closest match)

    - take it as base load and apply load growth

    Easy and more accurate for the weather sensitive loads

    54Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    55/58

    d li i

  • 7/28/2019 PSTI_EMS

    56/58

    Load Forecast Applications

    Power System Planning

    As Pseudo Measurements in State Estimator

    Power Flow Simulation Studies

    Generation Applications

    Unit Commitment

    Hydrothermal Scheduling

    Maintenance Scheduling

    Awareness of worst situations and Readiness

    56Dr Shekhar Kelapure

    L d F S

  • 7/28/2019 PSTI_EMS

    57/58

    Load Forecast - Summary

    Load Forecast highly dependent on

    Historical Data

    Weather Data/ forecast

    Types of Load Forecast

    All techniques (regression + similar day + load patterns) need to beeffectively used to get better results

    Other techniques : Artificial Neural Network etc.

    For Long terms Load Forecasting

    Appropriate Load growth and the planning indices are crucial

    57Dr Shekhar Kelapure

  • 7/28/2019 PSTI_EMS

    58/58