+ All Categories
Home > Documents > Punctured bent function sequences for watermarked DS-CDMA

Punctured bent function sequences for watermarked DS-CDMA

Date post: 20-Mar-2022
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
48
Punctured bent function sequences for watermarked DS-CDMA Hong-Yeop Song Yonsei University, Seoul, Korea [email protected] Based on the paper with the same title, IEEE Communications Letters, 2019, to appear soon. July 5, 2019 Aachen, Germany
Transcript
Page 1: Punctured bent function sequences for watermarked DS-CDMA

Punctured bent function sequences for

watermarked DS-CDMAHong-Yeop Song

Yonsei University, Seoul, [email protected]

Based on the paper with the same title,IEEE Communications Letters, 2019, to appear soon.

July 5, 2019Aachen, Germany

Page 2: Punctured bent function sequences for watermarked DS-CDMA

Table of Contents

Introduction to Watermarked DS-CDMA

Proposed Model of W-DS-CDMA

Analysis and Design Criteria

Proposed (optimal) watermarked sequences punctured bent function sequences

various properties including optimality

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 2

Page 3: Punctured bent function sequences for watermarked DS-CDMA

Introduction: Watermarked DS-CDMA

3

Watermarking chips

Spreading code

Watermarked spreading code

β€’ Insert some watermarking chips into spreading codeβ€’ Any two watermarks at different time are different

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

periodic patternswith non-periodic chips

periodic sequence

Page 4: Punctured bent function sequences for watermarked DS-CDMA

Introduction: advantage/disadvantage

Watermarked DS-CDMA have been considered to provide security at the signal level

SteganographyWatermark conveys some β€œsecret” information which can

be extracted after synchronized.

Authentication of GNSS open signalsWatermark is used to provide where a signal comes from Protect from spoofing attacks

at the price of degrading the correlation performance (communication performance) of spreading sequences for multiple access, for example.

4Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Page 5: Punctured bent function sequences for watermarked DS-CDMA

Introduction: Summary

Investigate the effect of inserting some randomly generated watermarking chips into known ( set of ) spreading sequences

β€’ In terms of periodic correlations

Propose two design criteria for β€œgood” watermarked sequences in the sense of

1) Reducing the average correlation value2) Minimizing the variance of correlations

for the best performance of multiple-access

Specifically, we propose, for 𝑛𝑛 = 2π‘šπ‘š with even π‘šπ‘š, an optimal set of πŸπŸπ’Žπ’Žβˆ’πŸπŸ punctured bent function sequences of length πŸπŸπ’π’ βˆ’ 𝟏𝟏 in the sense of the above two criteria such that

β€’ all of which are punctured by the single pattern obtained by the Singer difference set, (Criteria 2) Hence, half the bits are punctured in one period of the sequence

β€’ the max non-trivial correlation magnitude maintains 2π‘šπ‘š + 1, (Criteria 1) which is the same value as those for un-punctured bent function sequences but is in fact twice of the Welch bound

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 5

Page 6: Punctured bent function sequences for watermarked DS-CDMA

Introduction: (selected) References

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 6

S. W. Golomb and G. Gong, Signal design for good correlation: for wirelesscommunications, cryptography, and radar, New York, NY, USA: Cambridge UniversityPress, 2005.

Global Positioning Systems Directorate Systems Engineering & Integration InterfaceSpecification, document IS-GPS-200H, Mar. 2014.

G. Caparra and J. T. Curran, ``On the achievable equivalent security of GNSS ranging codeencryption,'' in Proc. 2018 IEEE/ION Positions, Location and Navigation Symposium(PLANS), Monterey, USA, pp. 956-966, Apr. 2018.

X. Li, C. Yu, M. Hizlan, W.-T. Kim, and S. Park, ``Physical layer watermarking of directsequence spread spectrum signals,'' in Proc. IEEE MILCOM 2013, San Diego, USA. pp. 476-481, Nov. 2013.

C. Yang, ``FFT acquisition of periodic, aperiodic, puncture, and overlaid code sequencesin GPS,'' in Proc. ION GPS 2001, Salt Lake City, USA, pp. 137-147, Sep. 2001.

M. Villanti, M. Iubatti, A. Vanelli-Coralli, and G. E. Corazza, ``Design of distributed uniquewords for enhanced frame synchronization,'' IEEE Trans. Commun., vol. 57, no. 8, pp. 2430-2440, Aug. 2009.

J. D. Olsen, R. A. Scholtz, and L. R. Welch, ``Bent-function sequences,'' IEEE Trans. Inf. Theory, vol. 28, no. 6, pp.858-864, Nov. 1982.

L. R. Welch, β€œLower bounds on the maximum cross correlation of signals (Corresp.),” IEEE Trans. Inf. Theory, vol. 20, no. 3, pp. 397-399, May 1974.

L. D. Baumert, Cyclic difference sets, New York, NY, USA: Springer-Verlag, 1972.

J. Singer, β€œA theorem in finite projective geometry and some applications to number theory,” Trans. Amer. Math. Soc., vol. 43, pp. 377-385, 1938.

DS-CDMA for communications

DS-CDMA for navigations

W-DS-CDMA for authentication

W-DS-CDMA for steganography

W-DS-CDMA for fast acquisition

Effect of watermarking on single spreading sequence only in terms of aperiodic autocorrelation

Bent function sequences

Welch Bound

Cyclic difference sets

Singer difference sets

Page 7: Punctured bent function sequences for watermarked DS-CDMA

Proposed model ofW-DS-CDMA

Page 8: Punctured bent function sequences for watermarked DS-CDMA

Previous results are focused on how to use watermarks for security.

Usually assume the aggregated insertion

The watermark insertion affects on auto- and cross-correlation of spreading code

Question:

What insertion is better in the sense of acquisition performance?

How to insert watermark?

8

watermark

Case 2. spread

watermark

Case 1. aggregated

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Why not

Proposed model

Page 9: Punctured bent function sequences for watermarked DS-CDMA

Equivalent model

9

Watermark

Spreading code

Watermarked spreading code

length 𝐿𝐿 length 𝐿𝐿

Nulled(No signal here)

Nulled(No signal here)

Watermarkcode

Punctured spreading

code

insertion

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Proposed model

Page 10: Punctured bent function sequences for watermarked DS-CDMA

Some properties

10

watermark

Punctured spreading code

length 𝐿𝐿

Nulled(No signal here)

Nulled(No signal here)

Ternary0, +1,βˆ’1

Ternary0, +1,βˆ’1

Binary+1,βˆ’1

Alphabet? Repeated?

Not repeated

Repeated periodically

Partially repeated

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Watermarked spreading code

Proposed model

Page 11: Punctured bent function sequences for watermarked DS-CDMA

Acquisition for watermarked DS-CDMA

During the acquisition process, the receiver knows which chips are watermarked (only the position information)

but has no information about what each value is. (no idea on its value)

Therefore, the receiver can only use the punctured spreading code, which is repeated, periodically.

Watermark chips will be extracted after the signal is obtained/acquired the receiver will use these chips for some other purpose (steganography/authentication/extra security, etc)

Our goal is to find BEST watermarking chips (position) PLUS spreading codes so that the multiple-access performance is NOT MUCH degraded compared with the conventional DS-CDMA systems without watermarks.

11

Received signal(watermarked)

Reference signal:punctured

spreading code

spreading code of length 𝐿𝐿for the 𝒏𝒏-th transmit symbol

spreading code of length 𝐿𝐿for the (𝒏𝒏+ 𝟏𝟏)-th transmit symbol

movingfrom 𝜏𝜏 = 0 to 𝐿𝐿 βˆ’ 1

time delay 𝜏𝜏

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Proposed model

Page 12: Punctured bent function sequences for watermarked DS-CDMA

Watermarked DS-CDMA system

12

.

.

.

Transmitted signal for user1

Transmitted signal for user2

Transmitted signal for user𝑁𝑁

User1 Reference signal of user1

User2

User 𝑁𝑁

Reference signal of user2...

.

.

.

.

.

.

Reference signal of user𝑁𝑁

Transmitted signal for user π’Šπ’Š

Puntured spreading sequence for user 𝑖𝑖

Watermark for user 𝑖𝑖

Watermarked sequence for user 𝑖𝑖

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Want acquireDon’t want acquire

Proposed model

Page 13: Punctured bent function sequences for watermarked DS-CDMA

Analysis on Watermarksand

Design Criteria

Page 14: Punctured bent function sequences for watermarked DS-CDMA

14

πœƒπœƒπ‘π‘π‘–π‘–, 𝑠𝑠𝑗𝑗 𝜏𝜏 = πœƒπœƒπ‘ π‘ π‘–π‘–, 𝑠𝑠𝑗𝑗(𝜏𝜏) + πœƒπœƒπ‘€π‘€π‘–π‘–, 𝑠𝑠𝑗𝑗(𝜏𝜏)

Crosscorrelationof watermarked sequence and punctured sequence

β€» 𝑐𝑐𝑖𝑖 : watermarked sequence for user 𝑖𝑖.𝑠𝑠𝑖𝑖: punctured sequence for user 𝑖𝑖.𝑀𝑀𝑖𝑖: watermark for user 𝑖𝑖

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

movingfrom 𝜏𝜏 = 0 to 𝐿𝐿 βˆ’ 1

time delay 𝜏𝜏 𝒔𝒔𝒋𝒋: punctured sequence for user 𝒋𝒋.

π’”π’”π’Šπ’Š: punctured sequence for user π’Šπ’Š.

movingfrom 𝜏𝜏 = 0 to 𝐿𝐿 βˆ’ 1

time delay 𝜏𝜏 𝒔𝒔𝒋𝒋: punctured sequence for user 𝒋𝒋.

π’˜π’˜π’Šπ’Š: watermark for user π’Šπ’Š

λ°œν‘œμž
ν”„λ ˆμ  ν…Œμ΄μ…˜ λ…ΈνŠΈ
52νŽ˜μ΄μ§€ 쀑간
Page 15: Punctured bent function sequences for watermarked DS-CDMA

15

For desired signal (when 𝑖𝑖 = 𝑗𝑗)

desired signal 𝒔𝒔𝒋𝒋(watermarked)

reference signal:punctured

spreading code for user 𝒋𝒋

spreading code of length 𝐿𝐿for the 𝑛𝑛-th transmit symbol

spreading code of length 𝐿𝐿for the (𝑛𝑛 + 1)-th transmit symbol

movingfrom 𝜏𝜏 = 0 to 𝐿𝐿 βˆ’ 1

time delay 𝜏𝜏

movingfrom 𝜏𝜏 = 0 to 𝐿𝐿 βˆ’ 1

time delay 𝜏𝜏

movingfrom 𝜏𝜏 = 0 to 𝐿𝐿 βˆ’ 1

time delay 𝜏𝜏

autocorrelation of punctured

code

crosscorrelation of punctured

code and watermark code

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

πœƒπœƒπ‘π‘π‘—π‘—, 𝑠𝑠𝑗𝑗 𝜏𝜏 = πœƒπœƒπ‘ π‘ π‘—π‘—, 𝑠𝑠𝑗𝑗(𝜏𝜏) + πœ½πœ½π’˜π’˜π’‹π’‹, 𝒔𝒔𝒋𝒋(𝝉𝝉)

Page 16: Punctured bent function sequences for watermarked DS-CDMA

16

For undesired signal (when 𝑖𝑖 β‰  𝑗𝑗)

undesired signal π’”π’”π’Šπ’Š(watermarked)

reference signal:punctured

spreading code for user 𝒋𝒋 (β‰  π’Šπ’Š)

spreading code of length 𝐿𝐿for the 𝑖𝑖-th transmit symbol

spreading code of length 𝐿𝐿for the (𝑖𝑖 + 1)-th transmit symbol

movingfrom 𝜏𝜏 = 0 to 𝐿𝐿 βˆ’ 1

time delay 𝜏𝜏

movingfrom 𝜏𝜏 = 0 to 𝐿𝐿 βˆ’ 1

time delay 𝜏𝜏

movingfrom 𝜏𝜏 = 0 to 𝐿𝐿 βˆ’ 1

time delay 𝜏𝜏

crosscorrelation of two punctured

codes

crosscorrelation of punctured

code and watermark code

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

πœƒπœƒπ‘π‘π‘–π‘–, 𝑠𝑠𝑗𝑗 𝜏𝜏 = πœƒπœƒπ‘ π‘ π‘–π‘–, 𝑠𝑠𝑗𝑗(𝜏𝜏) + πœ½πœ½π’˜π’˜π’Šπ’Š, 𝒔𝒔𝒋𝒋(𝝉𝝉)

Page 17: Punctured bent function sequences for watermarked DS-CDMA

What is required

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 17

πœƒπœƒπ‘π‘π‘–π‘–, 𝑠𝑠𝑗𝑗 𝜏𝜏 = πœƒπœƒπ‘ π‘ π‘–π‘–, 𝑠𝑠𝑗𝑗(𝜏𝜏) + πœ½πœ½π’˜π’˜π’Šπ’Š, 𝒔𝒔𝒋𝒋(𝝉𝝉)

πœƒπœƒπ‘π‘π‘—π‘—, 𝑠𝑠𝑗𝑗 𝜏𝜏 = πœƒπœƒπ‘ π‘ π‘—π‘—, 𝑠𝑠𝑗𝑗(𝜏𝜏) + πœ½πœ½π’˜π’˜π’‹π’‹, 𝒔𝒔𝒋𝒋(𝝉𝝉)

as small as possiblefor all 𝝉𝝉

as small as possiblefor all 𝝉𝝉

as small as possiblefor all 𝝉𝝉 β‰  𝟎𝟎

deterministic random (?)

undesired signal

desired signal

β€’ π’˜π’˜π’Šπ’Š is a watermark, which have values Β±1 at positions indicated by the puncturing pattern 𝓅𝓅, which is a π‘˜π‘˜-subset of ℀𝐿𝐿 to be OPTIMIZED

β€’ It turned out that it is enough to assume that all the users have the same 𝓅𝓅.

β€’ Assume that the watermarking chips are i.i.d. random variables with Β±1 equally likely

Page 18: Punctured bent function sequences for watermarked DS-CDMA

Crosscorrelation πœ½πœ½π’˜π’˜, 𝒔𝒔𝒋𝒋(𝝉𝝉)of watermarking chips and punctured sequence

πœ½πœ½π’˜π’˜, 𝒔𝒔𝒋𝒋 𝝉𝝉 = �𝑙𝑙

π’˜π’˜ 𝑙𝑙 + 𝜏𝜏 𝒔𝒔𝒋𝒋(𝑙𝑙)

β€’ Watermarking chip sequence π’˜π’˜ has a non-zero value ONLY at index 𝑙𝑙 + 𝜏𝜏 ∈ 𝓅𝓅 or at index 𝑙𝑙 ∈ 𝓅𝓅 βˆ’ 𝜏𝜏.

β€’ Punctured sequence 𝒔𝒔𝒋𝒋 has a non-zero value ONLY at index 𝑙𝑙 βˆ‰ 𝓅𝓅 or at 𝑙𝑙 ∈ 𝑍𝑍𝐿𝐿\𝓅𝓅‒ Therefore, π’˜π’˜ 𝑙𝑙 + 𝜏𝜏 𝒔𝒔𝒋𝒋(𝑙𝑙) has a non-zero value ONLY at

𝑙𝑙 ∈ 𝓅𝓅 βˆ’ 𝜏𝜏 ∩ 𝑍𝑍𝐿𝐿\𝓅𝓅 = 𝓅𝓅 βˆ’ 𝜏𝜏 \𝓅𝓅‒ Therefore, the number of non-zeros will be

= | 𝓅𝓅 βˆ’ 𝜏𝜏 \𝓅𝓅|= |𝓅𝓅| βˆ’ |𝓅𝓅 ∩ 𝓅𝓅 βˆ’ 𝜏𝜏 |= π‘˜π‘˜ βˆ’ 𝐷𝐷𝓅𝓅(𝜏𝜏)

This must be the variance of πœ½πœ½π’˜π’˜, 𝒔𝒔𝒋𝒋 𝝉𝝉 .The mean of πœ½πœ½π’˜π’˜, 𝒔𝒔𝒋𝒋 𝝉𝝉 becomes 0 since 𝐸𝐸[𝑀𝑀] = 0

18Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

the non-zero values of π’˜π’˜ are i.i.d. random with Β±1 equally likely,hence, mean-zero

Page 19: Punctured bent function sequences for watermarked DS-CDMA

DESIGN CRITERIA

πœƒπœƒπ‘π‘π‘–π‘–, 𝑠𝑠𝑗𝑗 𝜏𝜏 = πœƒπœƒπ‘ π‘ π‘–π‘–, 𝑠𝑠𝑗𝑗 𝜏𝜏 + πœ½πœ½π’˜π’˜π’Šπ’Š,𝒔𝒔𝒋𝒋 𝝉𝝉

This is a random variable with mean = πœƒπœƒπ‘ π‘ π‘–π‘–, 𝑠𝑠𝑗𝑗 𝜏𝜏

variance = π‘˜π‘˜ βˆ’ 𝐷𝐷𝓅𝓅(𝜏𝜏) = |𝓅𝓅| βˆ’ |𝓅𝓅 ∩ 𝓅𝓅 βˆ’ 𝜏𝜏 |

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 19

It is a random variable with mean-zero and variance π‘˜π‘˜ βˆ’ 𝐷𝐷𝓅𝓅(𝜏𝜏) = |𝓅𝓅| βˆ’ |𝓅𝓅 ∩ 𝓅𝓅 βˆ’ 𝜏𝜏 |where 𝓅𝓅 is a puncturing pattern of size π‘˜π‘˜.

π‘ͺπ‘ͺ𝟏𝟏: Minimize the mean of πœ½πœ½π’„π’„π’Šπ’Š,𝒔𝒔𝒋𝒋 𝝉𝝉

≑ Minimize πœƒπœƒπ‘ π‘ π‘–π‘–, 𝑠𝑠𝑗𝑗 𝜏𝜏 the non-trivial correlation magnitude of

punctured sequences 𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗 for all possible 𝑖𝑖, 𝑗𝑗. π‘ͺπ‘ͺ𝟐𝟐: Minimize the variance of πœ½πœ½π’„π’„π’Šπ’Š,𝒔𝒔𝒋𝒋 𝝉𝝉

≑ Maximize minπœπœβ‰ 0

𝐷𝐷𝓅𝓅(𝜏𝜏) = minπœπœβ‰ 0

|𝓅𝓅 ∩ (𝓅𝓅 βˆ’ 𝜏𝜏)| β‰œ π‘«π‘«π’Žπ’Žπ’Šπ’Šπ’π’(𝓹𝓹)

λ°œν‘œμž
ν”„λ ˆμ  ν…Œμ΄μ…˜ λ…ΈνŠΈ
52νŽ˜μ΄μ§€ 쀑간
Page 20: Punctured bent function sequences for watermarked DS-CDMA

Upper bound of min of |𝓅𝓅 ∩ (𝓅𝓅 βˆ’ 𝜏𝜏)|

20

min1β‰€πœπœβ‰€πΏπΏβˆ’1

𝓅𝓅 ∩ (𝓅𝓅 βˆ’ 𝜏𝜏) β‰€π‘˜π‘˜2 βˆ’ π‘˜π‘˜πΏπΏ βˆ’ 1

.

Lemma (π‘ͺπ‘ͺ𝟐𝟐). Assume that π‘˜π‘˜ watermarking chips are inserted in a watermarked spreading code of length 𝐿𝐿, according to a puncturing pattern 𝓅𝓅. Then,

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Proof: Recall that 𝓅𝓅 is a π‘˜π‘˜-subset of ℀𝐿𝐿. Therefore, for any such 𝓅𝓅 of size π‘˜π‘˜, we have

�𝜏𝜏=0

πΏπΏβˆ’1

𝐷𝐷𝓅𝓅(𝜏𝜏) = π‘˜π‘˜2

since each member in 𝓅𝓅 will match every member of 𝓅𝓅(including itself) exactly once as 𝜏𝜏 runs from 0 to 𝐿𝐿 βˆ’ 1.

Since 𝐷𝐷𝓅𝓅 0 = π‘˜π‘˜, we have

1𝐿𝐿 βˆ’ 1οΏ½

𝜏𝜏=1

πΏπΏβˆ’1

𝐷𝐷𝓅𝓅(𝜏𝜏) =π‘˜π‘˜2 βˆ’ π‘˜π‘˜πΏπΏ βˆ’ 1

x x xx

x xx x

x

Page 21: Punctured bent function sequences for watermarked DS-CDMA

Proposed Optimal Watermarked Spreading Sequences Set

We consider π‘ͺπ‘ͺ𝟐𝟐 first, and then consider π‘ͺπ‘ͺ𝟏𝟏.

puncturing pattern

optimization

which spreading sequence is best with

the selected puncturing?

Does there any spreading sequence that is good with this

puncturing?

or that can be proved to be good with this puncturing?

Page 22: Punctured bent function sequences for watermarked DS-CDMA

(Almost) Cyclic Difference Sets

22

Definition. Let 𝓅𝓅 be a π‘˜π‘˜-subset of ℀𝐿𝐿. Then,

β‘  𝓅𝓅 is called a (𝐿𝐿,π‘˜π‘˜, πœ†πœ†, 𝑑𝑑)-almost cyclic difference set if, for 𝜏𝜏 = 1, 2, … , 𝐿𝐿 βˆ’ 1,

|𝓅𝓅 ∩ (𝓅𝓅 βˆ’ 𝜏𝜏)| = οΏ½ πœ†πœ† 𝑑𝑑 timesπœ†πœ† + 1 𝐿𝐿 βˆ’ 1 βˆ’ 𝑑𝑑 times.

β‘‘ 𝓅𝓅 is called a (𝐿𝐿,π‘˜π‘˜, πœ†πœ†)-cyclic difference set if, for 𝜏𝜏 =1, 2, … , 𝐿𝐿 βˆ’ 1,

|𝓅𝓅 ∩ (𝓅𝓅 βˆ’ 𝜏𝜏)| = πœ†πœ†.

This is equivalent to almost cyclic difference set with 𝑑𝑑 = 𝐿𝐿 βˆ’ 1.

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Page 23: Punctured bent function sequences for watermarked DS-CDMA

Optimal Puncturing Pattern

23

Theorem. (ACDS β‡’ 𝐢𝐢2 optimal)

Let 𝓅𝓅 be a π‘˜π‘˜-subset of ℀𝐿𝐿. Then 𝓅𝓅 is an optimal puncturing pattern if it is an (𝐿𝐿, π‘˜π‘˜, πœ†πœ†, 𝑑𝑑)-ACDS in the sense of

min1β‰€πœπœβ‰€πΏπΏβˆ’1

𝓅𝓅 ∩ (𝓅𝓅 βˆ’ 𝜏𝜏) attains its maximum value πœ†πœ† = π‘˜π‘˜2βˆ’π‘˜π‘˜πΏπΏβˆ’1

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Well-known Lemma on the existence:β‘  If an (𝐿𝐿, π‘˜π‘˜, πœ†πœ†, 𝑑𝑑)-almost cyclic difference set 𝓅𝓅 exists, then we have

π‘˜π‘˜ π‘˜π‘˜ βˆ’ 1 = L βˆ’ 1 πœ†πœ† + 𝐿𝐿 βˆ’ 1 βˆ’ 𝑑𝑑⑑ If an (𝐿𝐿, π‘˜π‘˜, πœ†πœ†)-cyclic difference set 𝓅𝓅 exists, then we have

π‘˜π‘˜ π‘˜π‘˜ βˆ’ 1 = (L βˆ’ 1)πœ†πœ†

For both cases, we haveπ‘˜π‘˜2 βˆ’ π‘˜π‘˜πΏπΏ βˆ’ 1

= πœ†πœ†

Page 24: Punctured bent function sequences for watermarked DS-CDMA

Singer Difference Sets (J. Singer 1938)

β€’ 𝐿𝐿 = 2𝑛𝑛 βˆ’ 1 with 𝑛𝑛 = 0 (mod 4)

β€’ π‘˜π‘˜ = 2𝑛𝑛/2 βˆ’ 1 and πœ†πœ† = 2𝑛𝑛/4 βˆ’ 1

β€’ 𝛼𝛼 ∈ 𝔽𝔽2𝑛𝑛 be a primitive element

β€’ tr1𝑛𝑛 π‘₯π‘₯ = βˆ‘π‘–π‘–=0π‘›π‘›βˆ’1 π‘₯π‘₯2𝑖𝑖 is the trace of π‘₯π‘₯ ∈ 𝔽𝔽2𝑛𝑛 to 𝔽𝔽2

Then, a π‘˜π‘˜-subset 𝓅𝓅 of ℀𝐿𝐿 is an (𝐿𝐿, π‘˜π‘˜, πœ†πœ†)-CDS if, for each 𝑙𝑙 ∈ ℀𝐿𝐿,

𝑙𝑙 ∈ 𝓅𝓅 iff tr1𝑛𝑛 𝛼𝛼𝑙𝑙 = 0

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 24

We will use the puncturing pattern 𝓅𝓅 from the Singer difference set constructed above.β€’ This is optimal (π‘ͺπ‘ͺ𝟐𝟐)β€’ It punctures about half the bits in one

period of the sequence of length 𝐿𝐿 = 2𝑛𝑛 βˆ’ 1Is it too much?

Page 25: Punctured bent function sequences for watermarked DS-CDMA

Bent Function Sequences

25

β€’ 𝑛𝑛 = 2π‘šπ‘š be a positive integer with even π‘šπ‘š.β€’ 𝑓𝑓 be a bent function over 𝔽𝔽2π‘šπ‘š.β€’ 𝛼𝛼 ∈ 𝔽𝔽2𝑛𝑛 be a primitive element and a constant 𝜎𝜎 ∈ 𝔽𝔽2𝑛𝑛\𝔽𝔽2π‘šπ‘š .

The set 𝓑𝓑 of 2π‘šπ‘š binary sequences of length 2𝑛𝑛 βˆ’ 1 for each constant πœ‡πœ‡ ∈ 𝔽𝔽2π‘šπ‘š given as, for 𝑙𝑙 = 0,1, … , 2𝑛𝑛 βˆ’ 2,

π’ƒπ’ƒπœ‡πœ‡ 𝑙𝑙 = βˆ’1 𝑓𝑓 trπ‘šπ‘šπ‘›π‘› 𝛼𝛼𝑙𝑙 +tr1𝑛𝑛 πœ‡πœ‡+𝜎𝜎 𝛼𝛼𝑙𝑙

is called bent function sequence family and

πœƒπœƒπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š 𝓑𝓑 ≀ 2π‘šπ‘š + 1.Hence, it is optimal in terms of the Welch bound.

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Original Contribution: J. D. Olsen, R. A. Scholtz, and L. R. Welch (1982)Above formulation by traces: Golomb and Gong (2005) Chapter 10

Page 26: Punctured bent function sequences for watermarked DS-CDMA

MAIN ContributionPunctured bent function sequences

26

β€’ 𝑛𝑛 = 2π‘šπ‘š be a positive integer with evenπ‘šπ‘š.β€’ 𝑓𝑓 be a bent function over 𝔽𝔽2π‘šπ‘š .β€’ 𝛼𝛼 ∈ 𝔽𝔽2𝑛𝑛 be a primitive element and a constant 𝜎𝜎 ∈ 𝔽𝔽2𝑛𝑛\𝔽𝔽2π‘šπ‘š .

β€’ π’ƒπ’ƒπœ‡πœ‡ 𝑙𝑙 = βˆ’1 𝑓𝑓 trπ‘šπ‘šπ‘›π‘› 𝛼𝛼𝑙𝑙 +tr1𝑛𝑛 πœ‡πœ‡+𝜎𝜎 𝛼𝛼𝑙𝑙 be the bent function sequences of length 2𝑛𝑛 βˆ’ 1 for each πœ‡πœ‡ ∈ 𝔽𝔽2π‘šπ‘š , constructed earlier in previous page.

β€’ 𝜞𝜞 be a subset of π”½π”½πŸπŸπ’Žπ’Ž such that 𝝁𝝁 + 𝝂𝝂 β‰  𝟏𝟏 for any 𝝁𝝁,𝝂𝝂 ∈ 𝜞𝜞. β€’ 𝓹𝓹 is the puncturing pattern from the Singer difference set, i.e.,

𝒍𝒍 ∈ 𝓹𝓹 iff π’•π’•π’•π’•πŸπŸπ’π’ πœΆπœΆπ’π’ = 𝟎𝟎Consider the set of punctured bent function sequences 𝑆𝑆 = π‘ π‘ πœ‡πœ‡:πœ‡πœ‡ ∈ Ξ“where

π‘ π‘ πœ‡πœ‡ 𝑙𝑙 = οΏ½π’ƒπ’ƒπœ‡πœ‡ 𝑙𝑙 if 𝑙𝑙 βˆ‰ 𝓅𝓅 ⇔ tr1𝑛𝑛 𝛼𝛼𝑙𝑙 = 10 otherwise

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Page 27: Punctured bent function sequences for watermarked DS-CDMA

Main Theorem

Let 𝑆𝑆 = π‘ π‘ πœ‡πœ‡:πœ‡πœ‡ ∈ Ξ“ be the set of punctured bent function sequences in previous page, with puncturing pattern 𝓹𝓹 from Singer difference set. Then,

πœƒπœƒmax 𝑆𝑆 ≀ 2π‘šπ‘š + 1.

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 27

Page 28: Punctured bent function sequences for watermarked DS-CDMA

Proof of correlation bound

28

First observation:

π‘ π‘ πœ‡πœ‡ 𝑙𝑙 = οΏ½π’ƒπ’ƒπœ‡πœ‡ 𝑙𝑙 if tr1𝑛𝑛 𝛼𝛼𝑙𝑙 = 10 if tr1𝑛𝑛 𝛼𝛼𝑙𝑙 = 0

=12

1 βˆ’ βˆ’1 tr1𝑛𝑛(𝛼𝛼𝑙𝑙) π’ƒπ’ƒπœ‡πœ‡[𝑙𝑙]

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Page 29: Punctured bent function sequences for watermarked DS-CDMA

Proof of correlation bound

29

Second observation:π‘ π‘ πœ‡πœ‡ 𝑙𝑙 = 1

21 βˆ’ βˆ’1 tr1𝑛𝑛(𝛼𝛼𝑙𝑙) π‘π‘πœ‡πœ‡ 𝑙𝑙

= 12π‘π‘πœ‡πœ‡ 𝑙𝑙 βˆ’ βˆ’1 tr1𝑛𝑛(𝛼𝛼𝑙𝑙)π‘π‘πœ‡πœ‡ 𝑙𝑙 = 1

2π‘π‘πœ‡πœ‡ 𝑙𝑙 βˆ’ π‘π‘πœ‡πœ‡+1 𝑙𝑙

Since

βˆ’1 tr1𝑛𝑛(𝛼𝛼𝑙𝑙)π‘π‘πœ‡πœ‡ 𝑙𝑙 = βˆ’1 tr1𝑛𝑛 𝛼𝛼𝑙𝑙 βˆ’1 𝑓𝑓 trπ‘šπ‘šπ‘›π‘› 𝛼𝛼𝑙𝑙 +tr1𝑛𝑛 (πœ‡πœ‡+𝜎𝜎)𝛼𝛼𝑙𝑙

= βˆ’1 𝑓𝑓 trπ‘šπ‘šπ‘›π‘› 𝛼𝛼𝑙𝑙 +tr1𝑛𝑛 (πœ‡πœ‡+1+𝜎𝜎)𝛼𝛼𝑙𝑙

= π‘π‘πœ‡πœ‡+1 𝑙𝑙

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Page 30: Punctured bent function sequences for watermarked DS-CDMA

Proof of correlation bound

30

For πœ‡πœ‡, 𝜈𝜈 ∈ Ξ“, the correlation of π‘ π‘ πœ‡πœ‡ and π‘ π‘ πœˆπœˆ at time shift 𝜏𝜏 is given byπœƒπœƒπ‘ π‘ πœ‡πœ‡,π‘ π‘ πœˆπœˆ 𝜏𝜏 = βˆ‘π‘™π‘™=0πΏπΏβˆ’1 π‘ π‘ πœ‡πœ‡[𝑙𝑙 + 𝜏𝜏]π‘ π‘ πœˆπœˆ[𝑙𝑙]

= 14βˆ‘π‘™π‘™=0πΏπΏβˆ’1 π‘π‘πœ‡πœ‡ 𝑙𝑙 + 𝜏𝜏 βˆ’ π‘π‘πœ‡πœ‡+1 𝑙𝑙 + 𝜏𝜏 π‘π‘πœˆπœˆ 𝑙𝑙 βˆ’ π‘π‘πœˆπœˆ+1 𝑙𝑙 .

= 14πœƒπœƒπ‘π‘πœ‡πœ‡,π‘π‘πœˆπœˆ 𝜏𝜏 + πœƒπœƒπ‘π‘πœ‡πœ‡+1,π‘π‘πœˆπœˆ+1 𝜏𝜏 βˆ’ πœƒπœƒπ‘π‘πœ‡πœ‡+1,π‘π‘πœˆπœˆ 𝜏𝜏 βˆ’ πœƒπœƒπ‘π‘πœ‡πœ‡,π‘π‘πœˆπœˆ+1 𝜏𝜏

(1) when 𝝁𝝁 = 𝝂𝝂, we are checking the values πœƒπœƒπ‘ π‘ πœ‡πœ‡,π‘ π‘ πœ‡πœ‡ 𝜏𝜏 β‰  0

= 14πœƒπœƒπ‘π‘πœ‡πœ‡,π‘π‘πœ‡πœ‡ 𝜏𝜏 β‰  0 + πœƒπœƒπ‘π‘πœ‡πœ‡+1,π‘π‘πœ‡πœ‡+1 𝜏𝜏 β‰  0 βˆ’ πœƒπœƒπ‘π‘πœ‡πœ‡+1,π‘π‘πœ‡πœ‡ 𝜏𝜏 β‰  0 βˆ’ πœƒπœƒπ‘π‘πœ‡πœ‡,π‘π‘πœ‡πœ‡+1 𝜏𝜏 β‰  0

Therefore, by triangular inequality, we get

πœƒπœƒπ‘ π‘ πœ‡πœ‡,π‘ π‘ πœ‡πœ‡ 𝜏𝜏 β‰  0 ≀14 πœƒπœƒmax ℬ + πœƒπœƒmax ℬ + πœƒπœƒmax ℬ + πœƒπœƒmax ℬ

= πœƒπœƒmax ℬ ≀ 2π‘šπ‘š + 1

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

crosscorrelationsautocorrelations

Page 31: Punctured bent function sequences for watermarked DS-CDMA

Proof of correlation bound

31

For πœ‡πœ‡, 𝜈𝜈 ∈ Ξ“, the correlation of π‘ π‘ πœ‡πœ‡ and π‘ π‘ πœˆπœˆ at time shift 𝜏𝜏 is given byπœƒπœƒπ‘ π‘ πœ‡πœ‡,π‘ π‘ πœˆπœˆ 𝜏𝜏 = βˆ‘π‘™π‘™=0πΏπΏβˆ’1 π‘ π‘ πœ‡πœ‡[𝑙𝑙 + 𝜏𝜏]π‘ π‘ πœˆπœˆ[𝑙𝑙]

= 14βˆ‘π‘™π‘™=0πΏπΏβˆ’1 π‘π‘πœ‡πœ‡ 𝑙𝑙 + 𝜏𝜏 βˆ’ π‘π‘πœ‡πœ‡+1 𝑙𝑙 + 𝜏𝜏 π‘π‘πœˆπœˆ 𝑙𝑙 βˆ’ π‘π‘πœˆπœˆ+1 𝑙𝑙 .

= 14πœƒπœƒπ‘π‘πœ‡πœ‡,π‘π‘πœˆπœˆ 𝜏𝜏 + πœƒπœƒπ‘π‘πœ‡πœ‡+1,π‘π‘πœˆπœˆ+1 𝜏𝜏 βˆ’ πœƒπœƒπ‘π‘πœ‡πœ‡+1,π‘π‘πœˆπœˆ 𝜏𝜏 βˆ’ πœƒπœƒπ‘π‘πœ‡πœ‡,π‘π‘πœˆπœˆ+1 𝜏𝜏

(2) when 𝝁𝝁 β‰  𝝂𝝂, we are checking the values πœƒπœƒπ‘ π‘ πœ‡πœ‡,π‘ π‘ πœ‡πœ‡ 𝜏𝜏 for all 𝜏𝜏 including 0,

= 14πœƒπœƒπ‘π‘πœ‡πœ‡,π‘π‘πœˆπœˆ 𝜏𝜏 + πœƒπœƒπ‘π‘πœ‡πœ‡+1,π‘π‘πœˆπœˆ+1 𝜏𝜏 βˆ’ πœƒπœƒπ‘π‘πœ‡πœ‡+1,π‘π‘πœˆπœˆ 𝜏𝜏 βˆ’ πœƒπœƒπ‘π‘πœ‡πœ‡,π‘π‘πœˆπœˆ+1 𝜏𝜏

Therefore, similarly,

πœƒπœƒπ‘ π‘ πœ‡πœ‡,π‘ π‘ πœˆπœˆ 𝜏𝜏 ≀14 πœƒπœƒmax ℬ + πœƒπœƒmax ℬ + πœƒπœƒmax ℬ + πœƒπœƒmax ℬ

= πœƒπœƒmax ℬ ≀ 2π‘šπ‘š + 1

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

crosscorrelationssince πœ‡πœ‡ + 𝜈𝜈 β‰  1 implies πœ‡πœ‡ β‰  𝜈𝜈 + 1 and πœ‡πœ‡ + 1 β‰  𝜈𝜈

crosscorrelations

Without the condition that πœ‡πœ‡ + 𝜈𝜈 β‰  1, it may happen that πœ‡πœ‡ = 𝜈𝜈 + 1and πœ‡πœ‡ + 1 = 𝜈𝜈. Then these become autocorrelations and the values at 𝜏𝜏 = 0 matters!

Page 32: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 4Punctured bent function sequences

32

β€’ 𝛼𝛼 ∈ 𝔽𝔽24 be a primitive element, a root of π‘₯π‘₯4 + π‘₯π‘₯ + 1β€’ Let 𝑓𝑓 π‘₯π‘₯ = π‘₯π‘₯3 over 𝔽𝔽22β€’ Walsh-Hadamard Transform of 𝑓𝑓 :

𝑓𝑓(πœ‚πœ‚)=βˆ‘π‘šπ‘šβˆˆπ”½π”½22 βˆ’1 𝑓𝑓(π‘šπ‘š)+Tr12(πœ‚πœ‚π‘šπ‘š) over 𝔽𝔽22

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

π‘₯π‘₯ 𝑓𝑓 π‘₯π‘₯ Tr12(0 Β· π‘₯π‘₯) Tr12(1 Β· π‘₯π‘₯) Tr12(𝛼𝛼 Β· π‘₯π‘₯) Tr12(𝛼𝛼2 Β· π‘₯π‘₯)

0 0 0 0 0 0

1 1 0 0 1 1

𝛼𝛼 1 0 1 1 0

𝛼𝛼2 1 0 1 0 1

|𝑓𝑓(πœ‚πœ‚)|=2 for all πœ‚πœ‚ ∈ 𝔽𝔽22

𝑓𝑓 π‘₯π‘₯ = π‘₯π‘₯3 is a bent function over 𝔽𝔽22

𝑓𝑓 0 = 1 βˆ’ 1 βˆ’ 1 βˆ’ 1 = βˆ’2

𝑓𝑓 1 = 1 βˆ’ 1 + 1 + 1 = +2

𝑓𝑓 𝛼𝛼 = 1 + 1 + 1 βˆ’ 1 = +2

𝑓𝑓 𝛼𝛼2 = 1 + 1 βˆ’ 1 + 1 = +2

Page 33: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 4Punctured bent function sequences

33

β€’ π‘šπ‘š = 2 and 𝑛𝑛 = 4β€’ 𝛼𝛼 ∈ 𝔽𝔽24 be a primitive element, a root of π‘₯π‘₯4 + π‘₯π‘₯ + 1β€’ 𝑓𝑓 π‘₯π‘₯ = π‘₯π‘₯3 is a bent function over 𝔽𝔽22β€’ Choose a constant 𝜎𝜎 = 𝛼𝛼 ∈ 𝔽𝔽24\𝔽𝔽22 . β€’ For any πœ‡πœ‡ ∈ 𝔽𝔽22 , the sequence

π’ƒπ’ƒπœ‡πœ‡ 𝑙𝑙 = βˆ’1 𝑓𝑓 tr24 𝛼𝛼𝑙𝑙 +tr14 πœ‡πœ‡+𝛼𝛼 𝛼𝛼𝑙𝑙

is a bent function sequence of length 24 βˆ’ 1 = 15There are 4 of them:

β€’ πœ‡πœ‡=0: + βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ βˆ’ + + + βˆ’

β€’ πœ‡πœ‡=1: + βˆ’ + + βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ βˆ’ βˆ’ +

β€’ πœ‡πœ‡=𝛼𝛼5 : + + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’

β€’ πœ‡πœ‡=𝛼𝛼10 : + + βˆ’ + + βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + +

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Page 34: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 4, Continued

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 34

β€’ 𝑏𝑏0= + βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ βˆ’ + + + βˆ’

|πœƒπœƒπ‘π‘0,𝑏𝑏0| = 22 + 1

Page 35: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 4, Continued

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 35

β€’ 𝑏𝑏0= + βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ βˆ’ + + + βˆ’π‘π‘1= + βˆ’ + + βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ βˆ’ βˆ’ +

|πœƒπœƒπ‘π‘0,𝑏𝑏1| = 22 + 1

Page 36: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 4, Continued

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 36

β€’ 𝑏𝑏0 = + βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ βˆ’ + + + βˆ’π‘π‘π›Όπ›Ό5=+ + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’

|πœƒπœƒπ‘π‘0,𝑏𝑏𝛼𝛼5| = 22 + 1

Page 37: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 4, Continued

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 37

β€’ 𝑏𝑏0 = + βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ βˆ’ + + + βˆ’π‘π‘π›Όπ›Ό10= + + βˆ’ + + βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + +

|πœƒπœƒπ‘π‘0,𝑏𝑏𝛼𝛼10| = 22 + 1

Page 38: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 4, Continued

β€’ πœƒπœƒπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š 𝓑𝓑 = 22 + 1

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 38

Page 39: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 4, Continued

β€’ 𝜞𝜞 = {0,𝛼𝛼5} be a subset of π”½π”½πŸπŸπŸ’πŸ’ such that 𝝁𝝁 + 𝝂𝝂 β‰  𝟏𝟏 for any 𝝁𝝁,𝝂𝝂 ∈ 𝜞𝜞.

β€’ 𝓅𝓅 is the puncturing pattern given by 𝑙𝑙 ∈ 𝓅𝓅 iff 𝑑𝑑𝑑𝑑14 𝛼𝛼𝑙𝑙 = 0.

β€’ Note that, 𝑑𝑑𝑑𝑑14 𝛼𝛼𝑙𝑙 = 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 .

β€’ Therefore, 𝓅𝓅 = {0, 1, 2, 4, 5, 8, 10}

Finally, the set of punctured bent function sequences 𝑆𝑆 = π‘ π‘ πœ‡πœ‡:πœ‡πœ‡ ∈ Ξ“contains only two sequences, for πœ‡πœ‡=0 and πœ‡πœ‡=𝛼𝛼5. These are

𝝁𝝁=0: 𝟎𝟎 𝟎𝟎 𝟎𝟎 βˆ’ 𝟎𝟎 𝟎𝟎 + βˆ’ 𝟎𝟎 βˆ’ 𝟎𝟎 + + + βˆ’

𝝁𝝁=πœΆπœΆπŸ“πŸ“ : 𝟎𝟎 𝟎𝟎 𝟎𝟎 βˆ’ 𝟎𝟎 𝟎𝟎 βˆ’ + 𝟎𝟎 + 𝟎𝟎 + + βˆ’ βˆ’

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 39

Page 40: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 4, Continued

β€’ πœƒπœƒπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š 𝑺𝑺 = 4≀ 22 + 1 = πœƒπœƒπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š 𝓑𝓑

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 40

Page 41: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 8

41

β€’ π‘šπ‘š =8 and 𝑛𝑛 = 4β€’ 𝛼𝛼 ∈ 𝔽𝔽28 be a primitive element, a root of π‘₯π‘₯8 + π‘₯π‘₯7 + π‘₯π‘₯2 + π‘₯π‘₯1 + 1β€’ 𝑓𝑓 π‘₯π‘₯ = Tr14(𝛼𝛼17π‘₯π‘₯3) is a bent function over 𝔽𝔽24β€’ Choose a constant 𝜎𝜎 = 𝛼𝛼 ∈ 𝔽𝔽28\𝔽𝔽24 .β€’ Represent correlation only the case 𝝁𝝁=0, 𝛼𝛼17 ∈ 𝔽𝔽24 .

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

β€’ 𝜞𝜞 = {0,𝛼𝛼17} be a subset of π”½π”½πŸπŸ8 such that 𝝁𝝁 + 𝝂𝝂 β‰  𝟏𝟏 for any 𝝁𝝁,𝝂𝝂 ∈ 𝜞𝜞. β€’ 𝓅𝓅 is the puncturing pattern given by 𝑙𝑙 ∈ 𝓅𝓅 iff 𝑑𝑑𝑑𝑑18 𝛼𝛼𝑙𝑙 = 0.

For bent function sequences…

For punctured bent function sequences…

Page 42: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 8, Continued

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 42

Autocorrelation of bent function sequences

Page 43: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 8, Continued

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 43

β€’ πœƒπœƒπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š 𝓑𝓑 = 24 + 1

Crosscorrelation of bent function sequences

Page 44: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 8, Continued

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 44

Autocorrelation of punctured bent function sequences

Page 45: Punctured bent function sequences for watermarked DS-CDMA

Example: 𝑛𝑛 = 8, Continued

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 45

β€’ πœƒπœƒπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š 𝑺𝑺 = 16 ≀ 24 + 1 = πœƒπœƒπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š 𝓑𝓑

Crosscorrelation of punctured bent function sequences

Page 46: Punctured bent function sequences for watermarked DS-CDMA

Properties of Punctured bent function sequences

46

The cardinality of 𝑆𝑆 is Ξ“ = 2π‘šπ‘šβˆ’1.β€’ Because of Ξ“ in which πœ‡πœ‡ + 𝜈𝜈 β‰  1

𝑆𝑆 is optimal in terms of 𝐢𝐢2.β€’ Because puncturing pattern of 𝑆𝑆 is Singer difference set.

Any sequence in 𝑆𝑆 has the energy 𝐸𝐸 = πœƒπœƒ 0 = 2π‘›π‘›βˆ’1, which is about half the energy of the original bent function sequences.

β€’ Because 𝓅𝓅 = 2π‘›π‘›βˆ’1 βˆ’ 1 is about the half the length

𝑆𝑆 is asymptotically optimal in terms of 𝐢𝐢1 also.β€’ Both 𝑆𝑆 and the original bent function sequences have the same upper bound

on the maximum non trivial correlation magnitudeβ€’ Since the energy is reduced by half, this upper bound πœƒπœƒπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š(𝑆𝑆) asymptotically

achieves TWO times the Welch bound.

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences

Page 47: Punctured bent function sequences for watermarked DS-CDMA

Some open questions

For the puncturing pattern from the Singer’s difference set, try some other spreading sequences

β€’ Gold, Kasami, etc

Optimal puncturing patterns must be from either ACDS or CDS.β€’ They all are optimal but some implications might be different when it

applies to some other spreading sequences. β€’ Does there any pair of puncturing pattern and spreading sequences

that can be provable mathematically, other than those mentioned in this talk

Main theorem implies: we have constructed a set of 2π‘šπ‘šβˆ’1 ternary sequences of length 22π‘šπ‘š βˆ’ 1 such that

β‘  Number of 0’s is 2π‘šπ‘šβˆ’1 βˆ’ 1 in each sequenceβ‘‘ Number of non-zeros (either +1 or -1) is 2π‘šπ‘šβˆ’1 in each sequenceβ‘’ Max correlation magnitude is upper bounded by 2 times Welch Bound.

True/False: this is a set of BEST ternary sequence family in terms of Welch Bound.

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 47

Page 48: Punctured bent function sequences for watermarked DS-CDMA

Any questions?

Copyright @ Hong-Yeop Song, Yonsei Univ. Korea, Punctured Bent Function Sequences 48


Recommended