+ All Categories
Home > Documents > Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

Date post: 03-Jul-2015
Category:
Upload: jorge-quintanilla
View: 539 times
Download: 2 times
Share this document with a friend
58
ISIS Facility, STFC Rutherford Appleton Laboratory School of Physical Sciences Puzzling pairing in the non-centrosymmetric superconductor LaNiC 2 Jorge Quintanilla SEPnet, University of Kent Hubbard Theory Centre, Rutherford Appleton Laboratory CMMP’10, University of Warwick, 15 December 2010 Adrian Hillier (RAL) Bob Cywinski (Huddersfield) James F. Annett (Bristol) Bayan Mazidian (Bristol and RAL) Collaborators: STFC, SEPnet Funding:
Transcript
Page 1: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

ISIS Facility, STFC Rutherford Appleton Laboratory

School of Physical Sciences

Puzzling pairing in the

non-centrosymmetric superconductor

LaNiC2

Jorge Quintanilla

SEPnet, University of Kent

Hubbard Theory Centre, Rutherford Appleton Laboratory

CMMP’10, University of Warwick, 15 December 2010

Adrian Hillier (RAL)

Bob Cywinski (Huddersfield)

James F. Annett (Bristol)

Bayan Mazidian (Bristol and RAL)

Collaborators:

STFC, SEPnetFunding:

Page 2: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

LaNiC2 – a weakly-correlated, paramagnetic superconductor?

Tc=2.7 K

W. H. Lee et al., Physica C 266, 138 (1996)V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)

ΔC/ TC=1.26 (BCS: 1.43)

specific heat susceptibility

Page 3: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

ISIS

muSR

Page 4: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

(longitudinal)

Timescale:

> 10-4s~

e

_

e

backward detector

forward detector

sample

Page 5: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

(longitudinal)

Timescale:

> 10-4s~

e

_

e

backward detector

forward detector

sample

Page 6: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

(longitudinal)

Timescale:

> 10-4s~

e

_

e

backward detector

forward detector

sample

Page 7: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

Spontaneous, quasi-static fields appearing at Tc

⇒ superconducting state breaks time-reversal symmetry[ c.f. Sr2RuO4 - Luke et al., Nature (1998) ]

(longitudinal)

Timescale:

> 10-4s~

e

_

e

backward detector

forward detector

sample

Page 8: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Symmetry of the gap function

kk

kkkˆ

See J.F. Annett Adv. Phys. 1990.

Page 9: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

Neutron diffraction

30 40 50 60 70 800

5000

10000

15000

20000

25000

30000

35000

Inte

nsity (

arb

un

its)

2o

Orthorhombic Amm2 C2v

a=3.96 Å

b=4.58 Å

c=6.20 Å

Data from

D1B @ ILL

Note no inversion centre.

C.f. CePt3Si (1), Li2Pt3B & Li2Pd3B (2), ...

(1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06

Page 10: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Page 11: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

Page 12: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Impose Pauli’s exclusion principle: , ' k ', k

Neglect (for now!) spin-orbit coupling:

ˆ k either singlet yi ˆ0', kk

or triplet yi ˆˆ.', σkdk

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Page 13: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

180o

Page 14: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

C2vSymmetries and

their characters

Sample basis

functions

Irreducible

representation

E C2 v ’v Even Odd

A1 1 1 1 1 1 Z

A2 1 1 -1 -1 XY XYZ

B1 1 -1 1 -1 XZ X

B2 1 -1 -1 1 YZ Y

Character table

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

These must be combined with the singlet and triplet representations of SO(3).

Page 15: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v Gap function

(unitary)

Gap function

(non-unitary)

1A1 (k)=1 -

1A2 (k)=kxkY -

1B1 (k)=kXkZ -

1B2 (k)=kYkZ -

3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ

3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ

3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX

3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY

Possible order parameters

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

Page 16: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v Gap function

(unitary)

Gap function

(non-unitary)

1A1 (k)=1 -

1A2 (k)=kxkY -

1B1 (k)=kXkZ -

1B2 (k)=kYkZ -

3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ

3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ

3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX

3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY

Possible order parameters

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

Page 17: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v Gap function

(unitary)

Gap function

(non-unitary)

1A1 (k)=1 -

1A2 (k)=kxkY -

1B1 (k)=kXkZ -

1B2 (k)=kYkZ -

3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ

3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ

3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX

3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY

Possible order parameters

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

Page 18: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v Gap function

(unitary)

Gap function

(non-unitary)

1A1 (k)=1 -

1A2 (k)=kxkY -

1B1 (k)=kXkZ -

1B2 (k)=kYkZ -

3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ

3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ

3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX

3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY

Non-unitaryd x d* ≠ 0

Possible order parameters

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

Page 19: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v Gap function

(unitary)

Gap function

(non-unitary)

1A1 (k)=1 -

1A2 (k)=kxkY -

1B1 (k)=kXkZ -

1B2 (k)=kYkZ -

3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ

3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ

3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX

3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY

Non-unitaryd x d* ≠ 0

breaks only SO(3) x U(1) x T

Possible order parameters

* C.f. Li2Pd3B & Li2Pt3B,H. Q. Yuan et al. PRL’06

*

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

Page 20: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Spin-up superfluid coexisting with spin-down Fermi liquid.

Non-unitary pairing

0

00or

00

Page 21: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Spin-up superfluid coexisting with spin-down Fermi liquid.

Non-unitary pairing

0

00or

00

C.f.

Page 22: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Spin-up superfluid coexisting with spin-down Fermi liquid.

The A1 phase of liquid 3He.

Non-unitary pairing

0

00or

00

C.f.

Page 23: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Spin-up superfluid coexisting with spin-down Fermi liquid.

The A1 phase of liquid 3He.

Non-unitary pairing

0

00or

00

C.f.

Ferromagnetic superconductors.

F. Hardy et al., Physica B 359-61, 1111-13 (2005)

[ See A. de Visser in Encyclopedia of Materials: Science and Technology (Eds.

K. H. J. Buschow et al.), Elsevier, 2010 ]

Page 24: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Ferromagnetic superconductors

A. de Visser in Encyclopedia of Materials: Science and Technology (Eds. K. H. J. Buschow et al.), Elsevier, 2010

But LaNiC2 is a paramagnet !

Page 25: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Isn’t there a more simple explanation?

Page 26: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

yxz

zyx

iddd

didd

0

0

0k

The role of spin-orbit coupling (SOC)

Gap function may have both singlet and triplet components

kkorbitspin

',',

• However, if we have a centre of inversion

basis functions either even or odd under inversion

still have either singlet or triplet pairing (at Tc)

• No centre of inversion: may have singlet and triplet (even at Tc)

Page 27: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Page 28: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Page 29: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Page 30: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Page 31: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Page 32: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

G = Gc,J×U(1)×T

The role of spin-orbit coupling (SOC)

Page 33: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

G = Gc,J×U(1)×T

The role of spin-orbit coupling (SOC)

Page 34: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

G = Gc,J×U(1)×T

The role of spin-orbit coupling (SOC)

Page 35: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

xy

z

Page 36: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

xy

z

Page 37: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

xy

z

Page 38: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

xy

z

Page 39: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

This affects d(k) (a vector under spin rotations).

xy

z

Page 40: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

This affects d(k) (a vector under spin rotations).

It does not affect 0(k) (a scalar).xy

z

Page 41: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

C2v,Jno t Gap function,

singlet component

Gap function,

triplet component

A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz)

A2 (k) = AkxkY d(k) = (Bkx,Cky,Dkz)

B1 (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky)

B2 (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx)

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Page 42: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

C2v,Jno t Gap function,

singlet component

Gap function,

triplet component

A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz)

A2 (k) = AkxkY d(k) = (Bkx,Cky,Dkz)

B1 (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky)

B2 (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx)

The role of spin-orbit coupling (SOC)

None of these break time-reversal symmetry!

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Page 43: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

How could this happen?

Gap matrices evolve smoothly as SOC is turned on.

yi ˆA

yy ii ˆˆ.ˆˆ0 σkdkk

E.g. ( 1A1 )

( A1 )yzyxxyy ikkkkki ˆˆ.D,C,BˆA σ

for B = C = D = 0

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Page 44: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

How could this happen?Some instabilities split in two under the influence of SOC:

yz iki ˆˆ.0,,1 σE.g. ( 3A1(b) )

( B2 )0,1,0,0DC,B,A, with

ˆˆ.D,C,BˆA yxzyxzyzy ikkkkkikk σ

( B1 )0,0,1,0DC,B,A, with

ˆˆ.D,C,BˆA yyzzyxyzx ikkkkkikki

σ

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Page 45: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Relativistic and non-relativistic instabilities: a complex relationship

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

spin-orbit coupling

spin-orbit coupling

1A1

1A2

1B1

1B2

3A1(a)

3A2(a)

3B1(a)

3B2(a)

A1

A2

B1

B2

A2

A1

B2

B1

3A1(b)

3A2(b)

3B1(b)

3B2(b)

B2

B1

B1

B2

A2

A1

A1

A2

Page 46: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Relativistic and non-relativistic instabilities: a complex relationship

singlet

Pairing

instabilities

non-unitary

triplet

pairing

instabilities

unitary

triplet

pairing

instabilities

A1 B1

3B1(b) 3B2(b)

1A11A2

3A1(a) 3A2(a)

A2 B2

1B11B2

3B1(a) 3B2(a)

3A1(b) 3A2(b)

Page 47: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The second (lower-Tc) instability can be symmetry-breaking because it is no longer an instability of the normal state:

3A1 (b)

(kz,ik

z,0)

B2

B1

i(0,kz,0)

(kz,0,0)

SOC

The experiments show a transition straight into the broken TRS phase

⇒ SOC must be small in LaNiC2

The role of spin-orbit coupling (SOC)

N.B. singlet component must be very small too.

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Page 48: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Recap

Page 49: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Page 50: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

Page 51: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

Page 52: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

What do we not know yet?

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

Page 53: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

What do we not know yet?

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

Which of the four pairing symmetries?

Page 54: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

What do we not know yet?

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

Which of the four pairing symmetries?

Why non-unitary?

Page 55: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

What do we not know yet?

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

Which of the four pairing symmetries?

Why non-unitary?

Take this home:

Page 56: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

What do we not know yet?

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

Which of the four pairing symmetries?

Why non-unitary?

Take this home:

•There’s more than Rashba to noncentrosymmetric superconductors

Page 57: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

What do we not know yet?

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

Which of the four pairing symmetries?

Why non-unitary?

Take this home:

•There’s more than Rashba to noncentrosymmetric superconductors

•There’s more than strong correlations to unconventional pairing

Page 58: Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Thanks!


Recommended