+ All Categories
Home > Documents > PUMP TECHNOLOGY - ASMEfiles.asme.org/Divisions/FED/16298.pdf · MAXIMUM BEARING HOUSING VIBRATION...

PUMP TECHNOLOGY - ASMEfiles.asme.org/Divisions/FED/16298.pdf · MAXIMUM BEARING HOUSING VIBRATION...

Date post: 01-May-2018
Category:
Upload: vonhu
View: 217 times
Download: 1 times
Share this document with a friend
38
PUMP TECHNOLOGY Are we making any progress? S. Gopalakrishnan Flowserve Corporation Pump Division Vernon, California PUMP DIVISION ASME FEDSM May 31, 2001
Transcript

PUMP TECHNOLOGY

Are we making any progress?

S. GopalakrishnanFlowserve Corporation

Pump DivisionVernon, California

PUMP DIVISION

ASME FEDSM May 31, 2001

“LARGEST PUMP”

• HIGHEST HORSEPOWER– American Electric Power John E. Amos plant– Boiler Feed Pump - Multistage, Barrel– 21,800 GPM– 11,300 ft TDH– 4160 RPM

– 63,200 HP– 1973

“LARGEST PUMP”

• HIGHEST CAPACITY– South Florida - Mill Creek– Flood Control

– 695,000 GPM– 180 RPM– 24 ft TDH– 5000 HP– 1985

“LARGEST PUMP”

• LARGEST SIZE– Grand Coulee Dam on the Columbia River– Single Stage Vertical Volute Pump– 605,000 GPM, 330 ft TDH, 200 RPM– 55,200 HP

– Volute “Diameter” ~ 21 ft– 1951

0

100

200

300

400

500

600

700

800

900

1940 1950 1960 1970 1980 1990 2000

PL

AN

T O

UT

PU

T (M

W)

FOSSIL PLANT OUTPUT (MW)

H. Ohashi: ASME FED SM 1997

POWER PLANT DEVELOPMENT

0

200

400

600

800

1000

1200

1400

1940 1950 1960 1970 1980 1990 2000

PL

AN

T O

UT

PU

T (M

W)

FOSSIL PLANT OUTPUT (MW)

NUCLEAR PLANT OUTPUT (MW)

H. Ohashi: ASME FED SM 1997

POWER PLANT DEVELOPMENT

0

5

10

15

20

25

30

35

1940 1950 1960 1970 1980 1990 2000

PU

MP

PO

WE

R (

MW

) an

d S

TA

GE

PR

. (B

AR

)

0

200

400

600

800

1000

1200

1400

PL

AN

T P

UT

PU

T (

MW

)

FOSSIL PLANT OUTPUT (MW)

NUCLEAR PLANT OUTPUT (MW)

PUMP POWER (MW)

H. Ohashi: ASME FED SM 1997

POWER PLANT DEVELOPMENT

0

10

20

30

40

50

60

70

80

1940 1950 1960 1970 1980 1990 2000

PU

MP

PO

WE

R (

MW

) an

d S

TA

GE

PR

. (B

AR

)

0

200

400

600

800

1000

1200

1400

PL

AN

T P

UT

PU

T (

MW

)

FOSSIL PLANT OUTPUT (MW)

NUCLEAR PLANT OUTPUT (MW)

PUMP POWER (MW)

STAGE PR. (BAR)

H. Ohashi: ASME FED SM 1997

P. Hergt: ASME FED SM 1997

POWER PLANT DEVELOPMENT

CUSTOMER REQUIREMENTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SUPERSYNCHRONOUS RPM

PRESSURE SURGE

RECYCLING ABILITY

SUCTION ABILITY

CONTROL RANGE

NOISE EMISSION

PRICE

EMISSION FREE

EFFICIENCY

RELIABILITY

P. Hergt: ASME FED SM 1997

ECONOMICS OFRELIABILITY

• The cost of maintaining a pumpsignificantly exceeds the first cost.

PRICE9%

REPAIR COST(NPV)

27%

ENERGY (NPV)64%

COST OF RELIABILITY

ANSI PUMP

ECONOMICS OFRELIABILITY

• The cost of maintaining a pumpsignificantly exceeds the first cost.

• The imperative on the manufacturer is toincrease MTBR.

CHARGE PUMP FAILURE DATA

SEALS 43%

BEARINGS13%

SHAFT13%

AUX. SYSTEMS31%

Source: NERI Smart NPP report Task 1June 2000

RELIABILITY IMPROVEMENTINITIATIVES

• ROBUST MECHANICAL DESIGN– Minimizing Vibrations

• Reduction of Forces• Elimination of resonances

– Improving cavitation resistance

RELIABILITY IMPROVEMENTAPI VIBRATION LIMITS

0

1

2

3

4

5

6

7

8

9

10

1950 1960 1970 1980 1990 2000 2010

OVERALL

FILTERED

VIB

RA

TIO

N V

EL

OC

ITY

(M

M/S

EC

)

RELIABILITY IMPROVEMENT

DSHF

RELIABILITYIMPROVEMENT

SR ratio

RMS(in/sec)

StaticDeflection(mils)

Double Suction Process PumpVibration Data Map

3

2

1

0

1.81.51.20.90.60.3

0.24

0.21

0.18

0.15

0.12

0.09

RELIABILITY IMPROVEMENT

• Increase foot thickness

• Decrease bearing span

• Robust bearing adaptors

EXISTINGDSHF

BEARINGADAPTER

DESIGN

NEW DSHFBEARINGADAPTERDESIGN

INCREASE OFGAP “B”

IMPELLER VANESTAGGER

RELIABILITYIMPROVEMENT

DSHF Pump Vibration DataMAXIMUM BEARING HOUSING VIBRATION VERSUS FLOW RATE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Q/Qbep (ratio)

New 360 degree BracketStaggered ImpellerThicker Pump FeetFlex in/ out

0.1560.120 API LIMIT

x 1.30

CURVE FIT

PUMP DIVISION

RM

S in

/sec

RELIABILITY IMPROVEMENT

0

10

20

30

40

50

60

1996 1997 1998 1999 2000

12 m

on

th r

olli

ng

MT

BR

M.L. Fontaine and E. Haflich, “Developing Fixed-Fee SealArrangements to Improve Pump Reliability” - 18th Texas A&MPump Symposium, March 2001

NPSH REQUIRED

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0.8 1 1.2 1.4 1.6 1.8FLOW (m^3/sec)

NP

SH

(m

)

INCEPTION3 % HEAD DROPDAMAGE FREE

REDUCTION OF CAVITATIONDAMAGE

0

0.001

0.002

0.003

0.004

0.005

0 0.5 1 1.5 2 2.5 3 3.5

BUBBLE LENGTH (IN)

RE

LA

TIV

E E

RO

SIO

N R

AT

E

316 STEELNITRONICS 50DUPLEX

REDUCTION OF CAVITATIONDAMAGE

0

0.01

0.02

0.03

0.04

0.05

CAST IRON CA 15 CASTCARBONSTEEL

CA6NM 17-4 PH(H1150)

XCAVALLOY

MP

DR

REDUCTION OF CAVITATIONDAMAGE

REDUCTION OF CAVITATIONDAMAGE

• We still need a way to assess damagepotential at factory testing stage.

PRICE9%

ENERGY (NPV)83%

REPAIR COST(NPV)

8%

PRICE9%

REPAIR COST(NPV)

27%

ENERGY (NPV)64%

ECONOMICS OF EFFICIENCY

API PUMP ANSI PUMP

[ ]

j

Z

1j

1

0 mp

oe dt

t

t ??tHtQ

g?E

nC ∑=

∫+

=•

••••

444 3444 21321nr1

1. Power in one annual cycle

2. Cost of energy

Source: P. Wurzburger, “Energy - A basic element of Life Cycle Costing” - Einfúhrungsvortrag,Pump Users International Forum - Karlsruhe - October 2000

3. No. of years

ENERGY COST CALCULATIONMODEL

4. Net present value

ECONOMICS OF EFFICIENCY

• A project funded by the European Commission(SAVE) has concluded:

– Pump efficiencies can be improved with presenttechnology by 3 points.

– If all EU pumps are upgraded, a total of 1.1TWhr of energy can be saved. At 5 c/kWhr, thisamounts to about 50 million $ saving per year

– Basic infrastructure issues are the impedimentto this upgrade.

THEORETICAL EFFICIENCY

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000

SPECIFIC SPEED

EF

FIC

IEN

CY

THEOR. MAXPRACTICAL MAX.AVERAGE

FLOW = 800 GPM

European Association of Pump Manufactureres No. 2 (1999):Attainable Efficiencies of Volute Casing Pumps

BASELINING WITH CFD

H. Goto: ASME FED SM 1997

CRYOGENIC EXPANDER

EFFICIENCY IMPROVEMENT

CALCULATED EFFICIENCES (%)

SINGLE STAGE MULTI-STAGEHydraulic Net

8RL (Baseline) 92.1 89.2 85.08RH – Design #1 91.7 86.8 84.98RH – Design #2 94.5 89.6 87.98RH - Final 94.6 89.7 88.1

HIGH PERFORMANCEEXPANDER

0

Flow (l/sec)

0

50

100

150

200

250

300

350

400

450

500

20 40 60 80 100 120 140 160 180 200 220 240 260 2800%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1800 RPM

Efficiency

Total Turbine Output

Head

Eff

icie

ncy

To

tal T

urb

ine

Ou

tpu

t (k

W)

Net

Hea

d (

met

ers)

Motor stator embeddedand sealed into rearcasing cover

Rotor Assemblywith Shaft

Pump Casing

ASSEMBLY OF SCAMP

CONCLUSIONS

• Pump Technology is driven by customerrequirements

– Reliability: Significant improvements in MTBR

– Efficiency: CFD techniques are producing goodresults

– Emission: Novel mechanical designs are beingintroduced


Recommended